ebook img

Robot Intelligence: An Advanced Knowledge Processing Approach PDF

298 Pages·2010·19.986 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robot Intelligence: An Advanced Knowledge Processing Approach

Advanced Information and Knowledge Processing SeriesEditors ProfessorLakhmiJain [email protected] ProfessorXindongWu [email protected] Forothertitlespublishedinthisseries,goto www.springer.com/series/4738 Honghai Liu (cid:2) Dongbing Gu (cid:2) Robert J. Howlett (cid:2) Yonghuai Liu Editors Robot Intelligence An Advanced Knowledge Processing Approach Editors Dr.HonghaiLiu Dr.RobertJ.Howlett UniversityofPortsmouth UniversityBrighton InstituteofIndustrialResearch SchoolofEngineering PO13QLPortsmouth IntelligentSignalProcessing UK Laboratories(ISP) [email protected] Moulsecoomb BN24GJBrighton Prof.Dr.DongbingGu UK UniversityofEssex [email protected] DepartmentofComputerSc WivenhoePark Prof.Dr.YonghuaiLiu CO43SQColchester AberystwythUniversity UK DepartmentofComputerScience [email protected] Ceredigion SY233DBAberystwyth UK AI&KPISSN1610-3947 ISBN978-1-84996-328-2 e-ISBN978-1-84996-329-9 DOI10.1007/978-1-84996-329-9 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2010931521 ©Springer-VerlagLondonLimited2010 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Withthegrowingintegrationofmachinelearningtechniquesintoroboticsresearch, there is a need to address this trend in the context of robot intelligence. The mul- tidisciplinarynature of robot intelligenceprovides a realistic platform for robotics researchers to apply machine learning techniques. One of the principal purposes ofthisbookistopromoteideaexchangesandinteractionsbetweendifferentcom- munities,whicharebeneficialandbringingfruitfulsolutions.Especiallywhenthe tasks robots are programmed to achieve become more and more complex, impre- ciseperceptionoftheenvironmentsrendersadifficultdeliberativecontrolstrategy appliedforrobotsforsomanyyears.Understandingtheenvironmentwhererobots operateandthencontrollingrobotsgraduallyrelyonmachinelearningtechniques. Itismorelikelytobetteroffwithembeddingcontrolproblemsintotheenvironment perception. The major challenges for programming autonomous robots stem mainly from firstlythedynamicenvironmentinwhichitisunabletopredictwheneventswilloc- curandtherobotshavetoperceivetheirenvironmentrepeatedly,secondlyuncertain sensory information that is inaccurate, noisy, or faulty, thirdly imperfect actuators that cannot guarantee perfect execution of actions due to mechanical, electrical, and servo problems, and finally limited time that constrains time intervals needed forsensorinformationprocessing,actuatorcontrol,andgoal-orientedplanning.As such,therobotscannotrelyontheiractionstopredictmotionresults.Heavycom- putation would make the robots move and respond slowly to changes in the envi- ronment. For autonomous mobile robots, early programming approaches followed a se- quence: sensing the environment, planning trajectories, and controlling motors to move.Withthiskindofcontrolstrategies,therobotneedsto“think”hard,consum- ing large amounts of time to model the environmentand reason about what to do. In addition, modelling and reasoning methods vary with robot tasks and have not reacheda widelyacceptedlevelof development.Furthermore, this typeof control strategiesisveryfragile,asitcanfailtodealwithunpredictableeventsindynamic environmentseveniftherobotcanmodelandreasonprecisely.Meanwhile,itisim- possibleto predictall the potentialsituationsrobots may encounterand to specify all the robot behaviors optimally in advance when programming them to achieve v vi Preface complicated tasks in complex environments. Thus, robots have to learn from and adapttotheiroperatingenvironments. Thisvolumeaimstoreflectthelatestprogressesmadeoncentralroboticsissues, includingrobotnavigation,humansecurityandsurveillance,human-robotinterac- tion, flocking robots, multiple robot cooperation and coordination. The collected chapters not only represent the state-of-the-art research in robot development and investigation,butalsodemonstratetheapplicationofawiderangeofmachinelearn- ing techniques that vary from artificial neural networks, evolutionary algorithms, fuzzylogic,reinforcementlearning,k-meansclustering,tomulti-agentreinforcing learning.Thebookcanbeusedasavaluablereferenceforroboticsresearchers,en- gineers, and practitioners for advanced knowledge, and university undergraduates and postgraduates who would like to specialize in robotics research and develop- ment. Thirteen chapters are carefully selected from the extensive body of recent re- search work, which tackles the challenging