ebook img

River, Coastal and Estuarine Morphodynamics: RCEM 2007, Two Volume Set: Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, 17-21 September 2007 PDF

1178 Pages·2007·36.792 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview River, Coastal and Estuarine Morphodynamics: RCEM 2007, Two Volume Set: Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, NL, 17-21 September 2007

Process-based approach on tidal inlet evolution – Part 1 D.M.P.K.Dissanayake&J.A.Roelvink UNESCO-IHE,Delft,TheNetherlands ABSTRACT: Thelong-termaimofthisstudyistounderstandandmodelthebehaviouroftidalinletswhich arefacingrelativesealevelriseandclimaticchanges.Thepresentworkisfocusedonthetidalinletevolution drivenbytidalforcing.Thisusesaschematizedapproachwitha2Dprocess-basedmodel(Delft3D)torepresent themorphologicalevolutionoftheAmelandinletintheDutchWaddensea.Themaximummorphologicalperiod sofarextendsupto50years.Theresultsqualitativelycorrespondwiththeobserveddata.Finalbedevolution agreeswiththeempiricalrelationbetweentidalprismandminimumcrosssectionalareaofthegorge.Flood-or ebb-dominantsituationofthemodeldependsontheinitialdepthatbasin.Nomodelhasreachedtoanequilibrium conditionbasedontheresidualtransportpatterns.Theresultsshowtheapplicabilityoftheprocess-basedmodel inthelong-termmorphologicalstudyintidalinlets.Themorphologicaldevelopmentsappeartobeoverestimated, whichmaybeduetoinitialconditions,transportformulationsusedandwaveeffectswhichwerenotincludedyet. 1 INTRODUCTION that the equilibrium exists between the morphologi- calelements:cross-sectionandtidalprism(O’Brien, 1.1 General 1969andJarret,1976),volumeoftidalchannelsand tidalprism(Eysink,1990),cross-sectionanddischarge Barriertidalinletsystemsaretypicallyfoundinsandy (Kraus,1998),ebbdeltavolumeandtidalprism(Wal- coastal planes world-wide.A series of barrier inlets ton andAdams, 1976). Eysink (1990) describes the formtheentrancestotheDutchWaddensea.Channels, morphological adaptation of tidal inlets due to sud- shoals,tidalflatsandbarrierislandsarethemainmor- denchanges(closureorreclamationwork).Acriterion phologicalelementsofabarriertidalinlet.Theyhave has been developed by Wang et al. (1999) to deter- a high ecological value (feeding grounds for birds, mine the flood- and ebb-dominancy of a tidal inlet. breedingareasforfishandtheenvironmentforflora They use the ratios of shoal volume to channel vol- and fauna) and an economic value (tourism, fishing ume (Vs/Vc) and tidal amplitude to mean channel andnavigation).Thepresentstudyisfocusedonthe depth(a/h).DeVriendetal.(1993)andLatteux(1995) AmelandinletintheDutchWaddensea. describethereductiontechniquesandselectingrepre- TheAmelandinletislocatedbetweenAmelandand sentativeconditionsrespectivelytoobservelong-term Terschelling barrier islands.The morphological pro- morphologicalchanges.VanLeeuwenetal.(2003)use cesses in this area are governed by tidal force.This aschematizedapproachtoinvestigatetheconceptof causes residual current leading to a strong sediment downstreamaccretionofatidalinlet(Sha,1989).A transportbetweenthebarrierislands.Theinlethasa recentapproachisfoundinRoelvink(2006)tomodel uniquemorphologyinthesensethatitismodulating thecoastalevolution:“onlinemorphology”.Thebed betweenaone-channelandatwo-channelsystemdur- levelupdateoccursineachhydrodynamictimestep, ing a period of approximately 50 years (De Grimal, but the morphological changes are accelerated by a 1998).Theebbdeltahasacyclicbarbehaviourwith constantfactor. barsmigratingtoeastwardandattachingtothecoast ofSchiremonnikoog(DeSwart,2004;Ehlers,1988). 1.3 Objective The objective of the present work is to observe 1.2 Relevantstudies the influence of initial conditions and tidal motion Different approaches are found in the literature to on morphological evolution using 2D process-based understandthephysicalprocessesandthelong-term model(Delft3D).However,thelong-termaimofthis behaviouroftidalinlets.Empiricalrelationshipsshow study is to understand and model the behaviour of 3 © 2008 Taylor & Francis Group, London, UK tidal inlets which are facing relative sea level rise describedinLesseretal.