Sponsoredsince2011bythe ISSN2037-4445 (cid:13) CC ItalianSocietyforAnalyticPhilosophy http://www.rifanalitica.it R i v i s t a I t a A New Model for the Liar l i * a Luca Castaldo n a d i Abstract.AnewmodelforLt (thelanguageofarithmeticenhancedby F pa theunarytruthpredicateT)ispresented,whichextendsKripke’smini- i l malfixedpoint. Thelatter,itwillbeargued,doesnotadequatelymodel o thetruthpredicate,sincenodifferencebetweenLiarsandTruth-tellers s o canbemade.Thenewmodel,whichcontainsanextensionofKripke’sin- fi terpretationof alongwithanew4-valuedlogic,overcomesthisinade- T a quacy.Thegistofmyproposalisthat‘paradoxical’oughttobetreatedas A atruthvalue: Liarsentences,unlikeTruth-tellersentences,donotsim- n plylackatruthvalue.Theydopossesone:theyareparadoxical. a l i t i c a J u n i o r 7 : 2 ( 2 0 Keywords.Formaltheoriesoftruth,Liarparadox,4-valuedlogic,Kripke. 1 6 ) *IwishtothankProfessorKarl-GeorgNiebergallforvaluablecommentsandsuggestions. Copyright. (cid:13)CC (cid:13)BY: (cid:13)\$ (cid:13)C 2016LucaCastaldo.PublishedinItaly.Somerightsreserved. Author.LucaCastaldo,[email protected]. 17 Received.7September2016.Accepted.29October2016. LucaCastaldo ANewModelfortheLiar R Introduction i v Itseemsthat i s P Everysentenceiseither trueor untrue1. t a But,ifso,whatabouttheLiarsentencebelow? I t a $ Thesentencemarkedwithadollarisuntrue. l i $contradictsP,foritistrueif,andonlyif,itisuntrue. To(dis)solvetheproblem, a n Kripke(1975)proposestorejectPand, exploitingthe3-valuedlogiccalledStrong a Kleene,constructsapartialmodelforthetruthpredicate,wheresentenceslike$are d ‘undefined’,i.e.theylackatruthvalue. i WithinKripke’smodel,however,alsotheso-calledTruth-teller F i e Thesentencemarkedwithaeuroistrue. l o lacksatruthvalue. Yet,$and eare,admittedly,verydifferent: thelattercancon- s o sistently bedeclaredtrueoruntrue;theformercannot. Anadequatemodelforthe fi truthpredicateoughttoaccountfortheirdiversity. a ThepurposeofthispaperistoputforwardanewresponsetotheLiarparadox, A whichextendsandimprovestheworkdonebySaulKripkeinhisseminalOutlineof n aTheoryofTruth. a The plan is as follows: after technical preliminaries in § 1 (including the con- l i structionoftheformalLiarsentence),Igoonin§2topresentanewmodelforthe t i truthpredicatealongwithanew4-valuedlogic,therebyproposingthenewresponse c a totheLiarparadox.Thefinalsection3examinesthepropertiesofthemodel,prov- J ingwhatIshallcall‘metalinguisticT-Schema’. u AlastremarkbeforeIbegin:InwhatfollowsIassumethereaderisfamiliarwith n (i)Peanoarithmetic,(ii)thearithmetizationofsyntax,and(iii)Kripke’sOutlineofa i o TheoryofTruth2. r 1Theeither...oristobereadhereasanexclusivedisjunction. 