issues of robotics development and applications with machine learning techniques. The selection is featured with the breadthofmachinelearningtoolsandemphasizespracticalrobotapplications. Skoglund et al. present a novel approach to robot skill acquisition from human demonstration. Usually the morphology of a robot manipulator is very different fromthatofthehumanarm.Inthiscase,ahumanmotioncannotbesimplycopied. The proposed approach uses a motion planner that operates in an object-related world-framecalledhand-statetosimplifyaskillreconstructionandpreservethees- sentialpartsoftheskill.Inthisway,therobotisabletogeneralizethelearnedskills toothersimilarskillswithouttriggeringanewlearningprocess. Palm et al. focus on the robot grasp recognition, which is a major part of the approachforProgramming-by-Demonstration.Theirworkdescribesthreedifferent methodsforgrasprecognitionforahumanhand.Thefingerjointangletrajectories ofhumangraspsaremodeledbyfuzzymodeling.Threemethodsforgrasprecogni- tionarecomparedwitheachother. Cheng et al. investigate the multiple manipulators which need to achieve the samejointconfigurationtofulfillcertaincoordinationtasks.Underthemulti-agent framework, a robust adaptive control approach is proposed to deal with this con- sensusproblem.Uncertaintiesandexternaldisturbancesintherobot’sdynamicsare considered,whichismorepracticalinreal-worldapplications.Duetotheapproxi- mationabilityofneuralnetworks,theuncertaindynamicsarecompensatedbythe adaptiveneuralnetworkscheme. Ji et al. propose an exemplar-based view-invariant human action recognition frameworktorecognizethehumanactionsfromanyarbitraryviewpointimagese- quence. The proposed framework is evaluated in a public dataset and the results showthatitnotonlyreducescomputationalcomplexity,butitisalsoabletoaccu- ratelyrecognizehumanactionsusingsinglecameras. Khoury and Liu introduce the concept of fuzzy Gaussian inference as a novel way to build fuzzy membership functions that map underlying human motions to hiddenprobabilitydistributions.Thismethodisnowcombinedwithageneticpro- grammingfuzzyrulebasedsysteminordertoclassifyboxingmovesfromnatural humanmotioncapturedata. Preface vii Zhouetal.considerthedetectionofhazardswithinthegroundplaneimmediately infrontofamovingpedestrian.Usingepipolarconstraintsbetweentwoviews,de- tectedfeaturesarematchedtocomputethecameramotionandreconstructthe3-D geometry. For a less feature based scene a new disparity velocity based obstacle detectionschemeispresented. Tian andTang explorethe feasibility of using monocularvision for robot navi- gation.Thepathdepthislearnedbyusingtheimagescapturedinasinglecamera. Theirworkconcentratesonfindingpassableregionsfromasinglestillcolorimage andmakingtherobotvisionlesssensitivetoilluminationchanges. Liuetal.proposeanewmodeltocharacterizecameradistortionintheprocessof thecameracalibration.Thismodelattemptstoblindlycharacterizetheoverallcam- eradistortionwithouttakingthespecificradial,decentering,orthinprismdistortion into account. To estimate the parameters of interest, the well-known Levernburg- Marquardtalgorithmisapplied.ToinitializetheLevernburg-Marquardtalgorithm, the results from the classical Tsai algorithm are estimated. After both the camera intrinsicanddistortionparametershavebeenestimated,thedistortedimagepoints arecorrectedusingagaintheLevernburg-Marquardtalgorithm. WangandGupresentanapproachtodesignaflockingalgorithmbyusingfuzzy logic.Thedesignofthreebasicbehaviorsinaflockingalgorithmisdiscussed.They are alignment behavior, separation behavior, and cohesion behavior. Navigation control component is used in the design of cohesion behavior. To avoid becoming crowdingorcollision,anadaptivenavigationgainisused.Thisgainchangeswith thenumberofneighbors.Theflockingstabilityisanalyzedandstabilityconditions areacquiredfromthestabilityanalysis. Oyekanetal.developabehaviorbasedcontrolarchitectureforUAVsurveillance mission. This architecture contains two layers: atomic action layer and behavior layer.Theyhavealsodevelopedsixatomicactionsandtenbehaviorsfortheselay- ers.Varioustechniqueshavebeenusedinthedevelopment,includingadaptivePID controller,fuzzylogiccontroller,SURFalgorithm,andKalmanfilter. Guo et al. present a novel anti-disturbance control strategy named hierarchical composite anti-disturbance control for a class of non-linear robotic systems with multipledisturbances.Thestrategyisestablishedwhichincludesadisturbanceob- serverbasedcontrollerandanH∞ controller,stabilityanalysisfortwocasestudies areprovided. Ballantyneetal.presentsomeofthekeyconsiderationsforhumanguidednav- igationinthecontextofdynamicandcomplexindoorenvironments.Solutionsand issuesrelatedtogesturerecognition,multi-cueintegration,tracking,targetpursuing, sceneassociationandnavigationplanningarediscussed. Kubota and Nishida discuss the adaptation of perceptual modules of a partner robot based on classification and prediction through actual interactions with a hu- man. They proposed a prediction-based perceptual system consisting of the input layer,clusteringlayer,predictionlayer,andperceptualmoduleselectionlayer.They applytheproposedmethodtotheactualinteractionbetweenahumanandahuman- likepartnerrobot. We would like to express our sincere thanks to all the authors who have con- tributedtothebookandsupportduringthebookpreparation.Withouttheirsupport, viii Preface itisimpossibletoseetheadventofthisbook.ThanksalsogotoNatashaHarding fromSpringerUKwhokindlyandeffectivelycommunicatedbetweenthepublisher andoureditorsofthisbook.Wefeelespeciallygratefultoourpublisher,Springer, who kindly supports the research direction of robot intelligence and the publica- tionofthebook.Finally,itwouldbeourpleasurethatthisbookwouldbevaluable, forin-depthunderstandingofrobotintelligencefromtheadvancedknowledgepro- cessingpointofview,toawiderangeofaudiencefrommulti-disciplinaryresearch communitiesandindustrialpractitioners. Portsmouth,UK HonghaiLiu Colchester,UK DongbingGu Brighton,UK RobertJ.Howlett Aberystwyth,UK YonghuaiLiu Contents 1 Programming-by-DemonstrationofRobotMotions . . . . . . . . . . 1 AlexanderSkoglund,BoykoIliev,andRainerPalm 2 GraspRecognitionbyFuzzyModelingandHiddenMarkovModels 25 RainerPalm,BoykoIliev,andBourhaneKadmiry 3 DistributedAdaptiveCoordinatedControlofMulti-Manipulator SystemsUsingNeuralNetworks . . . . . . . . . . . . . . . . . . . . . 49 Zeng-GuangHou,LongCheng,MinTan,andXuWang 4 ANewFrameworkforView-InvariantHumanActionRecognition . 71 XiaofeiJi,HonghaiLiu,andYiboLi 5 Using Fuzzy Gaussian Inference and Genetic Programming toClassify3DHumanMotions . . . . . . . . . . . . . . . . . . . . . 95 MehdiKhouryandHonghaiLiu 6 ObstacleDetectionUsingCross-RatioandDisparityVelocity . . . . 117 HuiyuZhou,AndrewM.Wallace,andPatrickR.Green 7 LearningandVision-BasedObstacleAvoidanceandNavigation . . . 143 JiandongTianandYandongTang 8 AFractionDistortionModelforAccurateCameraCalibrationand Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 YonghuaiLiu,AlaAl-Obaidi,AnthonyJakas,andJunjieLiu 9 ALeader-FollowerFlockingSystemBasedonEstimatedFlocking Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 ZongyaoWangandDongbingGu 10 ABehaviorBasedControlSystemforSurveillanceUAVs . . . . . . . 209 JohnOyekan,BowenLu,BoLi,DongbingGu,andHuoshengHu ix x Contents 11 HierarchicalCompositeAnti-DisturbanceControlfor Robotic SystemsUsingRobustDisturbanceObserver . . . . . . . . . . . . . 229 LeiGuo,Xin-YuWen,andXinXin 12 AutonomousNavigationforMobileRobotswithHuman-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 JamesBallantyne,EdwardJohns,SalmanValibeik,CharenceWong, andGuang-ZhongYang 13 Prediction-BasedPerceptualSystemofaPartnerRobotforNatural Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 NaoyukiKubotaandKenichiroNishida Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Contributors AlaAl-Obaidi SmartLightDevices,Ltd.,AberdeenAB242YN,UK, [email protected] JamesBallantyne InstituteofBiomedicalEngineering,ImperialCollegeof London,London,UK,[email protected] LongCheng KeyLaboratoryofComplexSciences,InstituteofAutomation, ChineseAcademyofSciences,Beijing100190,China, [email protected] PatrickR.Green Heriot-WattUniversity,Edinburgh,UK,[email protected] DongbingGu SchoolofComputerScienceandElectronicEngineering, UniversityofEssex,WivenhoePark,ColchesterCO34SQ,UK,[email protected] LeiGuo SchoolofInstrumentScienceandOpto-ElectronicsEngineering, BeihangUniversity,Beijing100191,China;ResearchInstituteofAutomation, SoutheastUniversity,Nanjing210096,China,[email protected] Zeng-GuangHou KeyLaboratoryofComplexSciences,InstituteofAutomation, ChineseAcademyofSciences,Beijing100190,China,[email protected] HuoshengHu SchoolofComputerScienceandElectronicEngineering, UniversityofEssex,WivenhoePark,ColchesterCO34SQ,UK,[email protected] BoykoIliev DepartmentofTechnology,OrebroUniversity,70182Orebro, Sweden,[email protected] AnthonyJakas DepartmentofComputerScience,AberystwythUniversity, CeredigionSY233DB,UK,[email protected] XiaofeiJi IntelligentSystemsandBiomedicalRoboticsGroup,SchoolofCreative Technologies,TheUniversityofPortsmouth,EldonBuilding,PortsmouthPO1 2DJ,UK;SchoolofAutomation,ShenyangInstituteofAeronauticalEngineering, No.37DaoyiSouthAvenue,Shenyang110136,China,[email protected] xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.