(2004)isapproximatedby and climatic changes. Morphodynamic evolution of thedepth-integratedadvection-diffusionequation: atidalinletinvolvesawiderangeoftimeandspace scales.Therefore,wefocusonmeso-andmacro-scale morphodynamicevolutionoftidalinlets. Here h is the water depth, u¯ and v¯ are the depth- 2 MODELCONFIGURATION averagedvelocitycomponentsinx-andy-directions, D is the horizontal dispersion coefficient, c¯ is H 2.1 Hydrodynamics thedepth-averagedsedimentconcentration,c¯ isthe eq depth-averagedequilibriumconcentrationandT isan Themodelusestheunsteadyshallowwaterequations s adaptationtime-scale. intwo-dimensions(depthaveraged).Theapplication Thedepth-averagedequilibriumconcentration c¯ of these equations in DELFT3D-FLOW module is eq isdefinedas: extensivelydescribedbyLesseretal.(2004). Neglecting the evaporation and precipitation, the depth-averagedcontinuityequationisreducedto, Here, S is the depth-integrated suspended sed- sus,eq iment transport for steady and uniform conditions. Therearetwowaysofspecifyingthistransportrate, Neglecting the influence of Coriolis’ force, den- dependingonthetypeofformulationused. sitydifferences,windandwaves,thedepth-averaged In using a formulation developed for depth- momentumequationsarereducedto, averagedsimulations,theexistingalgorithmsprovide S directly and no further action is required. For sus,eq formulations developed for 3D simulations, such as VanRijn1993or2004,S hastobedeterminedby sus,eq (1DV)numericalintegration: The equilibrium velocity profile is assumed to be logarithmic: where,ζ=waterlevel h=waterdepth u¯=depthaveragedvelocityinxdirection v¯=depthaveragedvelocityinydirection Theequilibriumconcentrationprofileiscomputedby g=gravitationalaccelerationfactor numericallyintegratingSchmidt’sequation: c =frictioncoefficient f ν=eddyviscosity C=Chezycoefficient The constant factors, g, ν and C are taken as Here D (z) is the vertical dispersion coefficient as 9.81m/s2, 1m2/s and 60m1/2/s (in both directions) v prescribed byVan Rijn (1993); the boundary condi- respectively. tion is taken as c (z )=c , where the reference eq ref ref 2.2 Sedimenttransport concentrationisafunctionofthelocalbedshearstress. Theadaptationtimeisafunctionofwaterdepth,fall Sediment transport field is calculated following the velocityandshearvelocity,accordingtotheGalappatti approachofVanRijn(1993).Hecalculatedthetotal (1983)formulations. transportasthesumofsuspendedloadtransportand the bed load transport based on a reference height whichisdefinedbythebedroughness.Weselectedthis transportformulationasweexpecttoincludewaves in the next series of simulations. In depth-averaged HereT isananalyticalfunctionofshearvelocityand sd simulations, the 3D advection-diffusion equation as fallvelocity. 4 © 2008 Taylor & Francis Group, London, UK The bed load sediment transport can be found by applyingthefollowingrelation, S =bedloadtransportrate(kg/m/s) b f =calibrationfactor(1.0) bed u(cid:1) =effectivebedshearvelocity ∗ D∗=dimensionlessparticlediameter ρ =densityofsediment s η=relativeavailabilityofsandatbottom Ta=dimensionlessbedshearstress Figure1. Schematizedmodelareaandcross-section. Thed valueisapplied200µminthisstudy.The 50 lateralbedslopeandtransversebedslopeareselected Table1. Modelswithdifferentinitialbathymetries. as50and1respectively.Theinfluenceofbedslopes are considered at two stages.The first follows Bag- Model Inletwidth(km) Basindepth(m) nold (1966). The magnitude of sediment transport 1 1.0 2 is adjusted according to the slope along the sedi- 2 3.5 2 ment transport vector which defines by the velocity 3 1.0 3 field.ThesecondfollowsIkeda(1982).Thedirection 4 1.0 4 of sediment transport is adjusted based on the slope 5 3.5 4 perpendiculartothesedimenttransportvectorwhich definesbythevelocityfield. 