2ThereisanextensiveliteratureonKripke’sOutline. Amorephilosophicalandinformalintroduc- 7 tionisofferedbyBurgess,(2011). FormoreinformationonthemathematicalaspectsofKripke’scon- : structionsee,forexample,Fitting,(1986)andMcGee,(1991,§§4-5). Theaxiomatictheoryknownas 2 Kripke-Feferman(KF)wasfirstgivenbyReinhardt,(1986)andFeferman,(1991).Feferman,(1991)also determinesitsproof-theoreticstrength. Cantini,(1989)givesamoredirectproof-theoreticanalysisof ( KFandsomeofitssubsystems.InKF,thepartialnotionoftruthadvancedbyKripkeisaxiomatisedin 2 classicallogic. Therefore,outerlogic(whatisprovable)andinnerlogic(whatisprovablytrue)ofthat systemdifferssubstantially. HalbachandHorsten,(2006)(seealsoHorsten,2011,§9.5)haveproposed 0 aninterestingaxiomatisationinpartiallogic,creatingasystem,called“partialKripke-Feferman”(PKF), 1 withinwhichthetwologicscoincide. Inthatsystem,gapsbutnoglutsareadmitted. Halbach,(2014, 6 §16)proposesasystemthatadmitsboth.ForcriticaldiscussionsofKripke’spositionsee,amongothers, Gupta,(1982,pp.30-37)andField,(2008,§3). ) 18 LucaCastaldo ANewModelfortheLiar R 1 The Formalised Liar i v 1.1 TechnicalPreliminaries i s t TheobjectlanguageofthisworkwillbethelanguageofPeanoarithmetic(PA)ex- a tendedbytheunarytruthpredicateT.IshallcallthelanguageofPA,withoutT,Lpa; I the extended language will be called Lt 3. As “official” logical vocabulary, I shall t pa a usetheexistentialquantifier∃,thenegationanddisjunctionsymbols¬,∨,andthe l i identitysymbol(cid:17). Asusual,however,abbreviationswillbeused. AstandardGödel a numbering ofLt -expressionswillbeassumedthroughoutthework,withoutgo- n pa ingintodetails4.TheGödelnumber(orcode)ofaformulaϕisgn(ϕ),and(cid:112)ϕ(cid:113)isthe a numeralofgn(ϕ). IshalldistinguishbetweennaturalnumbersandLt -numerals d pa i exploitingboldfacedcharacters:thenaturalnumbersarewritten“0,1,2,...,n”(not F boldfaced)andtheLpta-numerals“0,1,2,...,n”(boldfaced),where“1,2,3...”ab- i l breviates“0(cid:48),0(cid:48)(cid:48),0(cid:48)(cid:48)(cid:48)...”.Formulaewithonefreevariableareindicatedbyϕ(vi);ϕ(t) o denotesϕ[t/v ],i.e. theresultofsubstitutingt forv inϕ. Iwriteϕ ≡ ψtoindicate s i i o thatϕandψarenamesofthesameformula. fi (cid:104)M,(E∞,A∞)(cid:105) is Kripke’sminimalfixedpoint(henceforth: MFP), and a ‘(cid:104)M,(E∞,A∞)(cid:105) |=sk ϕ’meansthat ϕistrueinMFP,accordingtotheStrongKleene. A Furthermore,Ishallmakeuseofthefollowingmetalinguisticsymbols: n • ¬¬ for “non...”. a l • (cid:48) for “... or...”. i t • (cid:49) for “... and...”. i c • ⇒ for “if...,then...”. a • ⇔ for “... if,andonlyif,...”. J • ∃∃ for “thereis...”. u • \∀ for “forall...”. n i o 1.2 λ ↔ ¬T(cid:112)λ(cid:113) r TheDiagonalLemma5 is,asMcGee,(1991,p.24)putit,“acornerstoneofmodern 7 logic”. He even adds that “most of the results of [Truth, Vagueness, and Paradox] : 2 canberegardedascorollariestothisbasicresult”. InthissectionIshallexploitthe ( typicaldiagonalconstruction,inordertoobtaintheformalisedliarantinomy. 2 3NoticethatwearejustextendingthelanguageofPA,notthetheory,i.e. wearenotaddingaxioms 0 forT,creatinganewtheory,sayPAT.Inaddition,wecanimposearestrictionontheinductionschema 1 toL -formulae,i.e.,aninstanceof pa 6 (ϕ(0)∧∀vi(ϕ(vi)→ϕ(vi(cid:48))))→∀vi(ϕ(vi)) ) isanaxiom,onlyifT doesnotoccurinϕ. 