Patrocinatadal2011dalla ISSN2037-4445 (cid:13)CC SocietàItalianadiFilosofiaAnalitica http://www.rifanalitica.it R i v i s t a I t a l Rivista Italiana di Filosofia Analitica Junior i a Vol. 7, n. 2 n a d Indice i F i l o Editoriale s StefanoCanali,PietroAngeloCasati o Lavoriincorso............................................................1 fi a Articoli A DavideEmilioQuadrellaro n EpistemicLogicandtheProblemofEpistemicClosure .................... 3 a l LucaCastaldo i t ANewModelfortheLiar ................................................17 i c a J u n i o r 7 : 2 ( 2 0 1 6 ) Copyright. (cid:13)CC (cid:13)BY: (cid:13)\$ (cid:13)C 2016PubblicatoinItalia.Alcunidirittiriservati. i Patrocinatadal2011dalla ISSN2037-4445 (cid:13)CC SocietàItalianadiFilosofiaAnalitica http://www.rifanalitica.it R i v i s t a I t Lavori in corso a l i a Stefano Canali, Pietro Angelo Casati n a d Cari lettori, è con piacere che apriamo la pubblicazione di RIFAJ Vol.7 N.2. Si i trattadiun’uscitaunpo’particolare,legataadalcunenovitàriguardoalfuturo F i delprogettoRIFAJ. l o InseiannidiattivitàlaRivistahamantenutounapresenzacostante,pubbli- s candopuntualmenteduenumeriall’anno, ampliandoilraggiodelleiniziative o correlateecoinvolgendounmaggiornumerodicollaboratorisianellaRedazio- fi nesianelComitatoScientifico.Hadatoatantilapossibilitàdimettersiingioco a inprimapersonaeperlaprimavolta.Moltidinoisonopassatidalaureatrien- A naleamagistraleedottorato,spostandosinelfrattempoingiroper(quasi)tutto n ilmondo. a l Datalastabilitàraggiunta,pensiamosiagiuntoilmomentoperdedicarcial- i t losviluppodialcunepotenzialitàinespresse,cosìdaportareilprogettoaduno i c stadiosuccessivo.NeiprossimimesiRIFAJandràincontroadunaprofondarivi- a sitazione,voltaadunacrescitainterminidiqualitàscientifica,maturitàeattività J correlate.Inquest’otticaabbiamodecisodipubblicareilpresenteeilprossimo u fascicoloconunnumeroridottodicontributi,cosìdainvestiretempoedener- n i gienellaristrutturazionedelprogetto.Saràperciòassenteilconsuetocontorno o direcensioni, intervisteereport, nonchéFirmad’Autore edEx-Cathedra, soli- r tamentepresentineinostrinumeritematici. Inparticolare,ilvolumecorrente 7 presentaduearticoli,accomunatidalfattodiproporrerevisionidiprospettive : 2 inauguratedaSaulKripke. In “Epistemic Logic and the Problem of Epistemic Closure”, Davide Emilio ( 2 Quadrellaropresentaunalogicadellaconoscenzaalternativaallelogichepropo- 0 sizionalimodaliditipokripkeano. L’intentodell’autoreèdiservirsidei“mondi 1 impossibili”perevitareilcompromessoconilcontroversoprincipiodichiusura 6 ) epistemica. In“ANewModelfortheLiar”,LucaCastaldopresentaunnuovomodelloperil linguaggiodell’aritmeticadiPeanoconl’aggiuntadelpredicatounariodiverità. EstendendoilpuntofissominimodiKripkeeimpiegandounaparticolarelogi- caaquattrovalori,l’autoreintendesopperireadun’inadeguatezzadelmodello Copyright. (cid:13)CC (cid:13)BY: (cid:13)\$ (cid:13)C 2016StefanoCanali,PietroAngeloCasati.Pubblicatoin Italia.Alcunidirittiriservati. 1 Autori.StefanoCanali,[email protected], [email protected]. StefanoCanali,PietroAngeloCasati Lavoriincorso R kripkeano,chenonconsentedidistingueretraicosiddettimentitoriequelliche i potremmochiamareassertori. v EntrambigliarticolivertonodunquesullaLogica,inlineaconquellocheera i s statopresentatocomeunoSpecialIssuediLogica. Tuttavia,datol’altonumero t a dipotenzialicontributi,laricchezzadeldibattoelaquantitàequalitàdieventie I pubblicazionisultema,crediamosianecessariocostruireunnumerotematico t a piùcorposo. Cifaquindipiacereanticiparefindasubitochestiamolavoran- l do alla costruzione di un nuovo Special Issue di Logica, con