2.4 Modelset-up 2.3 Morphodynamicupdating Theschematizedmodelset-upconsistsofthreeareas: Thebedlevelisupdatedateachcomputationaltime backbarrierbasin,inletgorgeandopenseaarea.The stepbymultiplyingtheerosionanddepositionfluxes backbarrierbasinhasdimensionsof24km×13km fromthebedtotheflowandviceversa,byaconstant while the open sea area has 60km×25km. The factor:‘MorphologicalScaleFactor’. inlet gorge is 6km in width and 3km in length. These dimensions are based on Admiralty Chart, 1993. Alldepthvaluesareappliedwithrespecttomean This allows accelerated bed level changes to be sealevel(MSL).Theopenseaareahasaconcavebed dynamicallycoupledwiththeflowcomputations.This profileinthefirst9kmbyvaryingdepthfrom0mto ‘Online morphology’ approach is described exten- 20m(Figure1).Ithasaconstantdepthof20matoff- sively by Roelvink (2006). Sensitivity analysis is shorearea.Thebackbarrierbasinandinletgorgehave carriedoutbyapplyingdifferentmorphologicalfac- initiallyaflatbed(Table1).Theshadedareainfigure1 tors(50,117,235and353).Theresultsshowthatthe indicatestheerodiblebanksinthemodel.Thebank- bedlevelupdatesareintherangeof1–5%ofthelocal elevationissetto+5m.Onecanobservethewidening water depth. However, there are points which rarely oftheinletintemporalscalebasedonthisapproach. exceedthisrange.Onemorphologicalfactor(235)is Further, this allows to observe whether back-barrier selectedforthisstudybasedonthepercentageofbed basin attempts to widen with longer morphological levelupdate,thecomputationaltimeandtherequired periods. accuracy. The model has three open boundaries: north, east Themodelconsistsofdrycellsaroundthebackbar- andwest.Theseawardboundary(north)isdefinedby rierbasinandalongthegorge(Figure01).Thedrycell aM tidewhichhasamplitudeof0.8m.Thetidalwave 2 erosionfactorinthemodelissetto1.Thismeansthat ispropagatingfromwesttoeastparalleltothecoast theamountoferosionthatoccursattheadjacentwet withaphasedifferenceof37◦. celliscompletelyassignedtothedrycell.Thiscontin- Thecross-shoredirectionhasafinergridsizecom- uesuntilthedrycellbecomesawetcellandcontributes paredtoalongshoredirection.Thesmallestgridsize tothehydrodynamicprocess.Detaileddescriptionon (60m×125m)isfoundatinletgorgewhilethemax- drycellerosionprocessisfoundinLesseretal.(2004) imum grid size (1000m×1000m) is found at open andRoelvink(2006). sea area. This gives rise to form accurate channel 5 © 2008 Taylor & Francis Group, London, UK Figure 2. 50-year morphological evolution with different initialbathymetry(modelnumbersarereferredtotable1). andshoalpatterns.Thetime-stepis1minuteforthe hydrodynamiccomputations. A few models are selected to discuss in this paper. Table 1 shows the models with different ini- tialbathymetry.Thesearesimulatedwiththeselected Figure 3. Comparison of model hypsometries with morphological scale factor (section 2.2) in order to observeddata(modelnumbersarereferredtotable1). observe50-yearmorphologicalevolution. Theresultsofthesemodelsarediscussedinthenext section. The hypsometry shows the water surface area at a given water depth. Therefore, this measures the amount of channels and shoals in a tidal basin. Fig- 3 RESULTS ure3showsthehypsometryfortheselectedmodels andfortheobserveddata. 3.1 Qualitativeanalysis Both models 1 and 2 have similar hypsometry A qualitative analysis of each result is carried out because they have initial water depth of 2m in the beforeanalyzingtheresultsindetail.Thisisbasedon basin.Ontheotherhand,models4and5behavesimi- theebbdeltaconfigurationandchannel/shoalpatterns. larly as both models have the water depth of 4m in Thus,thisisagoodestimatortodecidethevalidityof the basin. The data are in good agreement in deep the outcomes.The results show that a large amount water(waterdepthgreaterthan10m).However,our ofpatternformation(shoalsandchannels)occursdur- flat bathymetry has a constant depth everywhere in ingthefirstdecadeofthemorphologicalperiod.Finer the basin, which is not the case of observed data. adjustments of these patterns are found in the next Therefore, model results show little deviation in the decades.However,majorchangesareagainobserved shallow water.The model 1 which has the shallow- afterseveraldecades.Figure2showstheevolutionof est bathymetry, gives the best agreement with the channelandshoalpatternfordifferentmodelsatthe data.The morphological characteristics of our mod- endof50-yearperiod. elstendtobehaveasobserveddataaccordingtothe Final pattern formation has an asymmetric ebb- hypsometry. deltaineachmodel.Theebbdeltaisorientedtothe Volume change in ebb delta, inlet and back bar- direction where the tidal wave comes from. Further, rier basin are calculated based on the initial flat mainchannelintheebbdeltashowssimilarasymme- bathymetry.Positivevolumechangegivesrisetosedi- tryexceptinthemodel2and5.Thelattertwomodels mentationwhilethenegativevolumechangeindicates hbaavsienwshiodwersiannitaiaslyminmleetstri(c3c.5hkanmn)e.lTphaettebranctkoob.aTrhrieeyr emroosdieoln(.FTighuerein4l)e.tItaecxtspoarstsasesdeidmimenetnitnstoouthrceeebinbdeealctha areorientedtothedirectionoftidalwavepropagation. andbackbarrierbasinsimultaneouslyorimportsedi- TheAmelandinletshowsthesametypeofasymmetry mentfrombackbarrierbasinandexportintotheebb initsmajormorphologicalelements. delta.Thesedimentexportingcapacityoftheinletis largerwhenithasasmallerinitialinletwidth(larger amount of sediment from erodible banks). The ebb 3.2 Quantitativeanalysis deltavolumealwayskeepsonincreasingthroughout The quantitative analysis helps to understand the themorphologicalperiod.However,thedeeperinitial macro-scale morphological changes. Several param- bathymetries (model 4 and 5) show that they reach eters are used in this analysis: hypsometry, change nearlyaconstantvolumechangesafterabout25-year of sediment volume, cross-section width at inlet, morphologicalperiod.Ontheotherhand,theyimport seaward extension of ebb delta, flat- and channel- sandintothebackbarrierbasin.Thesmallertheinitial characteristics.Thefollowingparagraphsdescribethe waterdepth,thelargerthesedimentexportfromthe outcomesoftheseparameters. basin. 6 © 2008 Taylor & Francis Group, London, UK Figure4. Volumechangeinebbdelta,inletandbackbarrier basinwithrespecttoinitialbathymetry(modelnumbersare referredtotable1). Figure 6. Behaviour of model results according to the relationproposedbyWangetal.(1999). temporal)toestimatetheseparametersareseparately calculatedusingtherespectivebathymetryatdecadal time intervals. The analysis shows the variation of channelarea,channelvolume,basinarea,tidalprism, flatareaandshoalvolumeduringthemorphological evolution. The results show that the large amount of evolu- tionhasoccurredduringthefirstdecade.Thereafter, theevolutionisobservedinrelativelylowerrate.The shallow bathymetry takes a longer period to adjust themorphologicalparameters.Thisanalysisgavethe insightofmorphologicalevolutionalongthe50-year period.Nextsectionshowsthecomparisonofresults withtwoempiricalrelations. Figure 5. Seaward protrusion of ebb delta and mean cross-sectionwidth(modelnumbersarereferredtotable1). 3.3 Comparisonwithempiricalrelations The model results are compared with two empirical Volume changes in these three elements are not relations.ThefirstrelationisproposedbyWangetal., equaltozero.Thelossorgainsedimentamountcan (1999) with the ratio of offshore tidal amplitude to bedescribedbymeansofopenboundary(north,west meanchanneldepth(a/h)andtheratioofshoalvol- andeast)sedimentloss. umetochannelvolume(V/V ).Accordingly,theright s c The maximum seaward protrusion of ebb delta is side of the curve is defined as flood dominant and about10kmaccordingtothemodelresults.Theshal- theleftsideisdefinedasebbdominant.Ourmodels lowbathymetryreachesaconstantprotrusionatlower extendto50-yearmorphologicalperiod.However,the morphologicalperiods.TheobserveddataatAmeland resultsshowthattheytendmovetowardstherelation inlet show that the seaward protrusion of ebb delta (Figure6).Theshallowbathymetryshowsmoreflood is about 6–8km.The larger ebb delta extension can dominantsituationcomparedtodeeperbathymetries. beexpectedasthepresentmodelshavenotincluded wavesandwind.Further,wehaveconsideredonlyM 2 tidalcomponenttodrivethemodel.Themeancross section width increases all along the morphological periodandreachesabout3.5km.Infact,themodels with wider inlets (3.5km) show that the cross sec- tionwidthremainconstant(3.8km)afterafewyears Vs–shoalvolume (Figure5). Vc–channelvolume Next,thechannel-andflat-relatedparametersare a–offshoretidalamplitude computed.Thehydrodynamicconditions(spatialand h–meanchanneldepthinthebasin 7 © 2008 Taylor & Francis Group, London, UK theebbdeltabecomesscatterafterseveraldecadesof morphology.Additionally,sandbarsareformedinthe openseaarea.Therefore,wehavetolimitthemorpho- logicalperiodto50-yearinordertocarryonthestudy withtidalforceonly.However,futurestudytakesinto accountlongermorphologicalperiodsafterincluding wavesandwinds. ThismodelusesVanRijn(1993)transportformulas. The model results show that these formulas accel- erate the morphological changes compared to other transportformula(EngelundandHansen).Therefore, itisworthwhiletoobservetheinfluenceofdifferent transportformulasinmorphologicalevolution. The erodible banks, located at inlet, consist of a large amount of sediment. Therefore, they have a remarkable influence on the ebb delta as well as in thebasinchannel/shoalpattern.Theinletalwaysacts asasedimentsourceforebbdelta.Ontheotherhand, Figure 7. Behaviour of model results with the relation proposedbyJarret(1976)forsinglejettyorno-jettyscenario. itactsasasediment-sourceor-sinktothebackbarrier basindependingonitsinitialdepth. Further,theresultsshowtheinfluenceofinitialinlet width.Thelargerthewidth,thecloserthepointtothe 5 CONCLUSIONS relation.Therefore,thisrelationindicateswhetherthe systemisinflood/ebbdominantsituation.However,it Thisstudyshowstheapplicabilityof2Dprocessbased isrecommendedtocarryoutfurtheranalysistoesti- modelinlong-termmorphologicalstudyofthistidal mate the flood/ebb flow condition.According to the inlet.Theschematizedapproachgivesfeasibleresults results,themodelsarerequiredtosimulatealonger which can be compared with the observed data and periodtoreachthisempiricalrelation. physical processes. Therefore, this approach can be Thesecondempiricalrelationshipdealswithtidal used to observe the morphological changes in tidal prism and minimum cross section area at inlet (Jar- inletindifferentdecadalscales. ret,1976).Therelationshipforsingle-jettyorno-jetty The results suggest that large morphological scenarioreadsas, changesoccurduringthefirstdecadeofthemorpho- logicalperiod.Then,fineadjustmentsofthesechanges are observed in the next decades. However, major changes in morphology can be observed again after A – minimumcrosssectionareabelowMSL(m2) severaldecadeslater. P – tidalprism(m3) Thepresentstudyisentirelycarriedoutusingtidal Our model results are moving towards the rela- forcing(M )conditiononly.Nowavesandwindsare 2 tionwhenthemorphologicalperiodbecomeslonger. considered.However,theresultsarealreadyinsome Though initial flat bathymetries are scattered in the agreementwiththeobserveddata.Therefore,onecan figure,theyaregettingcloserwhenthemorphologi- understandtheimportanceoftidalforceinthemodel. calperiodishigher.Thisrelationshipfurtherconfirms This reveals that the tidal force is the main driving thevalidityourmodelresults. forceofamorphologicalmodelinourstudyarea. Anotherremarkableconclusionisontheinfluence of initial condition at back barrier basin.The model 4 DISCUSSION resultswiththepresentforcingshowthatthevolumeof backbarrierbasinisclosetotheequilibriumfortheini- Thepresentstudyusesonlythetidalforcing(M )con- tialdepthof3m.However,itisimportingsedimentfor 2 dition.Further,nowavesandwindareincludedyet. theinitialdepthof4mwhileitisexportingsediment Thus,itisdifficulttoexpectactualconfigurationsof fortheinitialdepthof2m.Theshallowestmodel(2m) theAmelandinletwiththepresentmodelset-up.How- exportsabout180Mm3in50years.Accordingly,this ever,themodelresultsshowthattheorientationofebb wouldtakealongerperiodtoreachtheequilibrium. deltaandthechannelpatternsarequalitativelyagreed Though the model of 3m initial depth reaches to withtheobserveddata. equilibrium,itistoodeepaccordingtothehypsomet- Ourmainconcernonthemodelresultsistoobserve ric curves (Figure 3). This implies the fact that the thefeasibleebbdeltaconfiguration.Theearlysimu- modeldoesnotincludeanimportingmechanism,such lationswithlongermorphologicalperiodsshowthat asM /M asymmetryorwaveforcing. 2 4 8 © 2008 Taylor & Francis Group, London, UK Finally,themodelresultsshowthattheyaremov- Latteux,B.1995.Techniquesforlong-termmorphological ing towards the empirical relationship. Thus, it is simulationundertidalaction,MarineGeology126,pp. necessary to carry out longer period of morpho- 129–141. logical simulations in order to compare with these O’Brien, M.P., 1969. Equilibrium flow areas of inlets on sandy coasts, Journal of the Waterways and Harbors relationships. division,Proc.ASCE,pp.43–52. Roelvink, J.A., 2006. Coastal morphodynamic evolution techniques,CoastalEngineering53,pp.277–287. REFERENCES Sha,L.P.,1989.Sandtransportpatternsintheebb–tidaldelta offTexel Inlet,Waddsen Sea,The Netherlands, Marine Bagnold,R.A.,1956.TheFlowofCohesionlessGrainsin Geology86,pp.137–154. Fluids.Proc.RoyalSoc.Philos.Trans.,London,Vol.249. VanLeeuwen,S.M.,VanderVegt,M.andDeSwart,H.E., DeGrimal,V.R.,1998.Long-termmorphologicalprediction, 2003. Morphodynamics of ebb-tidal deltas: a model Bonrif,DelftHydraulicsReport,H2284/Z2474 approach, Estuarine, Coastal and Shelf Science 57, pp. De Swart, H.E., Schuttelaars, H.M. and Bonekamp, J.G., 1–9. 2004. Dynamics of channels and shoals on ebb-tidal Van Rijn, L.C., (1993) Principles of sediment transport in deltas:theroleofwavesandtides,PECS,Mexico. rivers,estuariesandcoastalseas.AQUAPublications,the DeVriend,H.J.,Capobianco,M.,Chesher,T.,DeSwart,H.E., Netherlands. Latteux,B.andStive,M.J.F.,1993a.Approachestolong- Walton,T.L.andAdams,W.D.,1976.Capacityofinletouter termmodellingofcoastalmorphology:areview,Coastal bars to store sand, In: Proc. 15th Coastal Eng. Conf., Engineering,21,pp.225–269. Honolulu,ASCE,NewYork,Vol.II,pp.1919–1937. Ehlers,J.,1988.ThemorphodynamicsoftheWaddenSea, Wang, Z.B., C. Jeuken and H.J. De Vriend., 1999. Tidal Balkema,Rotterdam. assymetry and residual sediment transport in estuar- Eysink,W.D.,1990.Morphologicresponseoftidalbasinsto ies. A literature study and applications to the Western changes,CoastalEngineering,pp.1948–1961. Scheldt,WL| Delft Hydraulics report Z2749, Delft, the Ikeda,S.,1982.LateralBed-LoadTransportonSideSlopes. Netherlands. JournalHydraulicsDivision,ASCE,Vol.108,No.11. Kraus,N.C.,1998.Inletcross-sectionalareacalculatedby process-based model, Coastal Engineering, pp. 3265– 3278. 9 © 2008 Taylor & Francis Group, London, UK Sensitivity analysis of a morphodynamic modeling system applied to a Portuguese tidal inlet X.Bertin,A.B.Fortunato&A.Oliveira EstuariesandCoastalZonesDivision,NationalCivilEngineeringLaboratory,Lisbon,Portugal ABSTRACT: Coastalareamorphodynamicmodelsarepronetosevereerrorsarisingfromvarioussources, including: (1) the use of empirical sediment transport formulae (Pinto et al., 2006); (2) the reliability of the datausedtofeedthemodels;(3)theuseofsimplifyingphysicalassumptions;(4)theerrorpropagationbetween thevariousmodules.Sincetheseerrorscanbesignificant,theusefulnessandcredibilityofmorphodynamic simulationsrequireathoroughunderstandingoftheiruncertainty.Thispaperaddressesthepracticalimplications oftheseinputparametersonthedevelopmentofatidalinlet.Asensitivityanalysisisperformedthroughthe applicationofthemorphodynamicmodelingsystemMORSYS2D(FortunatoandOliveira,2004)totheÓbidos lagoon(Oliveiraetal.,2005),asmallbutveryrapidlyevolvingcoastalsystemlocatedinwesternPortugal.The influencesof:(1)sedimentcharacteristics;(2)thechoiceoftheforcingtideand(3)thesedimenttransportformula areanalysed,namelythroughtheinletcross-sectionevolutionandtheebb-deltadevelopment.Thechoiceofthe forcingtideappearsimportant,sincetheuseofarealtide,ratherthanarepresentativetide,induces:(1)faster morphologicalchanges;(2)15-daycyclicevolutions(spring-neaptidalcycle);(3)largerebb-deltasandinlet cross-sections.Sedimentgrainsizeandempiricaltransportformulaeratheraffecttherapidityofmorphological changes,sinceequilibriumisreachedafter3monthsofsimulationsandfinalinletmorphologiesarenoticeably comparable.Nevertheless,thegoodagreementoftheresultsafterthreemonthsofsimulationdemonstratesthe reliabilityofthemodellingsystemonthetimescalesofmonths. 1 INTRODUCTION sedimenttransportandbottomevolution.Thestrongly non-linear coupling between these modules gen- Theeconomicalandenvironmentalimportanceoftidal erate numerical oscillations and instabilities, that inletshasbeengrowingworldwideforthelastdecades. have started to be addressed in the last years, by Themanagementofthesecoastalsystemsisnolonger usingnumericalfilters(JohnsonandZiserman,2002; restricted to the maintenance of navigation channels Callaghanetal.,2006),byintroducingartificialdif- but also addresses new challenges such as adjacent fusion in the Exner equation (Cayocca, 2001) or by shoreline stabilization or water renewal in the back improving time-marshing schemes (Thanguy et al., barrierlagoonswhichareoftenusedforaquaculture. 1993). In addition to these numerical problems, the Portuguese inlets illustrate this fact very well, since computationofsandfluxesitselfhaslimitationsdue theyoftencombine:(1)constructiondevelopmenton toerrorsoftheempiricaltransportformulae,thedata the barrier islands, (2) aquaculture and fishing; (3) usedtofeedtheseformulae(Pintoetal.,2006),and commercial maritime traffic; (4) tourism and recre- the propagation of these errors through the various ational activities. Because of the combination of a modules(Fortunato,2007). meso-tidal range with a severe wave climate, Por- Given these various potential error sources, per- tuguesetidalinletsareoftencharacterizedbyfastand forming a sensitivity analysis when using a given complexdynamics.Therefore,itappearsessentialto morphodynamic modeling system appears essential understandandtopredictbathymetricchangesofthese before envisaging obtaining reliable morphological coastalsystemsintheperspectiveoftheirsustainable predictions.Itisthepurposeofthispapertoperform development. such a sensitivity analysis, through the application To reach this goal, the development of reliable oftheMORSYS2Dmodelingsystem(Fortunatoand morphodynamic modeling systems appears one of Oliveira, 2004, 2007a) to the very rapidly evolv- themostpromisingavenues.Thesemodelingsystems ing Óbidos Lagoon, located on the western Coast are typically composed of different coupled mod- of Portugal. This coastal system will be briefly ules,whichreproducewaterflows,wavepropagation, described in the following section. The modeling 11 © 2008 Taylor & Francis Group, London, UK Figure1. GenerallocationofthestudyareaandbathymetryoftheÓbidoslagooninJuly2001,whichistheinitialbathymetry fornumericalsimulations. systemMORSYS2Dispresentedinthethirdsection, with a detailed description of several improvements sincethefirstversionofFortunatoandOliveira(2004). Thesensitivityanalysisofthismodelingsystemwill betheninvestigatedinthefourthsection,throughthe influence of the model settings on the development ofthetidalinlet.Thepertinenceofmodelpredictions comparingtoclassicaltheoreticalknowledgeontidal inletstabilityisalsodiscussedinthislastsection. Figure2. DiagramofMORSYS2Dprocedure. 2 THESTUDYAREA permanentmutation,withmeandersthatform,grow TheÓbidoslagoonisasmallcoastalsystemlocated anddisappearinafewmonths(Oliveiraetal.,2006). on the western Portuguese coast (Figure 1). This In this study, the bathymetry measured in July 2001 areaissubjectedtosemi-diurnaltides,rangingfrom willbeconsideredastheinitialcondition(Figure1). 1m to 4m (meso-tidal). The oceanic wave regime is very energetic during the winter months, during which waves of significant height exceeding 6m 3 THEMORPHODYNAMICMODELING were already recorded in front of the inlet (Oliveira etal.,2006). SYSTEMMORSYS2D The lower lagoon is characterized by a tidal inlet 3.1 Modeldescriptionandlatestdevelopments connected to a web of narrow channels and large sand banks, where velocities are very large. The The modeling system MORSYS2D simulates the upperlagoonhassmallvelocitiesandmuddybottom non-cohesive sediment dynamics in estuaries, tidal (Oliveira et al., 2006) and thus this study will focus inlets and coastal regions, driven by tides, wind, on the lower lagoon (figure 1). The morphological river flows and waves (Figure 2). It integrates evolutionofthelowerlagoonisdrivenessentiallyby hydrodynamic models (ADCIRC, Luettich et al. tidalcurrentswhiletheoceanicpartofthetidalinletis 1991 – www.adcirc.org, and ELCIRC, Zhang et al. alsoinfluencedbywaves.Thelowerlagoonchannels 2004–www.ccalmr.ogi.edu/CORIE/modeling/elcirc/ evolverapidly,withdisplacementsofthechannelson index.html), a wave model (REF/DIF1, Kirby and theorderoftenmetersinasingletidalcycle. Dalrymple, 1994 – http://chinacat.coastal.udel.edu/ Aerialphotosofthelastdecadesshowthattheposi- programs/refdif/refdif.html),asandtransportmodel tion and number of channels and sand banks is in andabottomupdatemodel(SAND2D,Fortunatoand 12 © 2008 Taylor & Francis Group, London, UK Oliveira2004).ThesystemconsistsofaC-Shellscript constantCu.TheCuatthetimestepn+1isestimated that runs independent models, manages the transfer fromthepreviousCu,usingalog-linearextrapolation: of information between them and performs control checks. Thebottomupdatemodelsimulatessandtransport duetowavesandcurrentsusingsemi-empiricalformu- Thenthepredictedtimestepisdefinedas: laeandcomputestheresultingbedchangesthroughthe Exner equation (Fortunato and Oliveira, 2004).This equationissolvedwithanode-centeredfinitevolume techniquebasedonanunstructuredtriangulargrid: Toavoidoscillationsofthepredicted(cid:6)t,arelaxation factorisused,accordingto: whereQisthesedimentfluxintegratedoverthemor- Whereαisauser-specifiedconstanttypicallybetween phologicaltimestep,λistheporosityandhisdepth 0.6to0.9.Theimplementationofthisadaptativetime- relativetothemeanwaterlevel. stepleadsto(cid:6)tvaluesofabout5minuteswhensand Intheoriginalformulation,velocitiesandwaterlev- fluxesaremaximum(typicallybetween1and2hours elswerefedintoSAND2Dinthefrequencydomain beforeandafterlowtide)and45minuteswhensand (i.e.,throughtidalamplitudesandphases,ratherthan fluxesareminimum(aroundhighandlowtide). time series). In order to compute the harmonic con- stants, a hydrodynamic simulation for at least a full 3.2 Simulationsettingsandanalysisstrategy tidalcyclewasrequiredforeachmorphologicalstep, independently of the time step. While this method MORSYS2D simulations were conducted for 90 has revealed to be efficient for slowly evolving sys- days (180 tidal cycles), starting from the July 2001 tems, its application to the very dynamic Óbidos bathymetry(figure1),afterarepositioninganddredg- lagoon required the use of the morphological factor ing of the mouth (Fortunato and Oliveira, 2007b). method(Roelvink,2006)withmorphologicalfactors Thesesimulationswereforcedbytidesalone,ignoring wellbelowunity(typically0.1,FortunatoandOliveira, riverflowinputs(whicharenegligibleintheabsence 2007) to prevent large Courant numbers and sub- offloods)andwaveaction(whichisnotthedominant sequent numerical oscillations. Besides being very process during the summer months). Boundary con- time-consuming,thismethodimpliedtousearepre- ditionsforthehydrodynamicmodelweretakenfrom sentativetide(M2only),whichcouldbeproblematic theregionaltidalmodelofFortunatoetal.(2002). whentryingtoreproducenaturalbehaviorofacoastal Sincebathymetricdatacouldnotbecollectedwithin system.Finally,Oliveiraetal.(2007)showedthatsolv- the surf zone during the hydrographic surveys, the ingeq.(1)withtidally-averagedfluxeswasinadequate morphodynamicsimulationsstartedwithoutebbdelta in areas where the tidal excursion is larger than the atthetidalinlet.Resultanalyseswerefocusedonthe spatialscaleofvariabilityoftidalhydrodynamics. inletmoutharea,wheremeshsizewasrefinedupto Hence,itwasdecidedtomodifytheinitialcodeby 10m.Inadditiontoqualitativeobservations,thesen- feeding SAND2D with hydrodynamic results in the sitivityanalysisofthemodelwasperformedthrough timedomain.Thestabilityofthesystemdependson thetemporalevolutionoftwokeyparametersintidal themaximumCourantnumberCuateachmorphody- inletdynamics:theinletcrosssection(O’Brien,1931; namictimestep,sincenumericaloscillationstendto Jarrett, 1976; FitzGerald, 1996) and the volume of appearforvaluessignificantlylargerthan1: theebbdelta(WaltonandAdams,1976;FitzGerald, 1996).Threeparametersweretested:(1)thesediment grainsize;(2)theempiricaltransportformula;(3)the forcingtide(representative/real)(Table1). where q is the sand flux over the element, h is the s 4 RESULTSANDDISCUSSION waterdepth,(cid:6)xistheelementsize,(cid:6)t themorpho- dynamic time step and b the velocity power in the 4.1 InfluenceofsedimentgrainsizeontheÓbidos transportformulae(typicallybetween3and5,depend- Inletdevelopment ingonthespecificformulation).Usingaconstanttime step(cid:6)t,maximumvaluesofCuvaryovermorethan Sedimentgrainsizearoundtheinletmouthtypically threeordersofmagnitudewithinatidalcycle,thereby ranges from 0.5 to 0.6 mm but then decrease land- imposingverysmalltimesteps.Toimproveefficiency, wardandseaward(Oliveiraetal.,2006).Theinfluence an adaptative time step was implemented, aiming at ofsedimentgrainsizeontheinletdevelopmentwas 13 © 2008 Taylor & Francis Group, London, UK

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.