4See,forinstance,Boolos,Burgess,andJeffrey,(2007)andSmith,(2013). 5OrFixedPointLemma,orSelf-ReferentialLemma. 19 LucaCastaldo ANewModelfortheLiar R BeforeIbegin,theconceptofdiagonalizationofaformulamustbeintroduced: i v Thediagonalizationofϕistheexpression∃v0(v0 (cid:17) (cid:112)ϕ(cid:113)∧ϕ). i s Evenifthisnotionmakessenseforarbitraryexpressions,itisofmostinterestinthe t a caseofaformulaϕ(v0)withjustonevariablev0free.Sinceanexpressionoftheform I ϕ(t) is equivalent to ∃v0(v0 (cid:17) t ∧ ϕ(v0)), the diagonalization of ϕ(v0) is equivalent t a to ϕ((cid:112)ϕ(cid:113)). That is: the diagonalization of a formula ϕ(v0) is true (in the standard l interpretation)if,andonlyif,itissatisfiedbyitsowncode. i a Thereisalsoarecursivefunction that,whenappliedtotheGödelnumber diag n ofaformula, yieldstheGödelnumberofitsdiagonalization. Thatistosay: ifthe a codeofaformulaϕisn andthecodeofitsdiagonalizationism,thendiag(n) = m. d Amoreformaldefinitionis: i F (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) diag(n)= gn ∃v0(v0 (cid:17) (cid:63)num n (cid:63)gn ∧ (cid:63)n(cid:63)gn ), il o s where(cid:63)and num represent,respectively,theconcatenationandthenumeralfunc- o tions,bothrecursive6. fi a Lemma1.1. (THEFORMALISEDLIAR)ThereisaLt -sentenceλ,suchthat pa A PA(cid:96) λ ↔¬T(cid:112)λ(cid:113) n a Proof. SincePArepresentseveryprimitiverecursivefunction,diag isrepresentable li t in PA. Let Diag(v0,v1) be a formula representing diag, so that for any a and b, if i c ( )= ,then diag a b a PA(cid:96) ∀v1(Diag(a,v1)↔v1 (cid:17) b) (1) J u DiagisacomplexL -formula,not containingthenewpredicateT. pa n Letnow β(v0)betheformula i o ∃v1(Diag(v0,v1)∧¬T(v1)) (β(v0)) r 7 Intuitively, β(v0)saysthatthediagonalizationofa formulaisnottrue,withoutyet : 2 sayingwhichformula.Let’snowconsiderthediagonalizationof β(v0),andlet’scall itλ: ( 2 ∃v0(v0 (cid:17) (cid:112)β(cid:113) ∧ β(v0)) (λ) 0 6Theconcatenationfunction(cid:63)issuchthat,ifsandtarethecodesoftwoexpressions,thens(cid:63)tisthe 1 codeofthefirstexpressionfollowedbythesecond.Thenumeralfunctionnummapseachntothecode 6 ofthenumeraln.Thefunctiondiag couldhavebeendefinedmorepreciselybyfirstshowingthatalso thelogicaloperationsofconjunctionandexistentialquantificationarerecursive.Formoreinformation ) seeBoolos,Burgess,andJeffrey,(2007,p.221,§15). 20 LucaCastaldo ANewModelfortheLiar R Inothersymbols,λis i (cid:0) (cid:1) v ∃v0 v0 (cid:17) (cid:112)β(cid:113)∧∃v1(Diag(v0,v1)∧¬T(v1)) i s t Thisislogicallyequivalentto β((cid:112)β(cid:113)),i.e.theresultofsubstituting(cid:112)β(cid:113)forv0in β(v0): a I t ∃v1(Diag((cid:112)β(cid:113),v1)∧¬T(v1)) (2) a l Reading(2)inEnglish,wegetsomethinglike:“thereisanumberthathastwoprop- i a erties:first,itisthecodeofthediagonalizationof β(v0);second,itisnotelementof n theextensionofT”. Or,moreintuitively: “thediagonalizationof β isnottrue”. In- a