uscita prevista a i a novembre2017, percuiabrevediffonderemounCallforPapersandReviews. n Inattesadellegrandinovità,invitiamoadinviarecontributi,sottoporrenuove a proposteeleggereiprossiminumeri. d Cogliamoinfinel’occasioneperringraziaretutticolorochecihannoscritto, i F lettoesupportatoinquestiseianni. i Restatesintonizzati1. l o s o fi a A n a l i t i c a J u n i o r 7 : 2 ( 2 0 1 6 ) 1Apropositodi“sintonizzazione”,viinvitiamoaseguircisullapaginaFacebookdiRIFAJ(face- book.com/RifanaliticaJun),chegrazieall’amministrazionediDarioMortinièdecisamentepiùatti- vacheinprecedenzaediventasemprepiùriccadisegnalazioni,linknotevoli,intervistevariegate, spuntiinteressanti,nonchédilettevolimeme. 2 Sponsoredsince2011bythe ISSN2037-4445 (cid:13) CC ItalianSocietyforAnalyticPhilosophy http://www.rifanalitica.it R i v i s t a I t Epistemic Logic and the Problem of a l Epistemic Closure i a n * Davide Emilio Quadrellaro a d i F Abstract.Thispaperarguesthatpropositionalmodallogicsbasedon i l Kripke-structurescannotbeacceptedbyepistemologistsasamini- o malframeworktodescribepropositionalknowledge. Infact,many s o authorshaveraiseddoubtsoverthevalidityoftheso-calledprinci- fi pleofepistemicclosure,whichisalwaysvalidinnormalmodallogics. a Thispaperexamineshowthisprinciplemightbecriticizedanddis- A cusses one possible way to obtain a modal logic where it does not n hold,namelythroughtheintroductionofimpossibleworlds.. a l i t i c a J u n i o r 7 : 2 ( 2 0 Keywords.Epistemology,EpistemicLogic,EpistemicClosure,Rantala 1 Semantics,LogicofKnowledge,ImpossibleWorlds. 6 ) *IwishtothankGregSax,GianmarcoDefendiandthreeanonymousrefereesforcommentsand suggestions. Copyright. (cid:13)CC (cid:13)BY: (cid:13)\$ (cid:13)C 2016DavideEmilioQuadrellaro.PublishedinItaly.Some rightsreserved.Author.DavideEmilioQuadrellaro, [email protected]. 3 Received.18August2016.Accepted.19October2016. D.E.Quadrellaro EpistemicLogicandtheProblemofEpistemicClosure 1 Introduction R i Thepurposeofthisarticleistodescribeaminimallogicofknowledgewhichcan v beusedbyepistemologistswithdifferentphilosophicalorientations.Afirstway i s toproceedisdescribingamodallogicbasedonaKripke-semantics,specifying t a howtheaccessibilityrelationshouldberestrictedinordertorepresentknowl- I edge.However,itisnotdifficulttoprovethatthisstandardformalepistemolog- t a icalanalysisimpliesthevalidityoftheprincipleofepistemicclosure,namelyof l thefactthat,ifonebothknowsthatpandthatifpthenq,thenhe/shealsoknows i a that . Thisprinciple,however,hasbeenobjectofcriticismandobjectionsby q n someepistemologists. Therefore, ifwearelookingforageneralmodallogical a frameworkthatcanbeusedbyphilosopherswithdifferentorientations,wehave d toconstructaformalsystemwheretheclosureprincipledoesnothold.Aninter- i estingwaytoproceedisworkingwiththesemanticswhichhasbeendeveloped F bylogicianstoaccountfortheparadoxofthelogicalomniscience.Infact,ifwe i l introducethe“impossibleworlds”andweconstructaRantala-semanticsbased o s onthem,weobtainaweakerlogicwheretheclosureprincipledoesnothold. o InthefirstpartofthisarticleIpresentthemodallogicT,whichisgenerally fi consideredtheminimalformalsystemforthelogicofknowledge.FirstlyIintro- a ducethesyntaxandthesemanticsofmodallogic,secondlyIcharacterizehow A the accessibility relationRa has to be restricted in order to obtain the logic T. n InthesecondpartIprovethattheprincipleofepistemicclosurefollowsfrom a TandItrytounderlinesomecriticalaspectsofit. InthethirdpartIintroduce l i an alternative logic for knowledge where the closure principle does not hold, t i namelyamodallogicwithimpossibleworldsandaRantala-semantics.Finally, c