ebook img

Robotic Haptic Proxies for Collaborative Virtual Reality PDF

4.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robotic Haptic Proxies for Collaborative Virtual Reality

Robotic Haptic Proxies for Collaborative Virtual Reality ZhenyiHe FengyuanZhu AaronGaudette FutureRealityLab,NewYork FutureRealityLab,NewYork FutureRealityLab,NewYork University University University [email protected] [email protected] [email protected] KenPerlin FutureRealityLab,NewYork University [email protected] 7 1 ABSTRACT realobjectsintheenvironment, suchasauser’swristsora 0 WeproposeanewapproachforinteractioninVirtualReality workstation/table. With this knowledge of global state, we 2 (VR)usingmobilerobotsasproxiesforhapticfeedback. This utilize an outside-in approach to control lightweight robots n approachallowsVRuserstohavetheexperienceofsharing (proxies) in realtime with a high degree of accuracy. The a andmanipulatingtangiblephysicalobjectswithremotecol- systemisphysicallyconciseandsimpletosetup. J laborators. Becauseparticipantsdonotdirectlyobservethe Weimplementedmultipleprototypeapplicationsthataddress 1 robotic proxies, the mapping between them and the virtual someofthemanypossibilitiesthistechnologyenables. Be- 3 objectsisnotrequiredtobedirect. Inthispaper,wedescribe cause the Holojam SDK primarily supports multi-user VR ourimplementation,variousscenariosforinteraction,anda experiences,wechosetofocusoncollaborative,sharedexperi- ] preliminaryuserstudy. C ences.Weimplementedprototypesinvolvingusersinthesame H room(shared-space)aswellasprototypesinvolvingusersin ACMClassificationKeywords differentphysicallocations(remote-space),withsupportfor . H.5.1. Multimedia Information Systems: Artificial, aug- s varyingspatialconfigurations. c mented,andvirtualrealities;H.5.2UserInterfaces:Interaction [ styles Wedefinedthreepossiblemappingsbetweentherepresenta- tionofphysicalproxies,whichare"invisible"whenwearing 1 AuthorKeywords aVRheadset,andvirtualobjects: one-to-one,many-to-one, v 9 TangibleUserInterface;Physicalpresence;VirtualReality; andone-to-many. Multiplevirtualobjectsmayberepresented 7 Remotecollaboration;Haptics; physicallybyasinglerobot,orviceversa,dependingonthe 8 numberanddistributionoftherobotsinthescene,aswellas 8 INTRODUCTION userproximity(shared-spaceversusremote-space). 0 Inthepastdecade,virtualreality(VR)hasreachedagreater 1. level of popularity and familiarity than ever before. VR is Inremote-space,oursystemallowsmultipleusersto"share" touchonthesamevirtualobject,enablingnewformsofcol- 0 gainingtractionintheconsumermarket,andintegratingphys- laborationforremoteteamwork. Inshared-space,oneproxy 7 icalandvirtualenvironmentsseamlesslyisawell-recognized orseveraldistributedproxiescanbesynthesizedviagesture 1 challenge. Hapticfeedbackcanbeapowerfulcomponentof recognitionandpredictiontofacilitateswifthapticresponse : immersionandcanbeusedtoimproveuserexperienceinVR v foralargenumberofvirtualobjects,aswellas"command- togreateffect. Xi ing"ofphysicalobjectstomovewithouttouchingthem. We In this paper, we present a generic, extensible system for executedalloftheseideasasprototypeapplications. r a providinghapticfeedbacktomultipleusersinvirtualrealityby Ourmaincontributions: intelligentlydirectingoneormoremobilerobots.Theserobots actasproxiesforreal,physicalobjectsorforces,assistingthe • RemotesynchronizableroboticproxiesforVR.Basedon environment by providing a deeper level of immersion at a roboticassistants,peoplecoulddophysicalcollaboration lower cost. Using the Holojam Software Development Kit remotely. (SDK)alongwithOptiTracktrackingtechnology,weareable to determine the absolute position and rotation of various • Mappings between virtual objects and invisible physical robots.Weextendthepossibilityviaimplementingdifferent