terestingenough,thediagonalizationof βispreciselyλ. Accordingly, λ islogically d equivalenttoasentencethatsaysthatλisnottrue. i F Wehavethusfarconstructed,withintheformallanguageLt ,asentencesaying pa i ofitselfthatitisnottrue7. Thenextstepconsistsinproving,withinPA,something l o aboutthissentence.Sinceλislogicallyequivalentto(2),wehave: s o PA(cid:96) λ ↔∃v1(Diag((cid:112)β(cid:113),v1)∧¬T(v1)) (3) fi a Wedonotknow,whetherλ isatheoremof PA.Wedoknow,however,thatitisthe A (cid:0) (cid:1) diagonalizationof β,andhencediag gn(β) = gn(λ).Fromthis,by(1),follows n a PA(cid:96) ∀v1(Diag((cid:112)β(cid:113),v1)↔v1 (cid:17) (cid:112)λ(cid:113)) (4) li t i Thatis,(cid:112)λ(cid:113)istheonlyclosedtermsatisfyingtheopenformulaDiag((cid:112)β(cid:113),v1)8.Sim- c a plelogicthengives,from(3)and(4): J u PA(cid:96) λ ↔∃v1(v1 (cid:17) (cid:112)λ(cid:113)∧¬T(v1)) (5) n i Since∃v1(v1 (cid:17) (cid:112)λ(cid:113)∧¬T(v1))isequivalentto¬T((cid:112)λ(cid:113)),wehave: o r PA(cid:96) λ ↔¬T(cid:112)λ(cid:113) (cid:3) 7 : 2 ThisistheformalcounterpartoftheparadoxicalLiarsentence: asentencethat isprovablyequivalenttoasentencesayingthatitscodeisnotelementoftheexten- ( 2 sionofthetruthpredicate. “Butnotethat[λ]isproducedbyasimplediagonaliza- 0 tionconstruction[...];andtheconstructionyieldsatheorem,notaparadox”(Smith, 1 7Whetherthissentence“saysofitselfthatitisnottrue”isnotasobviousasonemightthink.Foran 6 insightfuldiscussionaboutself-referenceinarithmetic,seeHalbachandVisser,(2014a,b). ) 8Notethat(4)isequivalenttotheconjunctionofPA(cid:96) Diag((cid:112)β(cid:113),(cid:112)λ(cid:113))and PA(cid:96) ∀v1(¬(v1(cid:17)(cid:112)λ(cid:113))→¬Diag((cid:112)β(cid:113),v1)). 21 LucaCastaldo ANewModelfortheLiar R 2013,p.198).The“formalLiarparadox”arisesifwewantourtheoryoftruthtoprove i theT-Schemaϕ↔T(cid:112)ϕ(cid:113)forallsentencesϕ ∈Lt . v pa Yet,thisisbynomeansnecessary.Kripke(1975)proposestogiveupthebeloved i s T-Schema, constructing a partial model for the truth predicate, where both λ ↔ t a T(cid:112)λ(cid:113)andλ ↔ ¬T(cid:112)λ(cid:113)areneithertruenoruntrue,i.e. theyareundefined. Asindi- I catedintheINTRODUCTION,IassumethereaderbeingfamiliarwithKripke’sOutline. t a Iomitcompletelythepresentationofhiswork.HereIshalljuststatetwoimportant l featuresof MFP,describedbyKripke(1975,p. 708)as“probablythemostnatural i a modelfortheintuitiveconceptoftruth”. n a Fact1.2. MFPverifiesthemetalinguisticT-Schema,i.e.:forallsentencesϕ ∈Lt , pa d i (cid:104)M,(E∞,A∞)(cid:105) |=sk ϕ ⇔ (cid:104)M,(E∞,A∞)(cid:105) |=skT(cid:112)ϕ(cid:113) F (cid:104)M,(E∞,A∞)(cid:105) |=sk ¬ϕ ⇔ (cid:104)M,(E∞,A∞)(cid:105) |=sk ¬T(cid:112)ϕ(cid:113) i l o Fact1.3. InMFPboththeLiarsentenceλandtheTruth-tellerτareundefined. s o fi 2 Towards a New Model a A InthissectionIshallputforwardthenewresponsetotheLiarantinomy. Thegist n ofmyproposalisthat‘paradoxical’oughttobetreatedasatruthvalue. Liarsen- a tences,accordingtothepresentsuggestion,donotsimplylack atruthvalue. They l i dopossessone:theyareparadoxical. AshasbeennotedintheINTRODUCTION,the t i triggerofmyconsiderationswillbethedifferencebetweentheLiarandtheTruth- c a teller.Themaingoalistoconstructamodelwithinwhich(i)thedifferencebetween J paradoxicalandunparadoxicalstatementsisdetected,and(ii)everyLt -sentence pa u ϕhasthesametruthvalueasT(cid:112)ϕ(cid:113)(that’sthemetalinguisticT-Schema). n Theplanisasfollows: thenextsubsectioncontainsphilosophicalarguments: I i o trytoexplainwhyKripke’sproposalisnotsufficientlysatisfactoryasresponsetothe r Liar,andwhy,moregenerally,hisMFPdoesnotadequatelymodelthetruthpredi- 7 cate.Inaddition,Ishallexplainwhy‘paradoxical’shouldbetreatedasatruthvalue. : Theremainingsubsectionscarryoutthisideaformally. 2 ( 2 2.1 Why? 0 WithoutaimingtobecensorioustowardKripke’sproposal,butratherwiththeinten- 1 6 tionoffurtherdevelopinghiselegantideas,Ithinkthathisconstructionsuffersfrom ) twoinadequacies,whichcan(Ihope)beremoved. Afirst,minorproblemhispro- posalisconfrontedwithisthatusingthevalue‘undefined’forparadoxicalsentences 22 LucaCastaldo ANewModelfortheLiar R doesnotseementirelyadequate9–atleastifweadheretotheoriginalmeaningat- i tributedtoitbyKleene,(1971). Asecond,majorproblemisthatKripke’sMFPdoes v notmodelthetruthpredicateinasatisfactoryway. Letmeelaboratethesereasons i s inturn. t a InbothKleene’slogics(theStrong andtheWeak)10,thevalue‘undefined’(u)is I not treatedon a pairwith ‘true’ (1)and ‘false’ (0): u is nota third truth value11; it t a onlyrepresentsformallythelackoftruthvalues.Secondly,andmoreimportantfor l the present purposes, u is open to “arbitrariness for a classical value”: undefined i a sentencescanturnouttobetrueorfalse,orcanarbitrarilybedeclaredtrueorfalse. n Lesstersely: asiswellknown,Kleeneintroducedthenewlogicsinthestudyof a partialrecursivefunctions,speakingofwhichhewrites(Kleene,1971,p.334): d i ifwhenQ(x)isu,Q(x)∨R(x)receivesthevalue1,thedecisionmust(inthe F generalcase)havebeenmadeinignoranceabout ( ),andinthefaceof Q x i l thepossibilitythat,atsomestageinthepursuitofthealgorithmfor ( ) Q x o laterthanthelastoneexamined,Q(x)mightbefoundtobe1ortobe0. s o Hegoeson(ibid.,p.335)toobservethat1,0,andu“mustbesusceptibleofanother fi meaningbesides(i)‘true’,‘false’,‘undefined’,namely(ii)‘true’,‘false’,‘unknown(or a valueimmaterial)’.Here‘unknown’isacategory,whosevalueweeitherdonotknow A orchooseforthemomenttodisregard;anditdoesnotthenexcludetheothertwo n possibilities‘true’or‘false’”12. a Myquestionnowis:areparadoxicalsentencesliketheLiaropentothesamekind l i t ofarbitrarinessforaclassicalvalue? Mightthesesentencesturnouttobetrue,or i c false? Canwearbitrarilyassignthematruthvalue? Hardlyso. Thesesentencesare a paradoxicalpreciselybecausetheassumptionthattheyaretrue,orfalse,generates J inconsistencies. u Asalreadyremarked,thisisaminorproblem.Onemightquiteeasilychangethe n interpretationofuandadjustitaspleasedtoparadoxes13. Nonetheless,themajor i o problemcontinuestoflutter:MFPdoesnotmodelthetruthpredicateadequately,as r itdoesnotaccountforthedifferencebetweenLiarandTruth-teller–thisdifference 7 havingitsrootsinapeculiarityof .Letmemakethisclaimprecise,byfirstrepeating T : 2 thatthedifferencebetween 9Someauthorshavesuggestedthatparadoxesareoverdefined(bothtrueandfalse),andnotunder- ( defined(neithertruenorfalse).See,forexample,Dunn,(1969,1976)andPriest,(1979). 2 10SeeKleene,(1971,§64). 0 11Kripke(1975,fn18)stressesthesamepoint. 12Otherphilosophershavealsosuggested,asreportedbyvanFraassen,(1966,pp.482-483),thatsen- 1 tencesthatarenormallytakentobeneithertruenorfalse(forinstance“thekingofFranceiswise”)“are 6 ‘don’tcares’forordinarypurposes,andthereisthereforenoreasonwhyweshouldnotarbitrarilyassign themsometruthvalue”. ) 13Forexample,Priest,(1979)introducedtheso-called‘LogicofParadox’(LP),whichhasthesametruth tablesastheStrongKleene,buttheinterpretationofthethirdvalueis‘trueandfalse’,anditis,moreover, adesignatedvalue. 23 LucaCastaldo ANewModelfortheLiar R $ Thesentencemarkedwithadollarisuntrue. i v and i s e Thesentencemarkedwithaeuroistrue. t a isthatonecanmoreorlessarbitrarilydeclare etrue,oruntrue,withoutstumbling I onlogicalissues;onthecontrary,theonlywaytodeclare$true,oruntrue,requires t a theabandonmentofanimportantprincipleabouttruth, i.e. thatnothingisboth l trueanduntrue.Therefore,doingnothingmoreandnothinglessthandescribinga i a simplestateofaffairs,wecanstatethat n a (Fact) thetruthpredicateissuchthat,therearesentencesthatcanconsistentlybein d itsextensionorinitsanti-extension;therearesentencesthatcannot. i Everytheoryoftruthoughttotake(Fact)intoaccount14. F i As a matter of fact, in a substantial portion of the Outline, Kripke shows how l o tocategorisedifferentkindsofsentence. Asentenceisparadoxical, e.g., “ifithas s notruthvalueinanyfixedpoint”(Kripke,1975,p.708)15.Asentenceisungrounded o andunparadoxical,ifithasatruthvalueinsomefixedpoint,differentfromthemin- fi imalone–anexamplebeingtheTruth-teller.Heevenemphasisesthat“theassign- a mentofatruthvalueto[theTruth-teller]isarbitrary”(ibid.,p.709)16. A Thereadermightthereforeask,whatthepointofmyobjectionis–Kripkedoes n offer a way to distinguish between paradoxical and simply undefined sentences; a l Kripke does account for the difference between Liars and Truth-tellers. He surely i t does. Butthepointisthatonlywithinthemetatheory onecanimplementthatdis- i c tinction. Onlywithinaninformal“metamodel”ofthevariousfixed-pointmodels a areweabletodifferentiatebetweenparadoxicalandunparadoxicalsentences.The J minimalfixedpoint,which(repetitaiuvant)isdescribedbyKripkeas“probablythe u n mostnaturalmodelfortheintuitiveconceptoftruth”(ibid.,p.708),doesn’tseethe i difference:inthismodeltheLiarandtheTruth-tellerarebothsimplyundefined. o IfIamright,andifthedifferencebetween$and e isduetothepeculiarityof