a inthefourthpart,Ievaluatethisproposal,tryingtounderlinebothupsidesand J downsidesofit. u n i 2 The standard logic of knowledge o r Afirstwaytogiveaformalaccounttoepistemologicalconceptssuchasbelief andknowledgeistoadoptthelanguageofmodallogic.Evenifthemodaloper- 7 : ators(cid:94)and(cid:3)areusuallyreadaspossibilityandnecessity,wecanalsoadoptan 2 epistemicinterpretationofthem.Onthisalternativereadingwewilltranslatea ( logicalformulalike(cid:3)p notas“itisnecessarythatp”butratheras“itisknown 2 that ”, “it is believed that ” or “it is certain that ”. Following each of these 0 p p p 1 interpretationswecanformulateadifferentmodallogic,inordertoformalize 6 thespecificfeaturesoftheconsideredepistemicoperator.InwhatfollowsIwill ) beinterestedexclusivelyintheformerofthesealternativesandIwillfocusmy attentiononthelogicofknowledge. Working with an epistemological interpretation of modal logic, it is worth 4 D.E.Quadrellaro EpistemicLogicandtheProblemofEpistemicClosure specifyingwhoisthesubjectoftheknowledgewearespeakingabout.Ifweread R (cid:3) simplyas“itisknownthat ”,themeaningofthisoperatorremainsnotclear p p i enough. What does it mean, in fact, that something is known? Does it mean v i thatsomeoneknowsit? Ordoesitmeanthateveryoneknowsit? Therefore,in s t ordertobeasclearaspossible,weshouldadoptamoreintuitiveterminology a and make explicit the fact that we are working with a propositional notion of I knowledgeandwithinalogicofindividualagents.Theboxoperatorwillbesub- t a stitutedbya (for“knowledge”),followedbyaletterthatindicateswhoisthe K l i agent that knows the considered proposition. Modal formulas will look, thus, a likeK p andK p andtheywillbereadas“theagenta knowsthat p”and“the n a b agentbknowsthatp”. Inwhatfollows,wewillbeinterestedinformalsystems a withonlyoneagent,butitisimportanttokeepinmindthatwecanintroduce d many -operators,inordertomaptheknowledgeofmorethanonesubject1. i K F Letusnowmove,aftertheseintroductoryremarks,togiveaprecisedefini- i tionofthesyntax ofthepropositionalmodallogicforknowledge. Weproceed l o extendingthealphabetofclassicalpropositionallogicwithaknowledgeopera- s torK . o a fi Definition2.1(AlphabetofPropositionalModalLogicforKnowledge). Anal- a phabetforpropositionalmodallogicforknowledgeisdefinedastheunionof A thefollowingdisjointedsets: n • AdenumerablesetofatomicpropositionalvariablesP = {p0,p1,...}. a l i • ThesetofthelogicalconnectivesC = {¬,∧,→}. t i c • Thesetoftheknowledgeoperator O = {K }. a a • ThesetofauxiliarysymbolsA = {(,)}. J u Giventhealphabet,itispossibletodefineinductivelythesetoftheformulasof n thelogicofknowledge. i o Definition2.2(FormulasofPropositionalModalLogicofKnowledge). Thefor- r mulasofthemodallogicofknowledgearegivenbythefollowingdefinitionby 7 induction: : 2 1. Ifϕisanatomicpropositionalvariable,thenϕisaformula. ( 2 2. Ifϕisaformula,thenalsoitsnegation¬ϕisaformula. 0 3. Ifϕand χareformulas,thenalsotheirconjunction(ϕ∧ χ)isaformula. 1 6 4. Ifϕand χareformulas,thenalsotheconditional(ϕ→ χ)isaformula. ) 5. Ifϕisaformula,thenalsoK ϕisaformula. a 1FortheintroductionofmultipleagentsseebothHendricksandSymons,(2015,pp.9-11)and Holliday,(forthcoming,pp.5-7). 5 D.E.Quadrellaro EpistemicLogicandtheProblemofEpistemicClosure 6. Nothingelseisaformula. R The semantics of the logic of knowledge is provided by a Kripke-structure, i v whichisthestandardwaytointerpretmodallanguages. i s t Definition2.3(Kripke-structures). Givenapropositionalmodallogicofknowl- a edge,aKripke-structureMisatriple(cid:104)W,R ,V(cid:105),where: a I t 1. W isanon-emptyset.Intuitively,W isasetof“possibleworlds”or“possible a scenarios”. l i a 2. R isabinaryrelationoverW,i.e. asubsetofW ×W. Intuitively,weread n a vR was“thepossibleworldwisepistemicallyaccessiblefromthepossible a a worldv bytheagenta”. d i 3. isafunctionthatassignstoeveryatomicpropositionalformulaasubset V F of .Intuitively, specifiesinwhichpossibleworldseachatomicformula W V i l istrue. o s GiventheKripke-structures,wecandefinethenotionoftruthinaworld: o fi Definition2.4(Truthinaworld). Givenapropositionalmodallogicforknowl- a edge,aKripke-structureMandaworldw,thenotionM (cid:15) ϕofbeingtrueina w A worldisdefinedasfollows: n 1. whenϕisatomic,thenM (cid:15) ϕiffw ∈V(ϕ); a w l 2. whenϕhastheform¬χ,thenM (cid:15) ϕiffM (cid:50) χ; i w w t i 3. whenϕhastheform(χ∧ψ),thenM (cid:15) ϕiffM (cid:15) χandM (cid:15) ψ; c w w w a 4. whenϕhastheform(χ →ψ),thenM (cid:15)w ϕiffM (cid:50)w χorM (cid:15)w ψ; J u 5. whenϕhastheformKaχ,thenM (cid:15)w ϕiffforeverypossibleworldv such n thatwR v,M (cid:15) χ. i a v o Thedefinitionoftruthinaworldallowsustodefinetwofurtherimportantno- r tions. We say that a formula ϕ is true in a model M if and only if it is true in 7 everyworldw ∈W oftheKripke-structureM.Wesaythataformulaϕisavalid : 2 formula ifandonlyifitistrueineveryworldw ∈ W ofeveryKripke-structure M. ( 2 WhatwehavedescribedsofaristheminimalsystemKofmodallogic,with 0 theonlypeculiaritythattheinformalreadingthatwehaveassumedforthemodal 1 operator is “the agent a knows that...”. Nevertheless, it is clear that to obtain 6 a logic of knowledge this is not enough. What one needs, rather, is to specify ) theformalpropertiesthataretypicalofknowledgeandtorepresenttheminthe logic.Puttingspecificrestrictionsovertheaccessibilityrelation ,itispossible R a toobtainmanymodallogicsstrongerthanK,wheremoreprinciplesarevalid 6 D.E.Quadrellaro EpistemicLogicandtheProblemofEpistemicClosure formula. The problem is that it is not sufficiently clear which modal system R photographsinthecorrectwaytheformalpropertiesofknowledge. Sincethe i purposeofthisarticleistoexaminewhichlogiccanbeacceptedbyepistemolo- v i gistswithdifferentphilosophicalorientations,wewillextendKonlywiththose s t principleswhicharegenerallytakenforgrantedintheepistemologicaldebate. a Therefore,theonlyrestrictionthatwewantimposetoourlogicalsystemisthat I ithastosatisfythefollowingprinciple: t a (T) K ϕ→ ϕ l a i a What(T)saysisthat,ifoneknowsaproposition,thenthisverysameproposition n mustbetrue. Thisdoesnotonlyfollowfromanyanalysisofknowledgeastrue a beliefplussomething,butitalsoseemstobeavalidminimaldescriptionofthe d meaningofknowledge.Indeed,ifonesaysthathe/sheknowsthat butitisnot p i thecasethatp,itseemsreasonabletoconcludethathe/shedoesnot knowthat F p,butratheronlybelievesthatp2. i l Ifwewantthattheprinciple(T)holdsinthelogicalframeworkthatweare o s considering,wehavetoputarestrictionontheaccessibilityrelation . More R a o precisely,asweprovewiththefollowingtheorem,wehavetorestrictouratten- fi tiontothoseKripke-structureswheretheaccessibilityrelationisreflexive. The a modallogicthatweobtainwhenweworkonlywithreflexiveaccessibilityrela- A tionsiscalledT. n a Theorem2.1. GiventhelanguageofpropositionalmodallogicanditsKripke- l structureM = (cid:104)W,R ,V(cid:105),theformula(T)K ϕ → ϕisavalidformulaifandonly i a a t iftheaccessibilityrelationRa isreflexive. i c Proof: AssumingthattheaccessibilityrelationsR inM isreflexive,thengiven a a anypossibleworldw ∈W wehavethatwRaw.Therefore,sinceM (cid:15)w Kaϕholds, J u then M (cid:15) ϕ holds in every worldv such thatv is accessible fromw. But for v n reflexivitywehavethatw isaccessiblefromitselfand,therefore,thatM (cid:15) ϕ. w i Vice versa, assuming that K ϕ → ϕ is a valid formula then, for every Kripke- o a structure M and every worldw in it M (cid:15) K ϕ → ϕ. Given the semantics of r w a theconditional, thisamountstosaythatitisnotthecasethatM (cid:15) K ϕand w a 7 M (cid:50)w ϕ.But,ifRa wasnotreflexive,wecouldconstructaKripke-structuresuch : 2 as N = (cid:104)W,R ,V(cid:105), withW = {v,w} and R = {(cid:104)w,v(cid:105)}. In N we have that, if a a v ∈V(ϕ)butw (cid:60)V(ϕ),thenN (cid:15) K ϕbutN (cid:50) ϕ,contradictingourclaimthat ( w a w 2 K ϕ→ ϕisavalidformula.Therefore,R mustbereflexive.(cid:4) a a 0 1 6 3 Theprincipleofepistemicclosureanditsproblems ) InthepreviouspartofthisarticleIhaveintroducedthemodallogicT,inorderto representsomeminimalformalpropertiesofknowledge.Movingastepfurther, 2ThisaspectisfamouslystressedbyWittgenstein,(1969). 7 D.E.Quadrellaro EpistemicLogicandtheProblemofEpistemicClosure itisnowpossibletoproveaninterestingresult,whichsaysthattheprincipleof R epistemicclosureisavalidformulainT.Firstly,letusclarifywhatwemeanwith i thenameof“principleofepistemicclosure”. v i s (CP) Ifanagentknowsthat ϕandhe/sheknowsthatif ϕthen χ,thenhe/she t a alsoknowsthat χ. I Itisstraightforwardtotranslatethisthesisintothelanguageofthelogicofknowl- t a edge.Wethusobtainthefollowingformalversionoftheclosureprinciple: l i a (FCP) (K ϕ∧K (ϕ→ χ))→K χ a a a n a Wecannowprovethefollowingtheorem: d Theorem3.1. GiventhelogicofknowledgeT,theformalclosureprinciple(FCP) i isavalidformula. F i Proof: Wereasonforabsurd. If(FCP)wasnotavalidformula,therewouldbea l o worldw ofaKripke-structureM =(cid:104)W,Ra,V(cid:105),where(FCP)doesnothold.Given s thesemanticsoftheconditional, thismeansthatM (cid:15) K ϕ∧K (ϕ → χ)but o w a a M (cid:50) K χ. Given M (cid:15) K ϕ, we have that in every world accessible fromw, fi w a w a a ϕholds. GivenM (cid:15) K (ϕ → χ), wehavethatineveryworldaccessiblefrom w a w, ϕ → χholds. Moreover,sinceM (cid:50) K χ,thereisatleastoneworldv such A w a thatwR v whereM (cid:50) χ. Butinthissameworldv wehavethatM (cid:15) ϕ and n a v v a M (cid:15) ϕ → χholdtoo,fromwhichitfollowsthatM (cid:15) χ. Therefore,weobtain v v l thecontradictionthatM (cid:15) χandM (cid:50) χ.(cid:4) i v v t Ifourconcernsaremainlyepistemologicalthisresulthasaparticularrele- i c vance. Infact,whatwehaveprovedisthatevenifweworkwithaweakmodal a system,theprincipleofepistemicclosurewillholdinit3. Therefore,ifwehave J somereasontorefusetheprincipleofepistemicclosure,thenwecannotadopt u theformallogicTanymore,foritdescribesknowledgeinawaywhichisincon- n i sistentwithourtheory. InparticularDretske(1970)offersatleasttwopossible o reasonstorefusetheclosureprinciple4.IntherestofthispartIwillpresentboth r ofthem,butIwillnottrytosetthequestionabouttheirvalidity. Indeed,Ionly 7 wanttoshowthatitmightbereasonableforanepistemologisttorejecttheclo- : sureprinciple.Infact,giventhepossibilitythat(FCP)isnotacceptable,wehave 2 tolookforamodallogicforknowledgeweakerthanthestandardonedescribed ( 2 3Notice,moreover,thatintheproofofthetheorem3.1.wedidnotmakeanyuseofthefactthat 0 theaccessibilityrelationbetweenworldsisreflexive.Therefore,ourproofisvalidalsoforthebasic 1 modallogicK. 4Luper,(2016)synthesizesawiderangeofargumentsagainsttheclosureprinciple,oftenorigi- 6 nallyraisedbyDretskeandNozick.However,evenifLuper’sreconstructionisclear,Idonotagree ) withhispresentationoftheargumentsfromthe“analysisofknowledge”. Infact,thetheoriesof knowledgesupportedbyDretskeandNozickareexplanationsofwhytheclosureprinciplefailsand notreasonstorefuseit.Lupercommits,therefore,asortofinversionoftherightorderofexplana- tion. 8
Description: