ebook img

RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence PDF

41 Pages·2015·5.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence

RESEARCHARTICLE RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism ChristopherW.Resnyk1,ChumingChen2,HongzhanHuang2,CathyH.Wu2,JeanSimon3, ElisabethLeBihan-Duval3,MichelJ.Duclos3,LarryA.Cogburn1* 1 DepartmentofAnimalandFoodSciences,UniversityofDelaware,Newark,Delaware,UnitedStatesof America,2 CenterforBioinformaticsandComputationalBiology,UniversityofDelaware,Newark,Delaware, UnitedStatesofAmerica,3 INRAUR83RecherchesAvicoles,37380,Nouzilly,France *[email protected] OPENACCESS Citation:ResnykCW,ChenC,HuangH,WuCH, Abstract SimonJ,LeBihan-DuvalE,etal.(2015)RNA-Seq AnalysisofAbdominalFatinGeneticallyFatand Geneticselectionforenhancedgrowthrateinmeat-typechickens(Gallusdomesticus)is LeanChickensHighlightsaDivergenceinExpression usuallyaccompaniedbyexcessiveadiposity,whichhasnegativeimpactsonbothfeedeffi- ofGenesControllingAdiposity,Hemostasis,andLipid Metabolism.PLoSONE10(10):e0139549. ciencyandcarcassquality.Enhancedvisceralfatnessandseveraluniquefeaturesofavian doi:10.1371/journal.pone.0139549 metabolism(i.e.,fastinghyperglycemiaandinsulininsensitivity)mimicovertsymptomsof Editor:JaeYongHan,SeoulNationalUniversity, obesityandrelatedmetabolicdisordersinhumans.Elucidationofthegeneticandendocrine REPUBLICOFKOREA factorsthatcontributetoexcessivevisceralfatnessinchickenscouldalsoadvanceour Received:March10,2015 understandingofhumanmetabolicdiseases.Here,RNAsequencingwasusedtoexamine differentialgeneexpressioninabdominalfatofgeneticallyfatandleanchickens,which Accepted:September14,2015 exhibita2.8-folddivergenceinvisceralfatnessat7wk.IngenuityPathwayAnalysis Published:October7,2015 revealedthatmanyof1687differentiallyexpressedgenesareassociatedwithhemostasis, Copyright:©2015Resnyketal.Thisisanopen endocrinefunctionandmetabolicsyndromeinmammals.Amongthehighestexpressed accessarticledistributedunderthetermsofthe genesinabdominalfat,acrossbothgenotypes,were25differentiallyexpressedgenes CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany associatedwithdenovosynthesisandmetabolismoflipids.Over-expressionofnumerous medium,providedtheoriginalauthorandsourceare adipogenicandlipogenicgenesintheFLchickenssuggeststhatinsitulipogenesisin credited. chickenscouldmakeamoresubstantialcontributiontoexpansionofvisceralfatmassthan DataAvailabilityStatement:TheRNA-Seqreadsin previouslyrecognized.Distinguishingfeaturesoftheabdominalfattranscriptomeinlean SequenceReadArchive(SRA)formatwere chickenswerehighabundanceofmultiplehemostaticandvasoactivefactors,transporters, depositedintotheNationalCenterforBioinformatic andectopicexpressionofseveralhormones/receptors,whichcouldcontrollocalvasomotor InformationGeneExpressionOmnibus(NCBIGEO) databaseundertheaccession#GSE42980.Further toneandproteolyticprocessingofadipokines,hemostaticfactorsandnovelendocrinefac- datasetssupportingthepresentresultsareincluded tors.Over-expressionofseveralthrombogenicgenesinabdominalfatofleanchickensis withinthearticleandinsupportinginformationfiles quiteoppositetothepro-thromboticstatefoundinobesehumans.Clearly,divergentgenetic (S2andS4–S6Tables). selectionforanextreme(2.5–2.8-fold)differenceinvisceralfatnessprovokesanumberof Funding:Thisworkwassupportedbyagrantfrom novelregulatoryresponsesthatgoverngrowthandmetabolismofvisceralfatinthisunique theUnitedStatesDepartmentofAgriculture,Initiative avianmodelofjuvenile-onsetobesityandglucose-insulinimbalance. forFutureAgriculturalandFoodSystems(http://www. PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 1/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens csrees.usda.gov/about/offices/compprogs_ifafs.html) Introduction AnimalGenomeProgram(Award#00-52100-9614) toLACandJS.Additionalfundingwasobtainedfrom Thedomesticchicken(Gallusdomesticus)servesadualpurposeasaworld-widesourceof theAvianBiosciencesCenter(http://ag.udel.edu/abc/ high-qualitydietaryproteinandasanimportantmodelorganismfordevelopmentalbiology index.html)andaCoreFeeWavier(toLAC)froman InstitutionalDevelopmentAward,Networkof andgenomicsresearch[1–4].Inparticular,thechickenhasbeenusedextensivelyasabiomedi- BiomedicalResearchExcellenceattheUniversityof calmodeltounderstandbasicmechanismscontrollingembryonicdevelopment,immunesys- Delaware(http://bioinformatics.udel.edu/node/107).A temfunction,nutrientutilization,hormonesensitivity,andadiposity.Chickenshaveseveral portionofthisworkwassupportedbytheNational uniquemetabolicattributeswhichmakethemanattractivemodelforobesityrelatedstudies. ScienceFoundation,ExperimentalProgramto Unlikemammals,chickensnaturallyexhibithyperglycemia(>200mg/dLduringfasting)and StimulateCompetitiveResearch/Institutional survivelargedosesofexogenousinsulin,indicatinganinnateinsensitivitytoinsulin,particu- DevelopmentAward(http://www.nsf.gov/od/iia/ programs/epscor/nsf_oiia_epscor_index.jsp)toCHW. larlyinadiposetissuewhereinsulinexertsonlymarginaleffectsontheuptakeofglucoseby Thefundershadnoroleinstudydesign,data isolatedadipocytes[5,6].Anotheruniquefeatureofmetabolicregulationinthechickenisthe collectionandanalysis,decisiontopublish,or disruptionofsyntenicgenomiclocioffivemajormammalianadipokines[leptin(LEP)[7], preparationofthemanuscript. plasminogenactivatorinhibitor–1(PAI–1),tissuenecrosisfactoralpha(TNFA),resistinand CompetingInterests:Theauthorshavedeclared omentin[8]].Theabsenceofthesekeyadipokinesinthechicken,particularlyLEP[9],indi- thatnocompetinginterestsexist. catesthatalternativemechanismsmustexisttoregulatetheirfeedintakeandthebalance Abbreviations:FL,Fatline;LL,Leanline;DE, betweenenergyexpenditureandstorage.Despiteamajorclassdifferenceinabsence/presence differentiallyexpressed;HE,highestexpressed;wk, ofadipokines,chickensdoshareseveralkeymetaboliccharacteristicswithhumans,including weekofage;IPA,IngenuityPathwayAnalysis;qRT- thefactthattheliveristheprimarysiteofdenovosynthesisoflipids[10–13],whicharethen PCR,quantitativereal-timepolymerasechain transportedastriglyceridestoadiposetissueforstorageandrelease.Inchickens,abdominal reaction;h,hour(s). fatnessisahighly-heritablepolygenictraitregulatedbymultiplebehavioral,environmental andhormonalfactors[14–21]. Recenthigh-densitymicroarraystudieshaveshownthatlipogenicgenesarereadilytran- scribedinchickenadiposetissue[22,23]anddevelopmentallyregulatedingeneticallyfat(FL) andlean(LL)chickens[24].Usingacombinedmetabolomicsandtranscriptomicapproach,Ji etal.[23]comparedgeneexpressionandmetaboliteprofilesinabdominalfatofrelatively leaner-chickenbreeds(LeghornandFayoumi)againstfatterandheaviercommercialbroiler chickensatthesameage(7wk).Theirmainconclusionswerethatabdominalleannessinthe LeghornandFayoumibreedswasachievedbyenhancedlipidcatabolismandreducedlipid synthesisinabdominalfat,whereasenhancedadipogenesisandgreaterfatnessinbroilerchick- ensreflectareductioninbothfatty-acidoxidationandliberationofnon-esterifiedfattyacids byvisceralfat.Incontrast,theFLandLLchickensusedinthepresentstudyweredivergently selectedoversevengenerationsforeitherhigh(FL)orlow(LL)abdominalfatnessatsimilar bodyweightsandfeedintake[25].TheseuniqueFLandLLchickensserveasvalidgenetic models[26–28]ofleannessandjuvenile-onsetobesitywitha2.5-folddifferenceinabdominal fatnessbetween3to11weeksofage(wk)[25,29].Ourrecenttime-coursemicroarrayanalysis ofabdominalfatinFLandLLchickens[24]hasrevealednumerousdifferentiallyexpressed (DE)genesinvolvedinseveralprocesses,whichultimatelyproduceeitheralipolytic(LL)or lipogenic(FL)state.AmongtheDEgenes,wefoundextensiveoverexpressionofendocrine, hemostatic,lipolytic,andlipidexportgenesinthediminishedabdominalfatofLLcockerels, especiallyat7wk.Ontheotherhand,visceralfatoftheFLchickensshowhighexpressionof multipletranscriptionfactors,enzymesandtransportersinvolvedinadipogenesisandlipogen- esis[24].Inanothertranscriptionalstudyofadiposetissueinjuvenilechickensofacommercial broilercross,short-termfasting(5h)resultedinalteredexpressionof1780genes,whileacute insulinimmunoneutralizationaffectedonly92adiposegenes[22].Thisrelativelyshortperiod offastingwassufficienttodownregulateadiposegenesassociatedwithsynthesis,elongation anddesaturationoffattyacids.However,agapremainsinourunderstandingofadipogenesis inchickens,especiallytheimportanceofdenovosynthesisoflipidsinvisceraladiposetissue andthefunctionofnumerousendocrinefactors/receptorsexpressedbyabdominalfat. PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 2/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens Formorethanthreedecades,scoresofpapershavedescribedvariousaspectsofgrowthand nutrientmetabolisminthedivergently-selectedFLandLLchickensoriginallydevelopedby Leclerqetal[25].Ingeneral,theFLandLLcockerelshavesimilargrowthrateswitha2.5-fold differenceinabdominalfatnessandhigherbreastmuscleweightsintheLL.TheFLchickens alwaysexhibitalowerplasmaglucoselevelwithoutoverthyperinsulinemiafoundinmammals, apeculiarconditionwhichSimonetal.[30,31]describedasa“glucose-insulinimbalance”. HypertriglyceridemiaoftheFLchickensindicateshigherrateofhepaticlipogenesisfromcar- bohydratemetabolism,mostlikelytheconsequenceofasmallincreaseininsulin-sensitivityin theFLchickens[26,31].TheFLandLLchickensareabletomaintaintheirrespectivefator leanphenotypeindependentlyofalteredenergysources[32],emphasizinggeneticregulation ofphenotypicexpression.Thesemetabolicpeculiaritiesinourpolygenicmodelofjuvenile- onsetobesityhavebeenextensivelyexaminedbynutritionalandmetabolicperturbations [26,33–36].Furthermore,transcriptionalprofilingofmultipletissues[2,18,24,37–41]and high-throughputsurveysofvariationsingenomesequenceandstructure,includingextensive quantitativetraitloci(QTL)andexpression(eQTL)analyses[17,19,20,42–44]intheFLand LLchickenshavebeguntoidentifycausalgenesandtounravelthegeneticandmolecularbasis fortheirdivergenceinlipidmetabolismandvisceralfatness. Thepresentdescriptivetranscriptomicsstudy,usingRNAsequencing(RNA-Seq)analysis, wasdesignedtoexpandourcatalogofexpressedadiposegenesat7wkwithadualgoal(1)to determinethemosttranscriptionally-activebiologicalprocessesinabdominalfatand(2)to establishmajorfunctionaldifferencesbetweentheabdominalfattranscriptomesofFLandLL chickens.First,afunctionalcharacterizationofthe900highestexpressed(HE)adiposegenes independentofgenotypewasprovidedbyabioinformaticsanalysis.Second,weidentified1687 differentially-expressed(DE)genesfromthecomparisonoftranscriptsinabdominalfatofFL andLLchickens.IngenuityPathwayAnalysishasrevealedtheover-expressionofnumerous genesinvolvedinhemostasis,lipidcatabolism,andendocrinesignalingintheLL.Incontrast, theup-regulationofseveralkeyadipogenicandlipogenicgenesinabdominalfatoftheFL chickenssuggeststhatinsitulipogenesiscouldmakeamoresubstantialcontributiontothe expansionofadiposemassinthechickenthanpreviouslyrecognized. MaterialsandMethods Animalsandtissuepreparation TheFLandLLchickenswerebredandraisedatINRAUE1295Pôled'ExpérimentationAvicole deTours,F–37380Nouzilly,France,asdescribedpreviously[24].Briefly,8birdsfromeach genotype(FLandLL)wererandomlyselectedfortissuesamplingatsixages(1,3,5,7,9,and 11wk),weighed,bledintoheparinizedsyringes,andkilledbycervicaldislocation.Abdominal fatwasquicklydissected,weighed,asamplewasimmediatelysnapfrozeninliquidnitrogen, andstoredat−75°Cforfurtherprocessing.Allanimalprocedureswereperformedunderthe strictsupervisionofaFrenchgovernmentveterinarianandinaccordancewithprotocols approvedbytheFrenchAgriculturalAgency,theScientificResearchAgency,andtheInstitu- tionalAnimalCareandUseCommitteeatINRA,Nouzilly,France.Theseprocedureswerealso incompliancewiththeUnitedStatesDepartmentofAgricultureguidelinesontheuseofagri- culturalanimalsinresearchandapprovedbytheUniversityofDelawareAgriculturalAnimal CareandUseCommittee. RNAextraction,librarypreparationandRNAsequencing Abdominalfatsamplesfromeightindividual7-wk-oldchickens(4FLand4LL)werehomoge- nizedandcellularRNAextractedusingguanidinethiocyanateandCsClgradientpurification PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 3/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens [45]followedbyDNaseItreatment.SamplequalitywasanalyzedwithanRNA6000Nano AssaykitandtheModel2100Bioanalyzer(AgilentTechnologies;PaloAlto,CA).TherRNA ratio(28S/18S)wasdeterminedandallsampleshadanRNAintegritynumber(RIN)greater than9.0.Sequencinglibrariesweremadefrom1μgoftotaladiposeRNAwiththeIllumina RNASamplePrepKitv2followingstandardIlluminaprotocols.IndividualRNAsampleswere indexed(bar-coded)toenablemultiplexingoflibrarieswithinsequencinglanes.Librarieswere pooledandsequencedusinganIlluminaHiSeq2000SequencingSystemattheDelawareBio- technologyInstitute,UniversityofDelaware.Threeseparateschemeswereusedforpaired-end (101bp)sequencingof8libraries(4FLand4LL)acrosstwosequencinglanesperrun.In SchemeA,twosequencinglaneswereusedformultiplexingoftwoFLandtwoLLsamplesper lane(n=4/lane).Twolibraries(1FLand1LL)insequencinglane2ofSchemeAhadlowqual- itycontrol(QC)scoresandwereeliminatedfromfurtheranalyses.Consequently,thetwolow QClibrarieswerere-sequencedinindividuallanesinSchemeB(n=1/lane).Finally,alleight (4FLand4LL)librariesweremultiplexedandsequencedintworeplicatelanesinSchemeC (n=8/lane).AllsamplesinSchemes1–3weremergedintoonefileof12samplesfromtheFL and12samplesfromtheLLcockerelsforfurtheranalysis. RNAsequence(RNA-seq)analysis Allreadsgeneratedfromthethreesequencingschemes(12FLand12LL)describedabove wereincludedintheRNA-SeqanalysisusingCLCGenomicsWorkbench5.1software(CLC bio,Cambridge,MA).Thedataanalysisincludedsequencedatafiltering,readmapping, transcriptandgeneidentification,analysisofdifferentialgeneexpression,andfunctional annotation. Sequencedatafiltering. Twenty-fourshort-read(101basepairs)sequencingsamples (12FLand12LL)fromthe3sequencingschemeswerede-multiplexedandimportedintoCLC GenomicsWorkbench,separately.SeveralQCtrimmingmethodswereusedwithintheCLC GenomicsWorkbenchsoftware,includingqualitytrimming,ambiguitytrimmingandadapter trimmingwithdefaultsettingsappliedbeforemappingtothereferencechickengenome. Readmappingandtranscript/geneidentification. Thereferencegenomeforthechicken (Gallusgallus,build2.1)inFASTAformatandthecorrespondingannotationfileinGTFfor- matwereobtainedfromEnsembl(ftp.ensembl.org/pub/release–64),whichrepresents17,934 genesand22,298transcripts.Twohundrednucleotidesofflankingregionupstreamanddown- streamofknowngeneswerealsoincludedintheanalysis.Theshortpaired-endreadsequences (101bpx2)weremappedtothereferencechickengenomesequence,withmappingparame- tersthatenforced:(1)amaximumoftwomismatchesand(2)readsmustmapwith(cid:1)90%of thebasesalignedtothereferencesequencewith(cid:1)80%similarity.Non-specificmatches(reads mappedtomultipleplacesinthereferencegenome)wereexcludedfromtheanalysis. Differentialexpressionanalysis. Theuniqueexonreadscount(includingtheexon-exon andexon-intronjunctions)forthereadsmappedtoageneanditsflankingregionswereused astherawexpressionvalueforthatgene.Thisrawexpressionvaluewasnormalizedtothe medianofthetotalmappedreadsacrossthe24samplestoaccountforvariationinoriginal libraryconcentrationandmultiplexingnumber.The24sequencingsamplesweredividedinto twogenotypes(FLandLL),resultingin12replicatesforeachgenotype.Normalizedexpression valueswereanalyzedasabeta-binomialmodel[46]todetectdifferentialexpression.Thetwo- sidedP-valuewascorrectedusingthefalsediscoveryrate(FDR)adjustmenttoaccountfor multiplehypothesistestingprocedures[47].GeneswithFDR-adjustedP-value((cid:3)0.05)were consideredtobestatisticallysignificant.Toensurethebiologicalrelevance,aconditionoffold change(cid:1)1.2(or(cid:3)-1.2)wasaddedontopofFDR-adjustedP-value((cid:3)0.05);Geneswith PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 4/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens FDR-adjustedP-value((cid:3)0.05)andfoldchange(cid:1)1.2(or(cid:3)-1.2)wereconsideredtobediffer- entiallyexpressed(DE)inthisstudy.Thefold-changethreshold(±1.2-fold)forDEgenesis basedonourextensiveexperienceinfunctionalgenomicsandtranscriptionalprofilingofmul- tipletissuesfromvariouschickenmodels.ArecentRNA-Seqstudyofbreastmuscleinchick- ensafflictedwith“WoodenBreast”disease[48]usedasimilarsignificancelevel[FDR-adjusted P-value((cid:3)0.05)and±1.3fold-change]toidentifyDEgenesusingdefaultsettingsfortheCuff- diffprocedureintheopen-sourcesoftware,Cufflinks(http://cole-trapnell-lab.github.io/ cufflinks/). Availabilityofsupportingdata TheRNA-SeqreadsinSequenceReadArchive(SRA)formatweredepositedintotheNational CenterforBiotechnologyInformationGeneExpressionOmnibus(NCBIGEO)database undertheaccession#GSE42980.Furtherdatasetssupportingthepresentresultsareincluded withinthearticleandinsupportinginformationfiles. QuantitativeRT-PCRanalysis Forverificationofexpression,quantitativereal-timePCR(qRT-PCR)analysiswasperformed onasubsetof47DEgenesidentifiedbyRNA-Seqanalysis.First-strandcDNAsynthesiswas performedbyincubationofa13μlreaction(containing1μgoftotalDNase-treatedRNA,1μl of100μMoligodT ,1μlof10mMdNTPmix,andwaterto13μltotalvolume)for5minat 20 70°Candplacedonicefor2min.Amastermixcontaining5μlof5xfirst-strandsynthesis buffer,1μlof0.1MDTT,1μlofRNaseOUT,and200UofSuperScriptIIIreversetranscriptase (Invitrogen,Carlsbad,CA)wasadded(finalreactionvolumeof20μl).Primersweredesigned forqRT-PCRusingPrimerExpressv2.0software(AppliedBiosystems,FosterCity,CA). Detailedinformationforeachprimerpair,includinggenename,genesymbol,forwardand reverseprimersequences,GenBankaccessionnumberandampliconsize,areprovidedin S1Table. AnABIPrismSequenceDetectionSystem7900HTwasusedtoperformtheqRT-PCR assays,using10ngoftotalRNA,PowerSYBRgreenPCRmastermix(AppliedBiosystems, FosterCity,CA),and400nMofeachprimerpair(Sigma-Aldrich,St.Louis,MO)induplicate wells.Adisassociationstepwasusedtovalidatespecificamplificationandverifyabsenceof primerdimers.PCRproductswereanalyzedusingagarosegelelectrophoresistocompare productsizetotheexpectedampliconsize.Thecycletime(Ct)foreachsamplewasnormalized tothecorrespondingsamplegeometricmeanofhousekeepinggenes[49].Weselectedtwo housekeepinggenes[pantothenatekinase1(PANK1)andribosomalproteinL14(RPL14)] basedontheirinvariabilityinqRT-PCRanalysisandidentifiedasthemoststably-expressed genesusingRefFindersoftware(http://www.leonxie.com/referencegene.php).The2-(ΔΔCt)for- mulawasusedtocalculaterelativeabundanceoftranscripts[50].Thestatisticalanalysisof normalizedqRT-PCRdataacrossthreeages(3,7and11wk)wasperformedusingageneral linearmodel(GLM)procedureinStatisticalAnalysisSystem(SASv9.3;Cary,NC).Thesedata wereanalyzedusingatwo-factoranalysisofvariancetodeterminemaineffects(P(cid:3)0.05)of genotype(G),age(A),andtheinteractionofagewithgenotype(A×G).Wheregeneswere onlyusedforqRT-PCRanalysisatoneage(7wk),astudent’sT-testwasusedtoidentifysignif- icant(P(cid:3)0.05)differencesbetweentheFLandLLgenotypes. PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 5/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens Table1. SummaryofRNA-SeqanalysisofabdominalfatindivergentFLandLLchickensat7wk. Scheme(samples/lane) Totalinput Paired-endreads Totalreads Totalreads Expressed Expressed reads aftertrimming mapped unmapped Genes Transcripts A(n=3)*:FL 59.13M 58.71M 32.54M 26.59M 12,959 14,358 A(n=3)*:LL 67.11M 27.54M 36.02M 31.09M 13,187 14,599 B(n=1):FL 123.68M 122.2M 54.64M 69.05M 13,890 15,550 B(n=1):LL 187.85M 182.7M 71.05M 116.8M 14,134 15,853 C(n=8):FL 40.26M 34.22M 19.12M 21.14M 12,810 14,081 C(n=8):LL 35.71M 35.34M 17.67M 18.04M 12,612 13,902 AverageAcrossSchemes:FL 74.36M 71.71M 35.43M 38.92M 13,220 14,663 AverageAcrossSchemes:LL 96.89M 81.86M 41.58M 55.31M 13,311 14,785 AverageAcrossGenotypes 85.62M 76.78M 38.51M 47.12M 13,265 14,724 andschemes(A,B,C) Readtrimming,readmappingandexpressiondataareprovidedforthreedifferentsequencingschemesutilizedforpaired-endsequencingof8libraries(4 FLand4LLcockerels).Valuesareaveragedacross3–4individualbirdspergenotype.InSchemeA,twosequencinglaneswereusedforassignmentof twoFLandtwoLLlibrariesperlane(n=4/lane). *Twolibraries(1FLand1LL)insequencinglane2(SchemeA)hadalowQCscore;therefore,theirlow-qualitydatawereeliminatedfromfurther RNA-Seqanalysisunderthisscheme.Consequently,thesetwolibrarieswereeachre-sequencedinindividuallanesinSchemeB(n=1/lane).Finally,all eightlibraries(4FLand4LL)weresequencedintworeplicatelanesinSchemeC(n=8/lane).SchemeCprovidesthemostrobustRNA-Seqdesign,the balancedblockdesign;where,alleightlibraries(4FLand4LL)aresequencedintworeplicatesequencinglanes.Thisdesignallowsthetargeted biologicalvariationtobepartitionedfromtechnicalerrorasdescribedindetailbyAuerandDoerge[51].AdditionalinformationonRNA-Seqanalysisis providedinS2Table. Abbreviations:fatline(FL),leanline(LL),andmillion(M). doi:10.1371/journal.pone.0139549.t001 Results Mappedreadsanddetectionofgenesandtranscripts Sequencedatafromthe24samplesweremappedtothereferencegenome(Gallusgallus,build 2.1).Table1presentsasummaryoftheRNA-Seqanalysisincludingthenumberofmapped readsanddetectionofcorrespondingchickengenesandtranscripts(seeS2Tableformore details).Theoriginalsequencingrun(SchemeA)wascompletedbymultiplexing2FLand 2LLsamples(N=4)intwoseparatesequencinglanes.Twosamples(1FLand1LL)inLane 2hadlowqualityscores;therefore,thelow-qualitydatawaseliminatedfromfurtherRNA-Seq analysis.Nonetheless,SchemeAprovidedanaverageof32.5MmappedreadsfortheFL (N=3)and36MmappedreadsfortheLL(N=3),whichalloweddetectionof73%genesand 65%oftranscriptsacrosstheFLandLLgenotypes.Subsequently,thetwolowqualityscore librarieswerere-sequencedinseparatelanesinanothersequencingrun(SchemeB),which gavethehighestaveragedetectionlevelsof78%forgenesand70%fortranscriptsacrossboth genotypes.InSchemeC,the8libraries(4FLand4LLsamples)weremultiplexedand sequencedinduplicatelaneswithinthesamesequencingrun.SchemeCrepresentsthebal- ancedblockdesignwithtwotechnicalreplicatesasdescribedbyAuerandDoerge[51]for properstatisticalanalysisofRNA-Seqexperiments.Comparingsequencingdepths(averaged acrosstheFLandLLchickens),SchemeCalloweddetectionof71%ofgenesand63%oftran- scriptsbymultiplexing8librariesperlanewhichweresequencedinduplicatelanes.Theaver- agenumberofreadsmappedacrossSchemeA,BandCwasgreaterfortheLL(41.6M)than theFL(35.4M),whichisreflectedintheslightlyhighernumberofexpressedgenesfoundin abdominalfatoftheLLcockerels.Theoverallaverageacrossgenotype(FLandLL)and sequencingschemes(A,BandC)showsthat45%(38.5M)ofthetotalreadsweremapped, PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 6/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens whichequatestoidentificationof74%ofgenes(13,265/17,934)and66%oftranscripts (14,724/22,298)basedonthereferencechickengenome.Genesfromthereferencechicken genomeweremappedtoUniProtKBaccessionnumbersbytheProteinInformationResource (PIR)IDmappingservice[52].Theassignedfold-changevalues(i.e.,FL/LLexpressionratios) werebasedonthenumberofnormalizedreadsfromtheRNA-Seqanalysis. ApoweranalysiswasperformedonthisRNA-Seqdatasetusingtheweb-basedsoftware program“Scotty”(http://euler.bc.edu/marthlab/scotty/scotty.php)[53].Thisanalysisdemon- stratesthatoursamplesizeoffourbirds/genotype(n=4),sequencedacrossthreedepths[38.5 millionmappedreadspersampleaveragedacrossdepths(Table1)],hadpowertodetect80% ofgenesexpressedineachgenotype(P(cid:3)0.01)at(cid:1)1.5folddifferenceandgreaterthan90%at afold-changeof(cid:1)2(S1Fig).Further,the“Scotty”programperformedhierarchicalclustering usingSpearmancorrelationasthedistancemetric.Thiscorrelationanalysisgroupedthetwo genotypesdistinctly,wheretheindividualswithineachgenotype(FLandLL)wereclosely linked. AbdominalfattranscriptomeoffedFLandLLchickens First,the900highest-expressed(HE)genes,definedasgeneswithanaverage(acrossboth genotypes)of>4289reads/gene,wereidentifiedfromRNA-Seqanalysisofabdominalfatin FLandLLchickensat7wk(S3Table).OftheHEgenes,164wereexpressedhigherintheFL (>1.2-folddifference),while155HEgeneswereup-regulated(<-1.2-folddifference)invis- ceralfatoftheLL.Second,weidentified1687DEgeneswithaFDR-correctedP-value (P(cid:3)0.05)andfoldchange(cid:1)1.2(or(cid:3)-1.2);andofthese,1182DEgeneswereexpressedhigher inabdominalfatofLLchickens,whereasonly505DEgeneswereexpressedhigherinFL chickens(S4Table).Aworkinglistof607functionalgenes,associatedwithlipidmetabolism (lipogenesis,lipolysis,lipidtransport,etc.),wascompiledfromtheRNA-Seqdatasetsusing IngenuityPathwayAnalysissoftware(S5Table).TheVenndiagram(Fig1)showstheintersec- tionamongHEgenes,DEgenes,andlipidmetabolismgenes,with25genesincommonacross allthreegenesets.Atotalof164DEgenesweresharedbetweenHEandDEgenelists.And, 108DEgenesaresharedbetweenthe1687DEgenesandthe607lipidmetabolismgenes.Fur- ther,87genesaresharedbetweenthe900HEgenesandthe607lipidmetabolismgenes. IngenuityPathwayAnalysis(IPA)ofgeneexpression AnalysisofhighestexpressedgenesinabdominalfatofFLandLLchickens. The900 highest-expressed(HE)genesinabdominalfat(S3Table)weresubmittedtotheIngenuity KnowledgeBase(http://www.ingenuity.com/)forfunctionalannotation,mappingofgenesto canonicalpathways,andidentifyinggeneinteractionnetworks.Therewere828DEgenesiden- tifiedbyIPAas“Analysisready”(i.e.,annotatedintheIngenuityKnowledgeBase).Asummary oftheover-representedIPAfunctionalcategoriesfoundfor828“Analysisready”HEgenesis presentedinTable2.ThemajorIPAcategoriesrepresentedbytheHEgenesincludethe“Top CanonicalPathways,DiseasesandDisorders,MolecularandCellularFunctions,Physiological SystemDevelopmentandFunction,TopGeneInteractionNetworks,andTopTox[Toxicol- ogy]Lists”.SeveralsubcategoriesundertheIPAcategory“DiseasesandBioFunctions”reveal themostprevalentbiologicalprocessesfoundinabdominalfat.Forexample,severalsubcate- goriesarerelatedtotheregulationofadiposity[“MetabolicDisease”(193genes),“Endocrine SystemDisorders”(50genes),“mTORSignaling”(31genes),“InsulinReceptorSignaling” (12genes),and[“Type2DiabetesSignaling”(10genes)].Additionalsubcategoriesofinterest arethoseinvolvedinmetabolism[“LipidMetabolism”(164genes),“CarbohydrateMetabo- lism”(65genes),“GlycolysisI”(8genes)]andhemostasis[“ThrombinSignaling”(23genes)]. PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 7/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens Fig1.Venndiagramillustratingoverlapamongfunctionalgenelists.TheVenndiagramshowsthe intersectionsofhighlyexpressed(HE)genesinabdominalfat(S3Table),differentiallyexpressed(DE)genes (S4Table),andIngenuityannotatedgenesknowntobeinvolvedinlipidmetabolism(S5Table).The numbersinoverlappingarcsindicatethenumberofgenessharedbetweenandamongthesethree categories. doi:10.1371/journal.pone.0139549.g001 SeveralcategoriesundertheIPATopToxLists(Table2)arealsoofparticularinterest.Of the21HEgenesassociatedwith“HepaticFibrosis”,17HEgenesareexpressedhigherin abdominalfatoftheLLchickens,including5collagengenes(COL3A-COL6A),fibronectin1 (FN1),spondin1and2(SPON1,SPON2),fibrillin1(FBN1),transforminggrowthfactor,beta receptorII(TGFBR2)andthrombospondin1(THBS1).The“PPAR/RXRActivation”category includes28genesthatarehighlyexpressedintheFLandinvolvedinlipidsynthesis[thyroid hormoneresponsivespot14alpha(THRSPA),stearoyl-CoAdesaturase(SCD1),fattyacid synthase(FASN),sterolregulatoryelementbindingfactor2(SREBP2),lipoproteinlipase(LPL) andglycerol-3-phosphatedehydrogenase1(GDP1)].Likewise,the“MechanismofGeneRegu- lationbyPPARs”categoryincludes18HEgenes. ManyHEgenesfoundinabdominalfatoftheFLandLLchickensarekeytranscriptional regulatorsoflipogenesisandadipogenesis(Fig2).Forexample,severaltranscriptionfactors [SREBF2,THRSP,nuclearreceptorsubfamily1,groupH,member3(NR1H3)orliver-acti- vatedreceptoralpha(LXRA),andperoxisomeproliferator-activatedreceptorgamma (PPARG)]interactwitheachotherandultimatelyeffectthetranscriptionofseveraldown- streamtargetgenes(Fig2A).SomeHEtargetsofSREBF2includefattyaciddesaturase2 PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 8/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens Table2. IngenuityPathwayAnalysisofhighest-expressed(HE)genesinabdominalfatofFLandLL. TopCanonicalPathways p-value Overlap Ratio EIF2Signaling 1.60E-27 27.00% 50/185 IntegrinSignaling 1.00E-18 20.90% 42/201 EpithelialAdherensJunctionSignaling 8.09E-18 24.00% 35/146 ILKSignaling 3.91E-15 19.40% 36/186 Caveolar-mediatedEndocytosisSignaling 3.58E-13 29.60% 21/171 DiseasesandDisorders p-value #Genes Cancer 1.21E-08–1.20E-28 747 OrganismalInjuryandAbnormalities 1.21E-08–1.20E-28 754 InfectiousDisease 1.08E-08–1.20E-27 196 DevelopmentalDisorder 4.85E-09–1.86E-13 160 HereditaryDisorder 9.81E-09–373.E-26 107 MolecularandCellularFunctions p-value #Genes CellularGrowthandProliferation 1.22E-08–2.9.E-51 420 CellularMovement 1.21E-08–4.98E-48 302 CellDeathandSurvival 1.28E-08–5.35E-37 372 CellularDevelopment 1.15E-05–1.67E-31 385 CellularAssemblyandOrganization 5.40E-09–2.95E-30 271 PhysiologicalSystemDevelopmentandFunction p-value #Genes CardiovascularSystem 1.25E-08–7.38E-36 208 OrganismalDevelopment 7.47E-09–9.24E-34 342 OrganismalSurvival 3.50E-10–5.38E-32 282 TissueDevelopment 8.09E-09–5.35E-27 313 ImmuneCellTrafficking 6.36E-09–5.58E-20 120 TopGeneInteractionNetworks Score Cancer,OrganismalInjuryandAbnormalities,RespiratoryDisease 45 MetabolicDisease,NeurologicalDisease,PsychologicalDisorders 42 CellMorphology,RNAPost-TranscriptionalModification,ConnectiveTissue 42 NucleicAcidMetabolism,SmallMoleculeBiochemistry 42 EmbryonicDevelopment,OrganismalDevelopment,TissueDevelopment 40 TopToxicologyList p-value Overlap Ratio CardiacHypertrophy 1.11E-11 12.20% 48/395 HepaticFibrosis 3.61E-10 12.20% 21/99 RenalNecrosis/CellDeath 9.46E-10 10.30% 1/494 PPAR/RXRActivation 1.38E-09 15.30% 28/183 MechanismofGeneRegulationbyPPARs 4.22E-08 18.90% 18/95 Atotalofthe900highest-expressed(HE)genesfromRNA-SeqanalysisweresubmittedtoIPA,which provided828“AnalysisReady”HEgenesforfunctionalannotationandmappingtocanonicalpathwaysand geneinteractionnetworks.P-valuesweredeterminedbyIPAsoftwareusingFisher’sExactTestas describedbyIngenuity.Thepercentoverlapandratiowerecalculatedfromthenumberofobservedgenes comparedtothenumberofknowngenesforthatcategoryintheIngenuityKnowledgeBase. doi:10.1371/journal.pone.0139549.t002 (FADS2),acetyl-CoAcarboxylasealpha(ACACA),SCD,FASN,ATPcitratelyase(ACLY),peri- lipin2(PLIN2),isocitratedehydrogenase1(IDH1)andTHRSP.Thetranscriptionfactor THRSP,whichitselftargetsACACA,FASNandSCD,isalsoregulatedbyPPARG.Further, PPARGhasnumerousHEtargetgenesthatregulatelipidmetabolism[acyl-CoenzymeAoxi- dase1,palmitoyl(ACOX1),fattyacidbindingprotein3–5(FABP3,FABP4andFABP5), PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 9/41 AdiposeTranscriptomeDivergenceinFatandLeanChickens PLOSONE|DOI:10.1371/journal.pone.0139549 October7,2015 10/41

Description:
Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the .. Top Toxicology List p-value. Overlap.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.