r T expressedby(Fact)17,thenIbelieveitisjustifiedtomaintaintheKripke’smodel 7 14AsimilarpointismadebyGuptaandBelnap,(1993,p.100):“TheessentialthingabouttheLiarap- : pearstobeitsinstabilityundersemanticevaluation: Nomatterwhatwehypothesizeitsvaluetobe, 2 semanticevaluationrefutesourhypothesis. Atheoryoftruthoughttocapturethisintuition. Itshould provideawayofdistinguishingsentencesthatexhibitthisbehaviourfromthosethatdonot,anditshould ( explainwhycertainsentencesbehavethisway”. 2 15Kripkeconsidersonlyconsistentfixedpoint,i.e.fixedpointwhereE∩A=∅.SodoI. 0 16Halbach,(2014,p.196)observesthat“Kripke’smaincontributionwasnotsomuchtheconstruction ofthesmallestfixedpoint[...]butratherhisclassificationofthedifferentconsistentfixedpointsandthe 1 discussionoftheirusefordiscriminatingbetweenungroundedsentences,paradoxicalsentences,andso 6 on”. 17ArethereanyotherpredicateswhichareakintoT inthisrespect?Oneisthereforsure:thepredicate ) “isheterological”introducedbyKurtGrellingandLeonardNelson(seeGrellingandNelson,1907).Ina parallelwork,IamtryingtoextendthesolutionpresentedheretohandletheGrelling-Nelsonparadox too. 24 LucaCastaldo ANewModelfortheLiar R isnotquiteaccurate. Ibelieveitisjustifiedtomaintainthatweshouldtrytofinda i waytoimproveit. v Some suggestions have already been made: it is what McGee, (1991, pp. 110- i s 111)callsa‘liberalisationofKripke’sconstruction’,whichallowsextensionandanti- t a extensionof tooverlap. Thisrequiresareplacementofa3-valuedlogicwitha4- T I valuedlogichavingbothtruthvaluegapsandtruthvaluegluts.Thelogical-mathe- t a maticalpropertiesofsuchaliberalisationhavebeenstudiedbyWoodruff,(1984)18. l Suchsystemsareofgreatinterestfordialetheists19. Butforthosewhodonotbe- i a lievethatsomethingcanbeeverbothtrueandfalse,theyareoflittlehelp.Iamone n of those, and additionally I really do not believe that declaring the Liar both true a andfalsecanrepresentanykindofsolutiontotheparadox.Itseemstomethatthe d paradoxispreciselythatsomesentenceshouldbebothtrueandfalse.Ican’tdigress, i F however,todiscussdialetheism–intriguingthoughitmightbe. i l o 2.2 How? s o AlthoughIamnotanadvocateofdialetheism,IsubscribeVisser’swords,whenhe fi saysthat“[o]neattractivefeatureoffourvaluedlogicforthestudyoftheLiarParadox a isthepossibilityofmakingcertainintuitivedistinctions[thatis:thedistinctionbe- A tweenLiarsandTruth-tellers. L.C.]withinonesinglemodel”(Visser,1984,pp.181- n 182).AndthatiswhyIamabouttointroduceanew4-valuedlogic,whosevaluesare: a true,false,paradoxical,andundefined.“Why‘paradoxical’?”