ebook img

Road Safety Risk Assessment PDF

30 Pages·2017·5.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Road Safety Risk Assessment

sustainability Article Road Safety Risk Assessment: An Analysis of Transport Policy and Management for Low-, Middle-, and High-Income Asian Countries SyyedAdnanRaheelShah1,2,NaveedAhmad1,YongjunShen3,*,AliPirdavani2,4 ID, MuhammadAamirBasheer2andTomBrijs2 ID 1 TaxilaInstituteofTransportationEngineering,DepartmentofCivilEngineering, UniversityofEngineering&Technology,Taxila47050,Pakistan;[email protected] 2 TransportationResearchInstitute(IMOB),HasseltUniversity,Agoralaan,B-3590Diepenbeek,Belgium; [email protected](A.P.);[email protected](M.A.B.);[email protected](T.B.) 3 SchoolofTransportation,SoutheastUniversity,Sipailou2,Nanjing210096,China 4 FacultyofEngineeringTechnology,HasseltUniversity,Agoralaan,B-3590Diepenbeek,Belgium * Correspondence:[email protected];[email protected];Tel.:+923007914248 Received:18December2017;Accepted:22January2018;Published:2February2018 Abstract: Roadsafetyassessmenthasplayedacrucialroleinthetheoryandpracticeoftransport managementsystems. ThispaperfocusesonriskevaluationintheAsianregionbyexploringthe interactionbetweenroadsafetyriskandinfluencingfactors. Inthefirststage,adataenvelopment analysis(DEA)methodisappliedtocalculateandranktheroadsafetyrisklevelsofAsiancountries. Inthesecondstage,astructuralequationmodel(SEM)withlatentvariablesisappliedtoanalyze theinteractionbetweentheroadsafetyrisklevelandthelatentvariables,measuredbysixobserved performanceindicators,i.e.,financialimpact,institutionalframework,infrastructureandmobility, legislationandpolicy,vehicularroadusers,andtraumamanagement. Finally,thispaperillustrates theapplicabilityofthisDEA-SEMapproachforroadsafetyperformanceanalysis. Keywords:riskanalysis;safety;accidents;GIS;dataenvelopmentanalysis;structuralequationmodel 1. Introduction Roadtrafficaccidentsareoneofthemostcriticalproblemsforhumanlife. Despitewidespread measuresbeingusedtocontrolandminimizethisproblem,roadtrafficaccidentsarefacingagrowing trend,daybyday. AccordingtotheWorldHealthOrganization(WHO)reportonroadsafetyfor2015, roadtrafficinjuriescausemorethan1.25milliondeathseachyearandhaveanenormouseffecton humanlifeanddevelopment[1,2]. Morespecifically,theseeventsarethemajorcauseofdeathamong young people aged between 15 and 29 years [3]. The cost associated with deaths and injuries is approximately3%oftheGDPinlow-andmiddle-incomecountries. Inspiteofthishugehumanand economicloss,actionstofightthisglobalchallengearestillinsufficient[4,5]. Addressing the preventable problem of inadequate road safety requires the dedicated action of multiple ministries, most notably law, planning, transport, education, public information,andhealth. Therangeofmeasurestoensureroadsafetyincludesimproving the built environment (e.g., safer road design, regulating sidewalks and traffic lights, introducingsafebicyclelanes),lawenforcementandeducationtoincreaseseatbeltuseand helmet wearing while reducing speeding and drink driving, better vehicle standards, and improved post-crash response. Road safety measures that provide safer, more sustainable public transport options are also particularly promising and can support synergiesbetweenhealth,transportandcarbonemissionreductiontargets[6]. Sustainability2018,10,389;doi:10.3390/su10020389 www.mdpi.com/journal/sustainability Sustainability 2018, 10, x FOR PEER REVIEW 2 of 30 Sustaipnaubibliltiyc2 t0r1a8n,1s0p,o38r9t options are also particularly promising and can support synergies between2 of30 health, transport and carbon emission reduction targets. [6] EEccoonnoommiicc ddeevveellooppmmeenntt,, oonn oonnee ssiiddee,, hhaass iinnccrreeaasseedd mmoottoorriizzaattiioonn aallll oovveerr tthhee wwoorrlldd,, ppaarrttiiccuullaarrllyy iinn llooww-- aannddm mididddlele-i-nincocommeec ocuonutnriterise[s4 ][.4T].h Tehine cirnecarseeadsendu mnubemrboefrm ooft omrovteohri cvleehsircelqeus irreesqumiroerse mrooadres raonaddhs iagnhde rhdigehmearn ddemfoarnbdet ftoerr mbeetatesur rmeseaosfurroeasd osfa rfoetayda snadfeptyro atnecdt iporno.tIencttihoen.y Iena rthoef 2y0e1a4r, othf e20n1u4m, tbheer noufmmboetor rovf emhoictloers vinechriecalesse dinbcyre1a6s%eda bllya 1r6o%un adll tahreogulnodb eth;he ogwloebvee; rh,oitwiseivmerp, oitr tias nimttpoonrotatentt htoa tntohtee rtohaadt tnheet wrooardk nheatswnoortkb heaesn ndoetv beeleonp eddevaetltohpeesda amt ethrea tsea[m7,e8 ]r.aCteo [n7s,8id].e Crionngsitdheerfiantga ltihtye rfaattaeli(tdye raathtes (idneraothads icnr arsohaeds pcrears1h0e0s, 0p0e0ro 1f0p0o,0p0u0l aotifo pn)opasualartoioand) saasf eaty rionaddi csaatfoert,yth iantdoifcathtoerS, othuatht eoafs tthAes iSaonuRtheegaiosnt A(1s7i)anis Rsteiglliohnig (h1e7r) tish astniltl hhaigthoefrE tuhraonp teh(a9t. 3o)f [E3u].roTphei s(9a.l3a)r [m3]i.n Tghsisit ualaatrimoninhgi gshitluigahtitosnt hheignheliegdhtfso rthper onmeeodt ifnogr prirsokmporteivnegn rtiisokn parcetvioennstioancr aocstsionnast iaocnrso.sAs nsamtieonntsi.o Anes dmaebnotivoen,etdh eabtroavffie,c tahcec tirdaefnfitc aanccdidinejnutr aynsdta itnisjutircys sdteaptiiscttictsh edwepoircstt tphoes witioornsto pftohseitlioown -oaf nthdem loidwd-l ea-nindc ommidedrleeg-iionncso,mweh reergeitohnesf, awtahlietryer tahtee ifsaatalmlitoys tratwtei cise athlmatoostf tdweviceel othpaetd ocfo duenvterileosp[e3d] .cIonutnhteriAess i[a3n]. rIeng tihoen ,Athsieanro raedgisoanfe, ttyhes irtouaadti osnafseotyf lsoiwtu-a,tmioindsd olef -l,oawn-d, mhiigdhd-lien-c, oamned choiugnht-riinecsohmave ecaoudniftfreireesn htapvaett ear nd,ifafsersehnotw pnatitnerFnig, uarse s1h.oAwcnco irnd iFniggutoreW 1H. AOc,cthoredfiantgal ittoy WraHteO(F, Rth)ec ofmataplaitryis orantes h(oFwR)s ctohmatpaavreisroagne sFhRowvas ltuheast faovrelroawg-e, mFRid vdalleu-,eas nfodrh liogwh--i,n mcoidmdelec-o, uanntdri ehsigahre- i1n7c.1o0m,e1 8c.o3u1,natrnides1 a3r.e8 01,7r.e1s0p, e1c8t.i3v1e,l ayn[d3] 1.3.80, respectively [3]. Figure 1. Comparative analysis of road safety of Low-Income, Middle-Income, and High-Income Figure1.ComparativeanalysisofroadsafetyofLow-Income,Middle-Income,andHigh-IncomeAsian Asian Countries (source: World Health Organization (WHO)). Countries(source:WorldHealthOrganization(WHO)). To control road traffic accidents, countries have developed and implemented various road safety Tocontrolroadtrafficaccidents,countrieshavedevelopedandimplementedvariousroadsafety programs. It is important to note that developed countries have succeeded in controlling traffic programs. It is important to note that developed countries have succeeded in controlling traffic accidents. These attainments are the product of making infrastructure safer, improving the safety of accidents. These attainments are the product of making infrastructure safer, improving the safety vehicles [9], and executing a number of other interventions recognized to be effective at reducing ofvehicles[9],andexecutinganumberofotherinterventionsrecognizedtobeeffectiveatreducing road traffic injuries. Having good quality data to monitor the impact of these efforts is also critical to roadtrafficinjuries. Havinggoodqualitydatatomonitortheimpactoftheseeffortsisalsocriticalto signifying their accomplishment. However, developing and less-developed countries have not yet signifyingtheiraccomplishment. However,developingandless-developedcountrieshavenotyet achieved this level of success [10,11]. Regular road inspections are an important measure that help to achievedthislevelofsuccess[10,11]. Regularroadinspectionsareanimportantmeasurethathelpto ensure the quality of roads and road surfaces [12]. Considering some major factors (i.e., (1) ensurethequalityofroadsandroadsurfaces[12].Consideringsomemajorfactors(i.e.,(1)institutional institutional framework; (2) alcohol usage and speeds; (3) protective systems; (4) vehicles; (5) framework;(2)alcoholusageandspeeds;(3)protectivesystems;(4)vehicles;(5)infrastructureand infrastructure and roads; and (6) trauma management, etc.), the focus of this study is to statistically roads;and(6)traumamanagement,etc.),thefocusofthisstudyistostatisticallydevelopandexplore develop and explore the relationships between the predictors of road traffic fatalities resulting from therelationshipsbetweenthepredictorsofroadtrafficfatalitiesresultingfromsuchevents. such events. Asmoothandgood-conditionedroadpromisesgreaterdrivingandroadsafetyascomparedto A smooth and good-conditioned road promises greater driving and road safety as compared to poor-conditionedroadswhichincreasetheprobabilityoftrafficaccidents. Similarly,speedlimitsalso poor-conditioned roads which increase the probability of traffic accidents. Similarly, speed limits also playanimportantroleinroadsafety. Restrictingspeedlimitsinhigh-densityareashelpstopromote play an important role in road safety. Restricting speed limits in high-density areas helps to promote roadsafety. Therefore,anexplorationoftheassociationofriskandroadsafetymanagementindicators road safety. Therefore, an exploration of the association of risk and road safety management willhelpustoscientificallydiscusstherelationshipbetweenthemandwillalsoprovideinsightinto indicators will help us to scientifically discuss the relationship between them and will also provide designingeffectiveandefficientroadsafetypolicy. Inthisstudy,weaimtoevaluatetheroadsafety Sustainability2018,10,389 3of30 risk of low-, middle-, and high-income Asian countries, a region with a combined population of 4.4billion(60%oftheworld),withGDPUS$35.334trillion(Nominal)andUS$57trillionpurchasing power parity (PPP) [13,14]. Considering the importance of this area, a structural equation model (SEM-)analysis-basedapproachisalsoappliedtoassessthestatisticalrelationshipbetweentheriskand thefactorsinvolvedinriskincrement.Theprimeobjectiveofthisstudyistoanalyzetheroadsafetyrisk situationofAsiancountrieswithreferencetotheireconomiccondition(Low,Middle,orHighLevel). Furthermore,weevaluatetherelationshipoffinancialimpact,institutionalframework,infrastructure andmobility,legislationandpolicy,roaduser–vehicularimpact,andtraumamanagementwiththe risklevelsofAsiancountries. 2. RelatedStudies 2.1. RiskandRoadSafetyAnalysis Roadsafetyanalysisisrelatedtothesurvivalofhumansonroadsand,duringroadsafetyrisk evaluation,‘risk’isassociatedwithanumberoffatalitiesandknownasaroadsafetyoutcome. Inthe fieldofroadsafety,theriskisdefinedas‘theroadsafetyoutcometotheamountofexposure’,asshown inEquation(1): RoadSafetyOutcome Risk= . (1) Exposure Researchers have calculated exposure according to the availability of data; some have used passengerkilometerstraveled,population,numberofregisteredvehicles,etc.[15,16]. Riskassessment is necessary for road safety performance analysis. Previously, road safety outcome was directly relatedwithandcalculatedusingthedifferentexposurevariables,buthandlingthemultiplevariables remained a problem. It is necessary to evaluate the risk and its relationship with the road safety performanceindicators. TheconceptofSafetyPerformanceIndicators(SPIs)wasdevelopedbythe EuropeanTransportSafetyCouncil(ETSC)[17]. ThereasonfortheSPIsdevelopmentwastheassumptionthataccidentsandinjuriesareonlythe tipoftheicebergbecausetheyoccurasthe‘worstcase’resultofunsafeoperationalconditionsinthe roadtrafficsystem. Thus,SPIscanbedefinedasmeasuresthatarecausallyrelatedtoaccidentsor injuriesandareusedinadditiontothefiguresaboutaccidentsorinjuries,inordertoindicatesafety performanceorunderstandtheprocessesthatleadtoaccidents[18]. 2.2. DEAandRoadSafetyRiskAnalysis DataEnvelopmentAnalysis(DEA)isoneofthenonparametricapproachesdevelopedbyChames, Cooper,andRhodes[19]in1978,andisanestablishedtechniqueinthefieldofroadsafety. Asgiven in[20],itsmathematicalexpressionisasfollows. maxE =∑m vx 0 i=1 i i0 s Subjectto ∑ u y =1 r r0 r=1 (2) m s ∑ vx − ∑ u y ≤0, j=1,L, n i ij r rj i=1 r=1 u ,v ≥0,r=1,L,S, i=1,L,m r i Previously, risk evaluation was based on different parameters like public risk and traffic risk. Thepublicriskwascalculatedonthebasisoftheratiobetweenfatalitiesandpopulation,andtraffic riskwascalculatedonthebasisofregisteredvehicles. Theprocessofproducingacompositevalueof theriskmeanvaluewasundertakentoevaluatetherisk,butDEAprovidesanopportunitytocombine multiplevariables. ThisisbecauseDEAisatechniquethatmaintainsamechanismofmultipleinputs andmultipleoutputsfortheevaluationofrisk[20]. AconceptualdiagramoftheDEAmodelisshown inFigure2. Itisalinearprogrammingtechniqueformeasuringtherelativeperformanceofentities Sustainability 2018, 10, x FOR PEER REVIEW 4 of 30 Sustainability2018,10,389 4of30 multiple inputs and multiple outputs for the evaluation of risk [20]. A conceptual diagram of the DEA model is shown in Figure 2. It is a linear programming technique for measuring the relative orunitsofasimilarpattern. CountriesareconsideredtobeDecision-MakingUnits(DMUs)forthe performance of entities or units of a similar pattern. Countries are considered to be Decision-Making applicationoftheDEAmodel,andtheriskleveliscalculatedbyapplyingtheroadsafetyoutcome Units (DMUs) for the application of the DEA model, and the risk level is calculated by applying the andexposurevariables. road safety outcome and exposure variables. FFiigguurree 22. .BBaassicic DDaatata EEnnvveeloloppmmeennt tAAnnaalylyssisis ((DDEEAA)) MMooddeel lCCoonncceeppttuuaall DDiiaaggrraamm. . In this concept, while calculating risk in the traffic safety field, the lowest level has been Inthisconcept,whilecalculatingriskinthetrafficsafetyfield,thelowestlevelhasbeenconsidered considered as the frontier of safety. In the case of efficiency evaluation, Efficiency is calculated by asthefrontierofsafety. Inthecaseofefficiencyevaluation,Efficiencyiscalculatedbymaximizing maximizing output and minimizing input, while, for calculating risk, we minimize the output and outputandminimizinginput,while,forcalculatingrisk,weminimizetheoutputandmaximizethe maximize the input. The simplest form of calculating Efficiency by DEA is as follows. input. ThesimplestformofcalculatingEfficiencybyDEAisasfollows. Efficiency: The basic concept of the DEA Efficiency calculation is as in Equation (3). Efficiency: ThebasicconceptoftheDEAEfficiencycalculationisasinEquation(3). (cid:1849)(cid:1857)(cid:1861)(cid:1859)ℎ(cid:1872)(cid:1857)(cid:1856)(cid:1845)(cid:1873)(cid:1865)(cid:1867)(cid:1858)(cid:1841)(cid:1873)(cid:1872)(cid:1868)(cid:1873)(cid:1872) (cid:1839)(cid:1853)(cid:1876)(cid:1861)(cid:1865)(cid:1861)(cid:1878)(cid:1857)(cid:1841)(cid:1873)(cid:1872)(cid:1868)(cid:1873)(cid:1872) (cid:1831)(cid:1858)(cid:1858)(cid:1861)(cid:1855)(cid:1861)(cid:1857)(cid:1866)(cid:1855)(cid:1877)= = (3) W(cid:1849)ei(cid:1857)g(cid:1861)(cid:1859)htℎe(cid:1872)d(cid:1857)(cid:1856)S(cid:1845)u(cid:1873)m(cid:1865)o(cid:1867)f(cid:1858)O(cid:1835)(cid:1866)u(cid:1868)t(cid:1873)p(cid:1872)ut (cid:1839)M(cid:1861)(cid:1866)(cid:1861)a(cid:1865)x(cid:1861)i(cid:1878)m(cid:1857)i(cid:1835)z(cid:1866)e(cid:1868)O(cid:1873)(cid:1872)utput Efficiency = = (3) WeightedSumof Input Minimize Input Following the above-explained concept, Risk is calculated as in Equation (4): Followingtheabove-explainedconcept,RiskiscalculatedasinEquation(4): Weighted Sum of Output MinimizeOutput RoadSafetyOutcome Risk= = = . (4) Weighted Sum of Input MaximizeInput Exposure WeightedSumofOutput MinimizeOutput RoadSafetyOutcome Risk= = = . (4) During the apWpeliicgahttieodn Soufm thoef IDnEpAut modeMl, aLxiinmgoiz esoInftpwuatre was useEdx (pporsougrreamming-based), which produced the risk values for each Decision-Making Unit (DMU), i.e., Asian country, in our During the application of the DEA model, Lingo software was used (programming-based), case. DEA was introduced by researchers in the field of road safety by assigning weights for the which produced the risk values for each Decision-Making Unit (DMU), i.e., Asian country, in our construction of composite performance indicators; then, for the evaluation of road safety rankings, a case. DEA was introduced by researchers in the field of road safety by assigning weights for the risk value was calculated. That risk value was based on outputs and inputs considering road fatalities constructionofcompositeperformanceindicators;then,fortheevaluationofroadsafetyrankings, per million inhabitants [21]. Further, an improvement was tested in the model by testing it along with ariskvaluewascalculated.Thatriskvaluewasbasedonoutputsandinputsconsideringroadfatalities six inputs: alcohol, speed, protective systems, infrastructure, vehicles, and trauma management [22]. permillioninhabitants[21]. Further,animprovementwastestedinthemodelbytestingitalongwith The application of DEA in this manner further encouraged the use of multiple inputs and multiple sixinputs: alcohol,speed,protectivesystems,infrastructure,vehicles,andtraumamanagement[22]. outputs, and it was then tested with 13 inputs and 4 outputs. The concept of a multiple-layer DEA TheapplicationofDEAinthismannerfurtherencouragedtheuseofmultipleinputsandmultiple (MLDEA) was also tested [23]. Previously, the European region was targeted for learning and outputs,anditwasthentestedwith13inputsand4outputs. Theconceptofamultiple-layerDEA research due to the availability of detailed data from agencies. Population, passenger kilometers, and (MLDEA)wasalsotested[23]. Previously,theEuropeanregionwastargetedforlearningandresearch number of registered cars were considered as inputs, while fatalities were used as outputs. The duetotheavailabilityofdetaileddatafromagencies. Population,passengerkilometers,andnumber concept was further strengthened by the application of cross-efficiency for the final risk scores [20]. ofregisteredcarswereconsideredasinputs,whilefatalitieswereusedasoutputs. Theconceptwas Researchers considered applying this concept at a more local level by using it for Annual Road Safety furtherstrengthenedbytheapplicationofcross-efficiencyforthefinalriskscores[20]. Researchers Authority budget allocation and assessing road safety teaching hours’ impact on involvement of consideredapplyingthisconceptatamorelocallevelbyusingitforAnnualRoadSafetyAuthority drivers in crashes at the municipality level [24]. At the State level within the country of Brazil, this budget allocation and assessing road safety teaching hours’ impact on involvement of drivers in model was calibrated and tested by using mortality rates and fatality rates as outputs. Another crashesatthemunicipalitylevel[24]. AttheStatelevelwithinthecountryofBrazil,thismodelwas calibration of this DEA model was performed for 27 police departments in Serbia by following the calibratedandtestedbyusingmortalityratesandfatalityratesasoutputs. Anothercalibrationofthis previous concept of public and traffic risk, comparing the road safety performance of 27 sectors [25]. DEAmodelwasperformedfor27policedepartmentsinSerbiabyfollowingthepreviousconceptof publicandtrafficrisk,comparingtheroadsafetyperformanceof27sectors[25]. SSuussttaaiinnaabbiilliittyy 22001188,, 1100,, 3x8 F9OR PEER REVIEW 55 ooff 3300 2.3. SEM and Road Safety Risk Analysis 2.3. SEMandRoadSafetyRiskAnalysis Structural Equation Modelling (SEM) is a technique that can handle a large number of endoSgterunoctuusr aalnEdq uexaotigoennMouosd eolblisnegrv(SeEdM v)arisiaabtleecsh sniimquuelttahnaetocuasnlyh.a SnEdMle acolanrsgiestnsu omf bae sreotf oefn edqougaentioounss athnadt eaxroe gsepneocuifsieodb bseyr dvierdecvta lriniakbsl ebsestwimeuelnt avnaeroiaubslleys. S[2E6M]. Fcoonr sriosatsdo cfraasshe tdoaftae qanuaaltyiosniss, t“hSaEtMar eiss apdeocipfiteedd bays ad ilraetcetstli npkroscbeedtuwreee wnhviacrhia cbalens h[2a6n]d.leF olarrrgoea ddactraa sshet daantda avnaarliyabsilse,s.“ SHEoMweisveard, oinp teSdEMas, awlea tceasnt pinrtorcoedduucree ‘wlahteicnht cvaanriahbalneds’l ewlharicghe daraeta thseet uanndobvsearrviaebdl evs.ariHabolwese vaenr,d inreSpEreMse,nwt euncaidniminetnrosdiouncael ‘claotnecnetpvtsa rinia bthleesi’r wpuhriecsht aforermth. eOtuhneor btseerrmvse dfovr atrhieasbel easrea nudnorbesperrevseedn tour nuindmimeeansusiroenda vlacroianbcelepst sanind tfhacetiorrpsu” r[e2s7t]f. oSrEmM. Ogrtahnertst ethrme sspfeocriathliesst ethaer eaubinliotbys teor vseimduolrtaunnemouesalsyu reexdamvainriea tbwleos oanr dthfraecet orersla”ti[o27n]s. SoEf Mrelgiaranncets athned sapuetcoianloismtyth eamaboinligty latotesnimt vualtraianbeloeus sblyy emxaemthiondest wfoor oorbtsherreveerde lfaatciotonrss,o fanredli aisn ctheuasn da asutatnodnoomuty aammoonnggstl attheen tmvoasrita cbulersrebnyt mmeuthltoivdasrfioatreo tbescehrnvieqdufeasc tuotrisli,zaendd iins tthhue ssacisetnacnedso [u2t8a–m30o]n. gPsatrtthiael mLeoassttc Suqrureanrtesm (uPlLtiSv-a)SriEaMte ties cshimniiqluare stou tthileiz uedsei noft hmeuslctiiepnlec erseg[2r8e–ss3i0o]n. PaanratliyalsiLse. aItsst mSqauinar oesbj(ePcLtiSv-e)S iEs Mto ibsosoismt itlahre toextphleainuesed ovfamriaunltciep lienr ethgree sbsuioilnd asneatulyps isa.ndIt stom adienciodbej etchteiv einiistiatol bcloaossstifitchaetieoxnp loafi ntehde vinafroiarmncaetiionnt,h perbinuciilpdaslleyt uipn avniedwt oodf ethcied equthaelitiineist ioafl cthlaes seisfitcimataiotinngo fmthoedienl f[o2r8m,3a0t]i.o Tn,hpe rPinLcSip-SaEllMy iins vniaemweodf “tPhaerqtiuaal lLiteiaessto Sfqtuhaereesst”i mona ttihneg gmrooudnedls[ 2th8,a3t0 t]h.eT ehleemPLenS-tSs EaMre eisvanlaumateedd “bPya mrteiatlhLodeass ftoSr qau saerreiess” oonf ltehaestg rsoquunardess,t hwahtitlhee tehlee mexepnrtessasiroene v“aPlauratitaeld” bisy dmeeritvheodd sfrfoomr athseer iuesseo offl eaans titseqruatairvees ,ewsthimileattihone esxypstreemss ifoonr t“hPea prtairaal”miestedresr iinve gdrofruopms (tpheer ulasteenoft vanariitaebrlaet)i,v teo etshteim deattrioimnesnyts toefm thfeo wrthhoelep maroadmeel,t earts thine gsaromuep sti(mpeer [l3a1te].n tInv aSriEaMbl,e )t,hteo tdheecdideitnrgim oefn tthoef tehveewnth, owlehmicohd eisl ,natotth aelwsaamyes tuimnaem[3b1i]g.uInouSsE M(la,ttehnet dcoencisdtrinugcto),f othcecuervse ntht,rowuhgihch inisdnicoattaolrws athysatu fniallm inb igasu osuusbs(ltaittuetnitocnosn fsotrr utchte), loactceunrts vtahrrioaubgleh oinf dinictaetroersst t[h28a,t3fi0]l.l Iinn tahsiss umbasntinteurt,i othnrsofuogrht htheel aatmenatlgvaamriaatbiolen ooff ian fteewre stthi[n28g,s3 0in]. a Isncathlei,s thmea inmnmera,ttehrrioalu igdheat hoef acmonasligdaemraattiioonn coafna fbeew etshtiimngasteidn ains caanle ,inthdeiriemctm wataeyri. aIlni dtehae ocfocuornssei dmeroadtieolns, ccahnabrtes easrtiem uattielidzeind atno ionudtiwreacrtdwlya ys.hIonwth theec othueroserimeso adnedls h,cyhpaortthseatriecaul trielilzaetdiotnos oaumtwonagrd flayctsohrosw. Inth Feigthueroe r3ie, tshaen idnahcytpivoet hbeutiilcdasl raerlea tsipoonkseanm too nbgy fuatcitloizrisn.gI ncirFcilgeus roer3 o,vthales i(nYa1c ttiivlle Yb4u),i ltdhse airnedsicpaotkoersn (toobsbeyrvuetdil iozirn ogcccuirrcrliensgo fracotvoarlss) (aYr1e stiplloYke4n), ttoh ebiyn tdhiec amtoertsh(oodb sfoerr vreedctaonrgolcecsu (rxr1in tgillf axc1t0o)r. sT)haer ereslpaotikoenns taomboyntgh ethme ebtuhiolddsf aonrdre acmtaonngglesst (ixn1dticilaltxo1r0s )a.nTdh edreevlealtoiopnss aarme roenpgrethseenbtuedil dbsya anrdroawmso. nIng sPtLinSd-SicEaMto,r tshaen adrrdoewves ldopepseanredarebplyr efsaecntoterd inb ya asorrloitwarsy. IhneaPdLiSn-gS, EsMpe,atkhienagr rtoo wa sddireepcetinodnaabl lryelfaatcitoonrsihnipa. sAolrirtoawrys hpeoaidnitningg, sipne aa ksionlgitatorya bdeiarericntigo naarel rreelsapteiocntesdh ibpy. aA prrreodwicstipvoei ncotinnngeicntioans oanlidta, riyf tbheearrei nshgoaurled raersipsee catned ocbcyurarepnrceed iocft iav esocloidn nheycptoiothneatincdal, iefstthaberlieshshmoeunltd, tahreisye caann obcec uinrtreernpcreeotefda asso lciaduhsaylp cootnhneteicctaiolnesst. aAbtl ilsahsmt, ethnet, ethrreoyr ctaenrmbse (ien.tge.r, per7e oterd e8a)s, craefulseaxlivceolnyn ceocntinoencst.eAd ttola stht,et heenderorgoerntoeurms sco(en.sgt.r,uec7t,o proer8t)r,arye flneoxniv-cellayricfioendn cehctaendgteo wthheenen tdhoeg ceonuorusse cfoornmstsr uacrte, epsotrimtraaytendo [n2-8c]l.a rifiedchangewhenthecourseformsareestimated[28]. FFiigguurree 33.. AA CCoonncceeppttuuaall SSttrruuccttuurraall PPaatthh MMooddeell.. As per elaboration in Figure 3, a PLS course mannequin comprises of two components: Structural mannequin (additionally called internal model concerning PLS-SEM), which proves the Sustainability2018,10,389 6of30 AsperelaborationinFigure3,aPLScoursemannequincomprisesoftwocomponents: Structural mannequin (additionally called internal model concerning PLS-SEM), which proves the relations (ways)betweentheconstructs;andtheestimatingdesigns(likewisealludedtoasexternalformsin PLS-SEM),whichalludestotherelationsbetweenthedevelopsandtheindicatingfactors(rectangles). Theestimationofthemodeloffersobservationalmeasuresoftherelationsbetweentheconstructs (basicmodel)andbetweentheindicatorsandconstructs(estimatingmodels)[28]. Theexperimental measures allow contrasting the auxiliary models and the hypothetically settled reality. Thus, the wellnessofthehypothesistotheinformationcanberesolved. Thus,utilizingPLS-SEM,theanalysts relyuponmeasuresthatdemonstratetheprescientlimitofthemodeltojudgeitsquality.Moreprecisely, theappraisalofthesubsequentauxiliaryandestimatingmodelsinPLS-SEMlaysonanarrangementof non-parametricevaluationcriteria,utilizingmethodologylikebootstrappingandblindfolding. Inthis regard,theappraisalofmeasuringmodels(relationsbetweentheindicatorsandconstructs)includes compositereliability;varianceextracted;indicatorreliability;anddiscriminantvalidityifthereshould beanoccurrenceofreflexivemodels; andvarianceextracted; collinearityamongstindicators; and the significance and importance of outer weights in developmental models. The appraisal of the basicmodel(relationsbetweenconstructs), thenagain, considers: thecoefficientofdetermination (R2)[28,30,32–35]. Hence,thePLS-SEMapproachnotjustoffersascopeoffavorablecircumstances inexaminationwiththeoriginalmultivariatemethods,beingexceptionallyadaptableregardingthe premises and test dimensioning; yet additionally gives a few likenesses OLS Regressions [28,30]. Analysts have recently utilized it in recent publications. Moreover, it has a phase wise structure, asdiscussedintheintroductionofSEM.IthasprovidedanedgeovertheconventionalOLSanalysis techniqueswhichhasagapregardingtheoccasionalignoranceofrelationsofXandYvariablesofthe modelsunderanalysis,andlackofcontrolofdirectandindirectimpactintherelationsdependentand independentofmoderatingandmediatingeffectsindevelopedmodels. Thesemodelscausepotential difficultytofullyunderstandtherelationshipsofinterest[28,30]. DuringtheapplicationofSEMinthefieldofroadsafety,“accidentlocation(wheretheaccident tookplace),pavementtype,horizontalalignment,verticalalignment,vehicletype,driver’sgender, driver’s age, road surface condition, the day (weekend or weekday), weather condition, day or nighttimeweremodelledagainstthenumberofdeaths,thenumberofinjuredpersons,thenumber ofinvolvedvehicles,andthenumberofdamagedvehicles. Findingsendupwiththeanalysisthat roadfactors,driverfactorsandenvironmentalfactorswerestronglyrelatedtotheaccidentsize”[26]. A similar type of analysis was conducted to evaluate the relationship between accident severity and accident type [36], between gender, anxiety, depression, reward sensitivity, sensation seeking propensityandriskydriving[37],betweenpsychologicalsymptoms,sensationseeking,aggression, dysfunctional drinking habits, aberrant driving behavior, speed and accidents [38]. So SEM is an establishedtechniqueforcrashdataanalysisforroadsafetyresearch. ThroughtheapplicationofSEM, wecananalyzethelargedatavariablesrelatedtoroadsafetysituationsinAsiancountries. Analysis of risk level with reference to road safety indicators will be helpful in understanding road safety performanceofcountries. 2.4. DEA-SEMCombination When the DEA is used as a risk analysis tool, Decision Making Units (DMUs) are viewed as alternativeswhileinputs/outputsareregardedascriteria. InusingDEA,theriskscoreofanyunit iscalculatedastheminimizationofaratioofweightedoutputstoweightedinputs, subjecttothe conditionthatallunitsoftheavailabledatasetshouldhavesimilarpatterns[39]. Aftercalculationof theriskscorewiththehelpofDEA,applicationofSEMtoanalyzetherelationshipoflargedatasets ofimportantfactorswiththecalculatedriskcanbehelpfulinunderstandinganddecisionmaking regardingfactorscanbehelpfulinreducingtherisk. AsimilarcombinationofDEAwithSEMhas beenusedforeducationalanalysisthatpublicexpenditureoneducationasapercentageofGDPisthe mosteffectiveoutputvariableforliteracylevel[40]. Operatingexpensesisanimperativemanagement Sustainability2018,10,389 7of30 taskforproductivityimprovementofhotels[39], environmental‘sustainability’ofintensivedairy farming depends on particular farming systems and circumstances [41]; environmental efficiency negativelyimpactsonprofitwhileprofitpositivelyimpactsonenvironmentalefficiencyinthetextile industry[42]. SousingthisDEA-SEMcombinationwillbeanewapplicationinthefieldofroadsafety andwillbehelpfulfordecisionmaking. 2.5. AdvantagesofUsingDEA-SEMMethod Since DEA offers some benefits to other approaches such as: (1) DEA is able to handle multipleinputsandoutputs;(2)DEAdoesnotrequireafunctionalformthatrelatestoinputsand outputs; (3) DEA optimizes each individual observation and compares them against best practice observations; (4) DEA can handle inputs and outputs without knowing a price or weights and; (5)DEAproducesasinglemeasureforeveryDMUthatcanbeeasilycomparedwithotherDMUs, andalsohavesomelimitationas: (1)DEAonlycalculatesrelativeefficiencymeasures;and(2)Asa nonparametrictechnique,statisticalhypothesestestsarequitedifficult[43,44]. However,PartialLeast Square-StructuralEquationModel(PLS-SEM)offersfrequentbenefitstoresearchersasitisefficient with: (1)abnormaldata;(2)smallsamplesizes;and(3)formativemeasuredconstructs[28]. PLSis characterizedasatechniquemostsuitablewheretheresearchpurposeisapredictionorexploratory modeling. Ingeneral,covariance-basedSEMispreferredwhentheresearchpurposeisconfirmatory model [34,45]. Furthermore, it has the ability to model multiple dependents as well as multiple independents, ability to handle multicollinearity among the independents, robustness in the face of data noise and missing data, and creating independent latent variables directly on the basis of cross-productsinvolvingtheresponsevariable(s),makingforstrongerpredictions. However,“PLSis lessthansatisfactoryasanexplanatorytechniquebecauseitislowinpowertofilteroutvariablesof minorcausalimportance”[46]. 2.6. ResearchGap SinceDEAisacommonbenchmarkingtoolforefficiencyandriskevaluation[47,48],ithasbeen popularwithitsmultistagepropertybutithasshortcomingwithrespecttoitshypothesistesting, whichreducesitsapplication. Therefore,apowerfultechniqueSEM(PLS)hasbeenjoinedwithDEA tofillthatgap. Finally,thepredictivepotentialofSEMandtheoptimizationcapacityofDEAperforms complementaryfeatures,thusenvisioningaprominentmodelingoption[47,48]. Usingthestrengthof SEMtechniquetodealwithnon-normaldataandformativelymeasuredconstructs[28]willimprove thedecision-makingprocess.Now,itistimetoapplythisperformanceevaluationDEA-SEMtechnique inthefieldofroadsafetyforthedecision-makingprocess. Thisisthefirststudyforapplicationof DEA-SEM(PLS)approachforroadsafetyperformanceanalysisforacasestudyofAsiancountries which will lead decision makers to better visualize the Riskiest countries and key factors for road safetyconditionimprovement. 3. ConstructionofHypothesisandModel Conceptualmodelandhypothesisdevelopmentisoneofthemajortasksforanalyzingtheroad safety performance and the impact of interrelation of latent contributing variables. Following the SafetyNet [49], concept of using road safety performance indicators, the detailed hypothesis is explainedasfollows: 3.1. H1: FinancialImpact→Risk Economist have also termed loss of human lives as a huge loss of economy under certain circumstances. Theyhaveexplainedasitdirecteconomiccostsandindirecteconomiccosts. Thevalue oflifeperseroadsafetyfactoraswell[50]. Thedirectcostincludesmedical,legalemergencyand propertyrelateddamages,whilesometimegoesonifthesefactorshavecontinuity[51]. Theindirect economiccostofaccidentsrelatedtothoseservicesandproductswhichareproducedonlybecauseof Sustainability2018,10,389 8of30 crashoccurrence[52]. StatisticianshaveestimatedthatinthetheAsianESTcountriescrashrelated costshavebeenabout1.1%ofGDPin2010forfatalitiesand3.6%ofGDPforcrashesin2010only[52]. Soanevaluationoffinancialimpactisnecessarywiththeriskleveloflow,middleandhighincome Asiancountries. 3.2. H2: InstitutionalFramework→Risk Institutionalframeworksarethemajorfactors,whicharerelatedtothesafetylevel. Therefore,it isnecessarytoanalyzetheimpactofrelationshipofpresenceofleadagencytodealwithroadsafety situations,mechanismofavailabilityoffundinginnationalbudgets,existenceofnationalroadsafety strategy for funding to implement strategy and fatality reduction targets. A proper framework is neededtodealwiththeroadsafetysituationandrisklevel[3]. Theworldisfocusingonreducing traffictoa50%fatalityreductiontarget(fivemillionfatalitiesand50millionseriousinjuries)bytheend of2020[53]byfollowingaproperinstitutionalframework,sotheimpactofinstitutionalframework onrisklevelisneededtobeinvestigated[3]. 3.3. H3: Infrastructure&Mobility→Risk Infrastructureandmobilityaredirectlyrelatedtoroadfatalitieswhichisbackedbyastreamlined roadsafetyauditmechanism,policiesforpromotingwalkingandcyclingandinvestmentinpublic transport[3]. Forpreventingcrashesorreducingtheirseverity, roadsafetyauditistheprocessas aneffectiveroadsafetytool[54]. Aroadsafetysystemisdesignedforsafetyofthepublicandtheir mobility. Usually,roadsafetyauditisnecessaryandarelationofthisfactorwiththerisklevelneedsto beinvestigated. Roadconditionandmobilityfacilitiesareofmajorconcernforroadsafetyconditions. 3.4. H4: LegislationandPolicy→Risk Speed limit is one of the major factors of road traffic safety issues [55–57]. The effectiveness ofspeedrelatedfactorsisrelatedtoenforcementoflimit[15]. Sectorwiseimpactofspeedlimitis influentialonurbanandruralroadsespeciallyonmotorways. Reducingspeedlimithasasignificant impact on reducing fatalities and injuries [58]. Importance of protection systems like motorcycle helmets,seatbeltandchildrestraintlawisalsodirectlyrelatedtotherisklevelofcountries[3,59]. Overall,crashesarealsorelatedtothesemechanismsofprotections. 3.5. H5: Vehicular-RoadUser→Risk Vehicles are designed for a safer road mobility. Sometimes quality and fitness of vehicles are compromisedinlow-incomecountries. Roaduser’svehicularcategory,whichisinvolvedinalarge numberoffatalities,isrelatedtocarandcycleusers. Anotherassumptiontobeinvestigatedisthat thereisarelationshipbetweenroaduser’svehicularimpactandtherisklevel. Thereisarelationship betweentypeofvehicleandcrashes[56,59,60],asoccupantsofnewcarsarethreetimeslessinvolved incrashesthanthoseofoldvehicles[1]. 3.6. H6: TraumaManagement→Risk Trauma management is related to the system responsible for rapid response to the medical treatmentofinjuredpeopleinthecrashes[17]. Thefacilityoftraumamanagementisconnectedwith theavailabilityofmedicaltreatmentforthesurvivaloflifeaftercrashes. Especiallyindeveloping countries,injurycrashesresultinfatalities. Researchershaveconcludedthat50%offatalitiesoccur duringthecrasheswhileothersarewithinafewhoursofthecrashes[61]. Ifapropermedicalfacility isavailable,thentherisklevelofthecountrycanbeimprovedbyreducingfatalities. Pharmacareand medicaltreatments,andintimeavailabilityofmedicalaidandproperhospitalemergencytreatment asachainprocess,cannotonlysavelivesbutalsodisabilities[62]. Theconceptualmodelisshownin Figure4. Sustainability2018,10,389 9of30 Sustainability 2018, 10, x FOR PEER REVIEW 9 of 30 Financial Impact Institutional Framework H:1 H:2 Infrastructure & Mobility H:3 RISK H:4 Legislation & Policy H:5 H:6 Vehicular-Road User Trauma Management Figure 4. Conceptual Research Model. Figure4.ConceptualResearchModel. 4. Materials and Methods 4. MaterialsandMethods 4.1. Study Area 4.1. StudyArea Asia is considered among the largest parts of the world and largest continent of the world with aAlmsioasti sacpopnrosxidimeraetedlya m4.5o nbgilltiohne ilnahrgaebsittapntasr t(s20o1f6t)h, wehwicohr ladccaonudntlsa rfgore satlmcoonstt i6n0e%n toof ftthhee hwumoralnd with almopsotpauplaptrioonx iomf tahtee lgylo4b.e5. bAislilaio cnovinerhs aabni taarneats o(f2 4041,567)9,,w00h0 iscqhuaarcec okumn (t1s7,f2o1r2,a0l0m0 omsit2)6, 0a%bouotf 3t0h%e ohfu man popuElaarttiho’ns tooftatlh leangdlo abreea. Aansdia 8c.7o%v eorfs tahne Eaarertah’osf t4o4ta,5l 7su9r,0fa0c0e saqreuaa. rAesk fmata(l1it7y, 2r1a2te,0s 0o0f tmhei2 S),oaubtho-uEats3t0 %of Asian Region is 17 per 100,000 population higher than the European Region which is 9.3 (almost half), Earth’stotallandareaand8.7%oftheEarth’stotalsurfacearea. AsfatalityratesoftheSouth-East it is necessary to evaluate the road safety situation in this largely populated region. Globally, due to AsianRegionis17per100,000populationhigherthantheEuropeanRegionwhichis9.3(almosthalf), road traffic injuries, more than 1.2 million people die each year, and this has a huge impact on human itisnecessarytoevaluatetheroadsafetysituationinthislargelypopulatedregion. Globally,dueto life and development. According to the WHO, the majority of the causalities are aged between 15 and roadtrafficinjuries,morethan1.2millionpeopledieeachyear,andthishasahugeimpactonhuman 29 years, and cost reaches almost 3% of GDP; for low- and middle-income countries it increases up lifeatno d5%d e[3v]e. lAocpcmorednint.g Atoc tchoer dWiHngO,t o“Tthhee rWiseH inO g,ltohbealm roaajodr tirtayffoicf dtheaethcsa uhassa lbiteieens laarregealyg eddrivbeent wbye en15 andt2h9e yeesacarsla,tainngd dceoastthr etoalcl hoens raolamdos sitn 3l%owo afnGdD mPi;dfdolre-lionwco-maen dcomunidtrdielse—-inpacrotmicuelacroluy nintr ieemseirtgiinncgr eases uptoec5o%no[m3]ie.sA wchcoerred uinrbgatnoiztahteioWn aHndO ,m“oTtohreizraitsieonin acgcloombaplanroya rdaptirda feficcondoematich sgrhoawsthb”e e[n3].l aSrog, efolyrtyd riven bythoenee sccoaulnattriinegs odfe Aatshiatno Rlleogniornosa hdasvein bleoewn saenledctmedi dfodrl reo-iandc soamfeetyc aonuanlytrsiies sa—ndp aarreti gcuroluarpleydi none mthee rging econboamsisie osf winhcoemreeu lervbealn (liozwat,i monidadnled amndo htoigrhiz).a Atioccnoradcicnogm top tahney Wroarpldid Beacnokn, “olmowic-ingcroomwet hec”o[n3o]m. Sieos, forty are defined as those with a GNI per capita, calculated using the World Bank Atlas method, of $1025 onecountriesofAsianRegionshavebeenselectedforroadsafetyanalysisandaregroupedonthe or less in 2015; lower middle-income economies are those with a GNI per capita between $1026 and basisofincomelevel(low,middleandhigh). AccordingtotheWorldBank,“low-incomeeconomies $4035; upper middle-income economies are those with a GNI per capita between $4036 and $12,475; aredefinedasthosewithaGNIpercapita,calculatedusingtheWorldBankAtlasmethod,of$1025 high-income economies are those with a GNI per capita of $12,476 or more” [63]. The fatality data orlessin2015;lowermiddle-incomeeconomiesarethosewithaGNIpercapitabetween$1026and with reference to income group, population and registered vehicles of the selected forty-one countries $403a5r;eu sphpowernm ini dthdel eT-aibnlceo 1m. eeconomiesarethosewithaGNIpercapitabetween$4036and$12,475; high-incomeeconomiesarethosewithaGNIpercapitaof$12,476ormore”[63]. Thefatalitydatawith referencetToabinlec o1.m Deesgcrrioptuiopn, opf oBpasuicl aRtoioadn Saanfedtyr Degatias tfoerr eAdsiavne Rheicglioens wofithth reefsereelneccet etod Infocormtye- oGnroeucpo. untriesare shownintChoeunTtaryb le1F.atalities Pop(M) TRV(M) IG Country Fatalities Pop(M) TRV(M) IG Afghanistan 4734 30.5 0.66 1 Maldives 12 0.3 0.06 2 TabAlzee1rb.aDijaens cripti9o4n3 ofBasi9c.4R oadS1a.1f4e tyDa2t aforMAosnigaonliaR egion5w97i threfer2e.8n cetoI0n.c68o meG2r oup. Bahrain 107 1.3 0.55 3 Burma 10,809 53.2 4.31 1 Bangladesh 21,316 156.5 2.09 1 Nepal 4713 27.7 1.18 1 Country Fatalities Pop(M) TRV(M) IG Country Fatalities Pop(M) TRV(M) IG Bhutan 114 0.7 0.07 2 Oman 1881 21.6 5.99 3 AfghanistCaanmbod4ia7 34 2635 30.5 15.1 0.66 2.46 11 PMakiasltdaniv es 25,781 12 182.1 0.3 9.08 0.062 2 AzerbaijanChina 943 26,13679 .4 1385.5 1.14250.14 22 PhMilipopnigneosl ia 10,3795 97 98.3 2.8 7.69 0.682 2 BahrainGeorgia1 07 514 1.3 4.3 0.55 0.95 32 QBatuarrm a 3301 0,809 2.1 53.2 0.65 4.313 1 BangladeshIndia2 1,316207,55115 6.51252.1 2.09159.49 12 SaudiN Aerpabaila 78984 713 28.8 27.7 6.60 1.183 1 BhutanIndonesia1 14 38,2790.7 249.8 0.07104.21 22 SingOapmoraen 1971881 5.4 21.6 0.97 5.993 3 Cambodia 2635 15.1 2.46 1 Pakistan 25,781 182.1 9.08 2 China 26,1367 1385.5 250.14 2 Philippines 10,379 98.3 7.69 2 Georgia 514 4.3 0.95 2 Qatar 330 2.1 0.65 3 Sustainability2018,10,389 10of30 Table1.Cont. Country Fatalities Pop(M) TRV(M) IG Country Fatalities Pop(M) TRV(M) IG India 207,551 1252.1 159.49 2 SaudiArabia 7898 28.8 6.60 3 Indonesia 38,279 249.8 104.21 2 Singapore 197 5.4 0.97 3 Iran 24,896 77.4 26.87 2 SriLanka 3691 21.2 5.20 2 Iraq 6826 33.7 4.52 2 Tajikistan 1543 8.2 0.41 1 Sustainability 2018, 10, x FOR PEER REVIEW 10 of 30 Japan 5971 127.1 91.38 3 Thailand 24,237 67 32.48 2 Sustainability 2018, 10, x FOR PEER REVIEW 10 of 30 Jordan 19Ir1an3 247,.8296 771.4. 26 26.87 2 2 TSriim Laonrk-aL este 3691 18821.2 1.51.20 2 0.06 2 Kazakhstan 39IIrr8aaq3n 216486,82.9466 37373..74. 93 246.5.827 2 22 TSarij TiLkuaisnrtakknae y 13564931 6687281.2.2 7405...94210 121 7.94 2 Kuwait J6aI2rpa9aqn 56398.72316 132371..71. 8 4 941..5328 3 32 TuTTahrjkaikimliasnteadnn istan2145,24337 91486.72 53.022..4418 21 0 .85 2 Kyrgyzstan 1JJo2arp2da0ann 15599.17531 172.702. 1.9 6 911.2.368 2 23 TiTmhoariU-laLAnedsEt e 241,82837 102116.71 93.032.0.468 22 2.67 3 Laos KaJz9oa7rkd1hasnta n 31999.81733 176.1.24 . 44 31..9236 2 22 TimTVuorirke-Leteyns atem 6168887 22,417914..19 91107..6.0964 224 0.79 2 Lebanon KaK1z0uawk8h8asitta n 34692.8893 136.13.4 . 68 13..8943 2 32 TurTkmuYreeknmeiys teann 6961847 5248754.2.9 2410.7.48.954 22 1 .20 2 KyKrguywzasitta n 1622290 53..53 01..9864 23 TurkUmAeEni stan 1901241 95..32 20..6875 32 Malaysia Ky7rL1ga2yoz9ss tan 2199272.170 952..753 .82 10..4946 2 22 ViUetAnaE-m 2120,42119 - 991..36 4-20..6779 23 - - LeLbaaonso n 1907818 49..87 11..6484 22 VYieemtneanm 2522,44189 2941..46 410.2.709 22 MLeablaaynsoina 71102898 249..87 213..6882 22 Yem- en 52-4 8 24- .4 1.-2 0 2- ForthevisMuaalalyisziaa tion7o12f9 ther2o9a.7d saf2e3.t8y2 dat2a ,GIS-b- asedmap- shave- beenpr- oduce- d. Roadtraffic For the visualization of the road safety data, GIS-based maps have been produced. Road traffic fatalitieswithreferencetopopulationareshowninFigure5and,withreferencetoincomegroupare fataliFtioers twhiet hv irseufaerlieznacteio tno opfo tphuel arotiaodn saarfee styh odwatna ,i nG FISig-buarsee 5d amndap, ws hitahv ree bfeereenn cper otod uincceodm. Re ogardo utrpa affriec shown,inFigure6. sfahtoawlitnie, sin w Fiitghu rreef e6r.e nce to population are shown in Figure 5 and, with reference to income group are shown, in Figure 6. Figure 5. Road safety of Asia fatalities on the basis of populations within regions. Figure5.RoadsafetyofAsiafatalitiesonthebasisofpopulationswithinregions. Figure 5. Road safety of Asia fatalities on the basis of populations within regions. Figure 6. Road safety of Asia fatalities on the basis of income group within regions. Figure 6. Road safety of Asia fatalities on the basis of income group within regions. Figure6.RoadsafetyofAsiafatalitiesonthebasisofincomegroupwithinregions.

Description:
Muhammad Aamir Basheer 2 and Tom Brijs 2 ID. 1. Taxila Institute of Transportation Engineering, Department of Civil Engineering,. University of Engineering & Technology, Taxila 47050, Pakistan; [email protected]. 2. Transportation Research Institute (IMOB), Hasselt University, Agoralaan,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.