mapping styles. Therefore, we could control one virtual objectbymultiplerobots,orcontrolmultiplevirtualobjects byonlyonerobot. • Augmenttheexperiencebycombinationofphysicalfeed- backandvirtualscene. RELATEDWORK control distant objects without feedback. Also with shared Severalmethodshavebeenadvancedthatsimulatethesense workspacesthatcancaptureandremotelyrendertheshapes oftouch. However,manyareeithernotasmobileornotas ofpeopleandobjects,userscanexperiencehapticfeedback lightweightasoursystem. basedonshapeddisplays[13]. HapticInterfaces MOBILEPHYSICALPROXIES Recentlymoreandmoreresearchhasarisenfocusedonthe Tosupporttheillusionofphysicalsharingbetweencollabo- intersectionbetweenhapticfeedbackandcollaboration. In- rators,oursystemrequiresoneormoremobilerobots,which Form[6]proposedutilizingshapedisplaysinmultipleways mustbeintelligentlycontrolledinamannerthatrespectsthe tomanipulatebyactuatingphysicalobjects. TangibleBitswas constraintsoftherobotsandtheenvironment. Weaccomplish proposedtoempowercollaborationbymanipulatingphysical thiswithanoutside-inapproach,managingglobalstateand objectsat1997[9],andtheideawasextendedin2008[8]. PSy- sendingrobotcontrolmessagesfromasingleservermachine. Bench,aphysicalsharedworkspace,presentsanewapproach Usingthead-hocservermodelintheHolojamSDK,wefirst toenhanceremotecollaborationandcommunication,based ascertainglobalstatebyreadingrealtimetrackingdatafrom on the idea of Tangible Interfaces at 1998[3]. The concept theOptiTracksystem,thencalculatethetargetpositionsfor ofsynchronizeddistributedphysicalobjectswasmentioned anyrobotsthatarecurrentlyactiveintheenvironment,based in PSyBench[3], which demonstrated the potential of phys- ontheapplicationrequirements. Ourad-hocservermaintains ical remotecollaboration. One contribution in this paper is asmanyroomsasisnecessaryforremote-spaceapplications toshowhowpeoplecanexperienceconsistentphysicalfeed- (alloftheexamplesinthispaperuseeitheroneortworooms) backoverdistance,regardlessofthephysicalconfiguration andcommandstheconnectedrobotstomovewhenneeded. ofthecorrespondingremotespace. PSyBench[15]onlyhad Becauseboththerobotsandoptitrackcamerasaresmall,and 1-to-1mappingwhileweextendedthemappingstyleandkind thead-hocservercanrunonamidrangecomputer,theentire ofscenarios. Alsoobjectscouldnotbeliftedanddisplayed setupisfairlylightweightandportable. thesamemovementwithoutVRsupport. InForm[6]didnot supportcollaborationandthematerialsarefixedonthetable, whileweofferamorelightweightapproach.SnakeCharmer[1] hadsimilarideasaboutone-to-manymapping. However,we supportcollaborationandwireless. HapticFeedback HapticfeedbackhasbeenmentionedfrequentlyinVRtraining, especially in the medical field. The sense of touch is the earliest developed in human embryology and is believed to Figure1.Robotswithtrackedconfiguration be essential for practice [5, 4]. Robot-assisted minimally invasivesurgery(RMIS)holdsgreatpromiseforimprovingthe accuracyanddexterityofasurgeon[14]. Hapticfeedbackhas RobotDesign potentialbenefitsnotonlyintraining,butinotherinteractions Beginningwithseveralm3pirobots,weattachedaconfigu- as well. Reality based interaction was proposed for post- rationoftrackedmarkerstoeachoneinordertodetermine WIMPinterfaces[11]. Tangibleinteractionsareobservable its absolute position and orientation via the OptiTrack sys- withbothvisualandhapticmodalitiesthatcouldhelppeople tem. Wecreatedacylinder-shapedacryliccoverfortherobots utilize basic knowledge about the behavior of our physical (Figure1)inordertofacilitateeasygripping. Thisgripwas world[18]. standardized across all the robots, with a minimalist, scale- matchedvirtualrepresentationavailableforwheninteraction HapticRe-Targeting wasnecessary. Manipulatingmultiplevirtualobjectsisalwaysachallenge,in thatprecisely-locatedhapticproxyobjectsarerequired. [2] MappingsBetweenPhysicalandVirtualSpace proposed multiple approaches to align physical and virtual Onechallengeofphysicallyrepresentingavirtualenvironment objects. Redirectedtouching[12]consideredtheinflexibility isthemethodusedtomapvirtualobjectstotheirphysicalcoun- ofpassivehapticdisplaysandintroducedadeliberateincon- terparts(orviceversa).Conventionally,virtualobjectshaveno sistencybetweenrealhandsandvirtualhands. Inredirected physicalrepresentationandcanonlybecontrolledindirectly touching,asinglerealobjectcouldprovidehapticfeedback orthroughtheuseofastandardinputdevice(suchasagame for virtual objects of various shapes to enrich the mapping controller). Also,thesetofphysicallycontrolledobjectsthat betweenvirtualobjectsandphysicalproxies. are visually represented in VR have been traditionally lim- itedtotheinputdevicesthemselves. Incontrast,oursystem Telepresence providesthreedifferentmappingmechanismstoaugmentthe C-Slatepresentedanewvision-basedsystem,whichcombined relationshipbetweenphysicalandvirtualrepresentation. bimanualandtangibleinteractionandthesharingofremote gestures and physical objects as a new approach to remote • One-to-OneMapping collaboration [10]. [7] tried an augmented reality way to Thisisthestandardandmoststraightforwardoption. When users interact with a virtual object in the scene, they si- multaneously interact with a physical proxy at the same location. • Many-to-OneMapping When multiple proxies represent one virtual object, we define the mapping as "many-to-one." This is useful for remote-spaceapplications: avirtualobjectcouldexistin thesharedenvironment,whichcouldthenbemanipulated bymultipleusersviatheirlocalproxies. • One-to-ManyMapping Variousconstraintsincludingcostandspacelimitthecapa- bilityofmaintainingaphysicalcounterpartforeveryone of a large number of virtual objects. When less proxies areavailablethanvirtualobjects,oneofthetotalavailable proxiescouldrepresentagivenvirtualobjectwhenrequired. Forexample,auserwithadisordereddeskinVRmaywant Figure3."ClinkingDrinks"Scenario toreorganizealloftheirvirtualitems. Ineachinstanceof theuserreachingtointeractwithavirtualitem,thesingle (ornearest,iftherearemultiple)proxywouldrelocateto latencytestconcludedrangesfrom1-1.5seconds. Therefore the position of the target item, standing by for pickup or we "faked" the scene that user supposed to see in order to additionalinteractions. Thevirtualexperienceisseamless, eliminatethefeelingoftruelatency. whilephysicallyasmallnumberofproxiesisconstantlyin motion. Intheexperimentsectionwetestusersontheirperceptionof thislatency,withpositiveresults. Forshared-spaceapplica- LocalizationofUserEnvironments tions,weforegolatencyandinsteadrendera"loading"sprite Oursystemenablesteamstocollaboratewitheachotherin tosignifytotheuserthattheproxyhasnotyetarrivedatits remote-space. Hereweassumetheenvironmentisaworksta- finaldestination. tionforthesakeofexample. Oneissueisthatnotallusers maysharethesamespatialconfiguration. Toaddressthis,we PROTOTYPEAPPLICATIONS builtagenericmodelforsynchronizingproxiesonatable. PasstheMug In this scenario, we demonstrate a novel method to extend thecapabilityofhumaninteractionwithphysicalandvirtual objects. Weemployacustomgesturerecognitiontechnique alongsideourphysicalproxies, enablinguserstocommand thepositionofamugusinghandmotions. Utilizingasimple configurationoftrackedmarkersthatreportseachuser’swrist positionandorientationviatheOptiTracksystem,userscan pushaproximatemugacrossthetableviaapushinggesture, pull a distant mug towards them with a pulling gesture, or Figure2.Simulatedremote-spacesetupwithbothVRviews motioninanotherdirectiontoslidethemugtowardsanother partofthetable.Usersmustfirstselectatargetbyaimingtheir Inademonstration,weassignedtwoparticipantstoseatsar- palmatanobject–theobjectwillshaketoindicateitisbeing ranged perpendicular to each other, with tables unequal in targeted–afterwardstheobjectwillglowtoindicateitisunder size (Figure 2). In VR, each participant observed the other gesturemode. Userscanstillpickupobjectsandinteractwith asdirectlyoppositethemselves, withaconsistenttablerep- themnormallywhentheyarecloseenoughtoreach. resentation. Thisdesignallowsuserstoexperienceanatural viewpointregardlessofphysicalsetup. Theroboticproxies, ClinkingDrinks meanwhile,adjustthemselvestooperatewithintheminimum Thisscenarioutilizesaone-to-onemapping,simulatingtheef- boundary,relativetoeachuser’sindividualview. fectoftwousersstrikingtheirmugstogetherwhileinseparate physicallocations(seeinFigure3).Ineachlocalenvironment, Wealsochosetointroducelatencyforsynchronizinguserac- theuser’smug’spositionisgovernedbyanon-robotictracked tions in remote-space. Movements involving the proxy are physicalobject,andtheforceofthestrikeissimulatedviaa delayedbyaspecifiedtimeinterval(weuseadelayofonesec- synchronizedmovingproxy. ondforthedemonstrationabove),togivetherobotsufficient timetocatchupwitheachuser’sactions. Thissmoothsthe Tic-Tac-Toe hapticoperationsconsiderably. Herewerecreatedtheclassicboardgame,Tic-Tac-Toe,inVR, Weadded"artificial"latencytoimprovetheuserexperience. but for users in remote locations. We utilize a "controller" Basedontherobotwechoseandthesizeofworkstation,our object,allowingplayerstoselectatileforeachgamestep(see the transparent cylinder holding by user in Figure 4). This themtoseeeveryoneelseasanavatar,walkaroundthephysi- applicationimplementsmany-to-onemapping: twoproxies calworld,andinteractwithrealphysicalobjects. Youcansee aresynchronizedallthetime,withasinglevirtualcontroller theheadsetandpairedgloveinFigure2. synchronized across both spaces so that a player can reach Wecancalculatethehead’spositionbasedonmarkerinfor- for it on their turn and experience haptic feedback. When mation. Theusersaretrackedallthetime. Intheframework oneplayerisholdingthecontrollerandconsideringtheirnext of Holojam, we have a server to receive data from outside move,theotherplayercanobservethismovementintheirview like OptiTrack and send customized message to all clients aswell. Eachgamestep,aplayer’sselectedtiledisplayseither (phones). Thatiswhyuserswearingheadsetcouldseereal- an"O"oran"X"shape. Turnsareprocessedsequentially. The timescene. Themarkersweusedareonlyfixedonheadsets techniquesusedinthisprototypecouldeasilybeexpandedto andhand-madeglove. Userscouldonlyfeelthegloveitself othertabletopgames. insteadofthemarkers,seeFigure2. Actuallyitisjustaband aroundthepalm. Fromthefeedback,nouserscomplainedon thesimplifiedglove. Inourdesign,weneedalightweightphysicalobject,whichis bothtrackedandmovable. Them3pirobot[17]isacomplete, high-performancemobileplatformwithanm3piexpansion boardasitssecondlevel. Youcanseethecombinationofthe m3pirobotsandmarkersinFigure1. For both experiments, the participants’ wrists were tracked Figure4."Tic-Tac-Toe"Scenario byhandstrapscontainingtrackedmarkers,andtwotablesof differentsizeswerealsotracked. CityBuilder Participants TheCityBuilderdemovisualizesavirtual3Dminiatureofa Sixteen participants invited to join our study, three female. cityonaflatsurface,whereusersareabletopickupanybuild- Agesrangedfromtwenty-twotofifty-two,andthemedianage ingandmoveittosomewhereelseonthemap. Eachuser’s wastwenty-sixyearsold. Allparticipantswereright-handed. wrististrackedinthesamemannerasinthe"PasstheMug" Seventy-fivepercenthadexperiencedVRpriortothestudy. demo, and aproxy is fittedbehind-the-scenes tothe virtual buildingwhichisvisuallynearesttoagivenuser’shand–an Tic-Tac-Toe exampleofone-to-manymapping. Inthisimplementation,the Inthisexperiment,theparticipantexperiencedamultiplayer movementandpositionoftherobotsiscompletelyinvisible (two-person)playthroughofbothourprototypeapplication totheuser. version of Tic-Tac-Toe and a purely virtual version, where theirtrackedhandwasusedfortileselectionsinsteadofthe EXPERIMENTANDRESULTS controller. Wedesignedtwotestsforouruserstudy,modifiedfromour Thetimeelapsedforeachgamewasrecorded,aswellasthe prototypeapplications. Thefirst,aduplicateofour"Tic-Tac- participant’sresponsestothefollowingquestions: Toe" application, demonstrates many-to-one mapping. We includedaversionofTic-Tac-Toethatwaspurelyvirtual(no • Did you feel like you and your testmate were sitting at haptics)forcomparison. Thesecondexperiment,"Telekine- differenttables? sis",waslooselybasedonour"PasstheDrinkingMug"ap- plication,demonstratingone-to-onemapping,andmeasuring • Didyoufeellikeyouropponentwasmovingnaturally? users’abilitytolearnthegesturesystemandtocommanda • Wereyoumorecomfortablewiththephysicalorthevirtual targetatvariouslocations. versionofthegame? Following each test, users filled out a survey of their expe- Onascalefromonetofive: rience. Of the twelve questions on the survey, three were general,sixregardedtheTic-Tac-Toetest,andthreeregarded • Howmuchdelaydidyouexperiencebetweenyouractions theTelekinesistest. andtheirexpectedoutcomes? (Notmuch–unendurable) HardwareandSoftware • Howwelldidyoufeelyoucouldmanipulateobjectsinthe ParticipantsworeSamsungGearVRheadsetswithOptiTrack virtualenvironment? (Notwell–verywell) trackedmarkers,asperthecurrentspecificationsoftheHolo- jamSDK.Holojam[16]isanuntetheredvirtualrealityheadset • Didyouunderstandthegame? (No–enjoyable) systemthatenablespeoplehaveshared-spaceVRexperience. HolojamhasbeendemoedinSIGGRAPH2015performance Telekinesis session. Briefly:eachparticipantneedstoputonalightweight Inthisexperiment,wesplitthevirtualtableintonineparts,se- wirelessmotion-trackedGearVRheadsetaswellasstrap-on quentiallyplacingatargetineachoneofthesubsections. Par- glove markers, tracked by OptiTrack. These devices allow ticipantswerefirstgivenuptotwominutestolearnthegesture Table1.Amountforthedecisionondirectlygrabbing Table2.Tic-Tac-ToeSurvey positiononthetable 1 2 3 4 5 6 7 8 9 Questions Results ...differenttables? 2/16 amountofgrabbing 3 1 1 4 5 0 6 5 4 ...opponentmovingnaturally? 16/16 ...comfortablewiththephysicalversion? 11/16 ...experienceddelay? 2.31/5 system,thenweobservedtheircommandchoice(including ...feelyoucouldmanipulateobjects? 4.02/5 non-gesturalphysicalinteraction)foreachtargetposition. ...understandthegame? 4.38/5 Thetimeelapsedforeachchoicewasrecorded,aswellasthe participant’sresponsestothefollowingquestionsonascale Table3.TelekinesisSurvey from1to5: Questions Results • Hownaturaldidthemechanismforcontrollingmovement ...feltnaturalforcontrollingmovement? 3.5/5 throughtheenvironmentfeel? (Notnatural–verynatural) ...compellingsenseofobjectsmoving? 4.0/5 • Howcompellingwasyoursenseofobjectsmovingthrough space? (Notcompelling–verycompelling) wayfortilesfour,five,andsix(atamediumdistancefromthe Followingthis,theparticipant’saccuracywastestedonone player),39outof48(81.3%)weremovedusinggestures. And final command, given a target direction. We recorded the fortheclosetiles–seven,eight,andnine–33outof48(68.8%) participant’sresponsetothefollowingquestion: weremovedusinggestures. • Which direction matched your expectation of the com- Theaveragetimeelapsedwhenphysicallymovingtheobjects mand’sresultthebest? (Forward/Backward/Left/Right/ was 1.5 seconds (ranging from 0.2 seconds to 5 seconds), None) whereas the average time elapsed when using gestures was 1.97seconds(rangingfrom0.5secondsto3.2seconds). Analysis From this data, we determined that directly picking up an The average length of a Tic-Tac-Toe game was one minute objectiseasierthangesturing,especiallyatclosedistances, andfortysecondsfortheversionusingourphysicalcontroller, but gesturing is faster ifoptimized, and ismore stable over and one minute and five seconds for the purely virtual ver- distance. sion. Althoughthephysicalversiontooklongeronaverage, twenty-fivepercentofalltheparticipantsplayedfasterwith Whilemostparticipantspreferredtousegesturesfordistant the physical controller than without it. From this data we targetsandphysicalinteractionforproximatetargets,onepar- concludedthattheversionusingourphysicalcontrollerwas ticipantmentionedthattheypreferredgesturesoverphysical comparableinaccessibilitytothepurelyvirtualversion–that interaction because the gestures were more fun. Two other istosay,wedidnotfindasignificantdifferencebetweenthe users both chose to use gestures to push proximate targets two play-styles. We would postulate that participants were awaybeforepullingthembackagain. Weconcludedfromthis morefocusedonhowtowinratherthanthemethodofinput. thattheinteractionwedesignedisnotonlymeaningfuland Ideally,ourphysicalcontrollersaresoseamlesslyintegrated useful,butenjoyableaswell. thattheyareunnoticeable. Survey Figure5.Overviewoftabletileswithplayerposition Table1neededtobeexplainedwithFigure5,whichshowed Figure6.Preferenceofdirectionfortelekinesis thedistributionoftiles. Eachtilerepresentstheareawhere thetargetwouldbedirected. Inthefirstrowoftable1, the Figure 6 shows the preference of direction for telekinesis. number representing positions on the table meant the same After the tests, participants were asked to chose the easiest thinginFigure5. Thesecondrowshowedhowmanytimes direction for them to move. 37.5 percents chose forward theychosetograbinsteadofusegesturestocontrolthetarget. becausethegestureiseasyandtheeffectisimpressive. 31.3 Fortilesone,two,andthree(farfromtheplayer)inFigure5, percents chose right rather than left probably because they theamountofgrabbingissumof3,1and1,whichif5. We are all right-handed. We concluded "picking is easier than calculatedthat5outof48(10.4%)weremovedbygrabbing gesturingforcloser"basedonthetimeconsumedandtheir and43outof48(89.6%)weremovedusinggestures. Same choices. SenseofReality 3. ScottBrave,HiroshiIshii,andAndrewDahley.1998. ViaTable2,onlytwoparticipants(12.5%)feltisolatedduring Tangibleinterfacesforremotecollaborationand theexperiment. Allusersagreedthattheiropponentmoved communication.InProceedingsofthe1998ACM naturally. Fromthisweconcludethatourremote-spacerepre- conferenceonComputersupportedcooperativework. sentationwasacceptable. ACM,169–178. Preference 4. BrianDunkin,GLAdrales,KApelgren,andJD ViaTable2,elevenofthesixteenparticipants(68.8%)chose Mellinger.2007.Surgicalsimulation: acurrentreview. thephysicalcontrollerovernocontrolleratallforthe"Tic- Surgicalendoscopy21,3(2007),357–366. Tac-Toe"test. Althoughthevaluewasnotashighaswewould 5. P-JFagerandPervonWowern.2004.Theuseofhaptics have liked, we concluded that our physical controller was inmedicalapplications.TheInternationalJournalof acceptable. MedicalRoboticsandComputerAssistedSurgery1,1 (2004),36–42. Feasibility Forthequestion"Howwelldidyoufeelyoucouldmanipulate 6. SeanFollmer,DanielLeithinger,AlexOlwal,Akimitsu objectsinthevirtualenvironment"inTable2,elevengradeda Hogge,andHiroshiIshii.2013.inFORM:dynamic 4,fourgradeda5,andonegradeda3(average4.02). From physicalaffordancesandconstraintsthroughshapeand thisdata,weconcludedthatarobotproxyisacceptablefor objectactuation..InUIST,Vol.13.417–426. remoteinteraction. 7. ZhenyiHeandXuboYang.2014.Hand-basedinteraction InTable3,forthequestion,"Hownaturaldidthemechanism forobjectmanipulationwithaugmentedrealityglasses. forcontrollingmovementthroughtheenvironmentfeel?",81% InProceedingsofthe13thACMSIGGRAPH (average3.5)ofparticipantsfeltitwasnaturalenough(≥3) InternationalConferenceonVirtual-RealityContinuum tocontroltheobjectsusinggestureswithoutactuallytouching anditsApplicationsinIndustry.ACM,227–230. the objects. In addition, the average score for the question, "Howcompellingwasyoursenseofobjectsmovingthrough 8. HiroshiIshii.2008.Tangiblebits: beyondpixels.In thespace?"was4,with87.5%gradingcompelling(≥4). Proceedingsofthe2ndinternationalconferenceon Tangibleandembeddedinteraction.ACM,xv–xxv. Feeling Forthequestion"Howmuchdelaydidyouexperiencebetween 9. HiroshiIshiiandBryggUllmer.1997.Tangiblebits: youractionsandtheirexpectedoutcomes?"inTable2,more towardsseamlessinterfacesbetweenpeople,bitsand than75%feltitwasendurable(≤2). Theaveragevaluewas atoms.InProceedingsoftheACMSIGCHIConference 2.31,lowervaluesbeingbetter(lessperceivedlatency). onHumanfactorsincomputingsystems.ACM,234–241. 10. ShahramIzadi,AnkurAgarwal,AntonioCriminisi,John CONCLUSIONANDFUTUREWORK Winn,AndrewBlake,andAndrewFitzgibbon.2007. Inthispaper,weproposedanewapproachforinteractionin C-Slate: amulti-touchandobjectrecognitionsystemfor virtualrealityviarobotichapticproxies,specificallytargeted remotecollaborationusinghorizontalsurfaces.In towardscollaborativeexperiences,bothremoteandlocal. We HorizontalInteractiveHuman-ComputerSystems,2007. presentedseveralprototypesutilizingourthreemappingdefi- TABLETOP’07.SecondAnnualIEEEInternational nitions,demonstratingthat–usingoursystem–severalvirtual Workshopon.IEEE,3–10. objectscanberepresentedphysicallybyoneormorerobotic proxies,andmultipleuserscansharetouchonthesamevirtual 11. RobertJKJacob,AudreyGirouard,LeanneMHirshfield, object,orusegesturestocommandobjectswithouttouching MichaelSHorn,OritShaer,ErinTreacySolovey,and them. Ourpreliminaryexperimentsreturnedpositiveresults. JamieZigelbaum.2008.Reality-basedinteraction: a Inthefutureweplantoundertakeamorecomprehensivestudy frameworkforpost-WIMPinterfaces.InProceedingsof focusingondeeperapplicationinteractionsandexpandedhard- theSIGCHIconferenceonHumanfactorsincomputing warecapability. systems.ACM,201–210. 12. LuvKohli.2010.Redirectedtouching: Warpingspaceto REFERENCES remappassivehaptics.In3DUserInterfaces(3DUI), 1. BrunoAraujo,RicardoJota,VarunPerumal,JiaXianYao, 2010IEEESymposiumon.IEEE,129–130. KaranSingh,andDanielWigdor.2016.SnakeCharmer: PhysicallyEnablingVirtualObjects.InProceedingsof 13. DanielLeithinger,SeanFollmer,AlexOlwal,and theTEI’16: TenthInternationalConferenceonTangible, HiroshiIshii.2014.Physicaltelepresence: shapecapture Embedded,andEmbodiedInteraction.ACM,218–226. anddisplayforembodied,computer-mediatedremote collaboration.InProceedingsofthe27thannualACM 2. MahdiAzmandian,MarkHancock,HrvojeBenko,Eyal symposiumonUserinterfacesoftwareandtechnology. Ofek,andAndrewDWilson.2016.HapticRetargeting: ACM,461–470. DynamicRepurposingofPassiveHapticsforEnhanced VirtualRealityExperiences.InProceedingsofthe2016 14. AllisonMOkamura.2009.Hapticfeedbackin CHIConferenceonHumanFactorsinComputing robot-assistedminimallyinvasivesurgery.Current Systems.ACM,1968–1979. opinioninurology19,1(2009),102. 15. EsbenWarmingPedersenandKasperHornbæk.2011. Tangiblebots: interactionwithactivetangiblesin tabletopinterfaces.InProceedingsoftheSIGCHI ConferenceonHumanFactorsinComputingSystems. ACM,2975–2984. 16. KenPerlin.2016.FutureReality: Howemerging technologieswillchangelanguageitself.IEEEComputer GraphicsandApplications36,3(2016),84–89. 17. Pololu.2016.Pololum3piRobotwithmbedSocket. https://www.pololu.com/product/2151/resources.(2016). Accessed: 2017-01-30. 18. BryggUllmer,HiroshiIshii,andRobertJKJacob.2005. Token+constraintsystemsfortangibleinteractionwith digitalinformation.ACMTransactionson Computer-HumanInteraction(TOCHI)12,1(2005), 81–118.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.