–thereadermightask. l i Toproperlyanswerthisquestion,Ifirstneedtointroducetheideaunderlyingthe t i newinterpretationof . c T a We all agree (I venture) that an adequate interpretation of the truth predicate J oughttohaveanextension andananti-extension . Now,since(i)Idonotwant E A u LiarsentencestosimplylayoutsideE ∪AwithTruth-tellersentences,andsince(ii) n I do not wantE and A to overlap, I propose to extend Kripke’s interpretation ofT i o by adding a third set to it, which will contain those (codes of) sentences that, as r statedin(Fact),cannotconsistentlybecontainedinE orinA. Ishallcallthisthird 7 set(duetolackofimagination)X. Inparticular: (E,A,X)willbetheinterpretation : ofT, theinterpretationofL remainingasbefore, i.e. weletM bethestandard 2 pa interpretationofLpa.Consequently,(cid:104)M,(E,A,X)(cid:105)willbetheinterpretationofLpta ( 2 with,informally: 0 (i) E = {gn(ϕ) | ϕistrue};A = {gn(ϕ) | ϕisuntrue};X = {gn(ϕ) | ϕisparadoxical}; 1 6 18SeealsoVisser,(1984). 19Dialetheism,roughly,istheviewthattherearetruecontradictions,andafullexpositionofitwould ) involveagreatdealoftechnicalmaterialthatwewillnotgointohere.SeePriestandBerto,(2013)foran overview. 25 LucaCastaldo ANewModelfortheLiar R (ii) E ∩A =∅,E ∩X =∅,A∩X =∅; i v (iii) E ∪A∪X (cid:44)(cid:78). i s Andsonowthequestionarises,whattruthvaluesentenceslikeT(cid:112)ϕ(cid:113)shouldhave, t a whenever gn(ϕ) ∈ X. The answer suggested here, unsurprisingly, is that they are I paradoxical. Hence,thereasonwhyIamproposingtotake‘paradoxical’asatruth t a valueisthatIthinkthebestwaytoformalise(Fact)ishavingathreefoldinterpre- l tationofT,withextension,anti-extension,andparadox-set.Accordingly,exactlyas i a thoughwewereallowing and tooverlap,afourthtruthvalueisneeded.Andno E A n valuebut‘paradoxical’seemstoproperlysuittheparadox-set . X a Now,tocarryoutthisprojectformally,thereareaboveallthreethingstobedone: d first, we need a new 4-valued logic to handle the value ‘paradoxical’; second, we i needrulesdeterminingwhetherasentenceistrue,false,paradoxical,orundefined F i inthepartialmodel(cid:104)M,(E,A,X)(cid:105);third,weneedaformaldefinitionof(E,A,X). l o s 2.3 TheNewLogic o fi 2.3.1 TruthValuesandtheirStructure a Let(cid:67)betheclassofconnectivesofclassicalpropositionallogic. Thenew4-valued A logicisdefinedbythestructure: n a W = {1,0,p,u} li t D = {1} i c C = {f |c ∈(cid:67)} a c J whereW isthesetoftruthvalues(true,false,paradoxical,undefined),Dthesetof u n thesoledesignatedvalue,Cthesetoftruthfunctions:foreveryconnectivec ∈(cid:67), f c i isthecorrespondingtruthfunction.Thatis:ifc ∈ (cid:67)isann-placeconnective,f isa o c n-placefunctionwithinputsandoutputsinW. r As usual, one might order the element of W by the relation ≤. Since u repre- 7 sentsthelackoftruthvalues,wewillhave: u ≤ 1;u ≤ 0;u ≤ p. Thedecisiontobe : 2 madeconcernsthenewvaluep.Therearethreepossibilities.Onemightarguethat ‘paradoxical’representssomesenseof‘overdefined’,inwhichcasewewouldhave ( 2 1 ≤ p,0 ≤ p. Oronemightsaythat, likeu,p standsforanothercaseof‘underde- 0 fined’,inwhichcasewewouldhavep ≤ 1andp ≤ 0.Alternatively,onemightsay,as 1 Ishalldohere,thatitisneither‘overdefined’,nor‘underdefined’,whencewehave: 6 ) 1,0,andparenotcomparable. ThisyieldsastructureP =(cid:104)W, ≤(cid:105),whichcanbepicturedthus: 26
Description: