NUREG- 1570 Risk Assessment of Severe Accident-Induced Steam Generator Tube Rupture Manuscript Completed: March 1998 Date Published: March 1998 SGTR Severe Accident Working Group Division of Systems Safety and Analysis Office of Nuclear Reactor Regulation Nuclear Regulatory Commission U.S. Washington, DC 20555-0001 DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. ABSTRACT This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potenti a1 attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC's Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results , however, deri ved by predicting thermal - hydraul ic conditions of selected severe accident scenari os using the SCDAP/RELAPS computer code, fl awed tube fai 1u re model i ng , and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing p ants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a signif cant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. iii NUREG- 1570 CONTENTS Page ............................................................................ Abstract i i i ..................................................................... List of Figures xi of ............ .......................................................... List Tables xv ........ .......................................................... Executive Summary xvii ............................. SGTR Severe Accident Work ng Group and Acknowledgements xi x ....................................................................... Abbrevi ati ons xxi 1 ................................................................. Int roduct i on 1. 1 .............................................................. 1.1 Background 1-1 ................................................................ 1.2 Approach 1-2 ................................................. 1.3 Results and Conclusions 1-3 ................. 2 Severe Accident Challenges to Steam Generator Tube Integrity 2-1 ...................................... 2.1 Challenges to Structural Integrity 2-1 2.1.1 High-pressure Core Me1 t with Intact or Depressurized Steam ..................................................... Generator(s1 2-1 2.1.2 Intermedi ate-Pressure Core Me1 t with Depressurized Steam 1 ..................................................... Generator(s 2-3 .......... 2.1.3 Contribution of ATWS Sequences to Accident-Induced SGTR 2-4 ........ 2.1.3.1 Pressure-Induced SGTR Resulting from ATWS Events 2-6 2.1.3.2 Pressure-Induced SGTR Resulting from ATWS Events Not ........................................ Reflected in CDF 2-6 2.1.3.3 Pressure-I nduced SGTR Resulting from ATWS Core Damage ............................................... Sequences 2-8 ............................. 2.1.3.4 ATWS Thermally Induced SGTR 2-9 ............................................. 2-10 2.1.3.5 Conclusions ........................ 2.2 Accident-Induced Challenges to Leakage Integrity 2-10 ............. 2.2.1 Expected Leak Rates Under Severe Accident Conditions 2-10 ........................................... 2.2.2 Impact of Tube Leakage 2-12 ........................................ 2.3 Accident Progression Event Tree 2-12 2.3.1 Frequency of Events with High RCS Pressure and Dry Steam ....................................................... Generators 2-14 .......... 2.3.1.1 High/Dry Frequency on the Basis of NUREG-1150 2-15 .... 2.3.1.2 High/Dry Frequency on the Basis of the IPE Database 2-17 .............................. 2.3.2 RCS Status at Time of Core Uncovery 2-19 ...... 2.3.2.1 Early Failure of Pressurizer Relief/Safety Valves 2-20 V NUREG-1570 CONTENTS (continued) Page RCP Seal LOCAs ........................................... 2.3.2.2 2-24 Secondary Side Status at Time of Core Uncovery ................... 2.3.3 2-28 RCS Pressure Maintained to Time of Maximum Tube Temperature ...... 2.3.4 2-31 Secondary Sid e Pressure Mai ntain ed to Time of Maximum Tube 2.3.5 Temper atu re ...................................................... 2-33 Steam Generator Tubes Remain Intact with High Dif ferenti a1 2.3.6 Pressure ......................................................... 2-34 Cold Leg Loop Seal Maintained .................................... 2.3.7 2-36 Thermally Induced SGTR Before Hot Leg or Surge Line Failure ...... 2.3.8 2-36 Fission Product Holdup ........................................... 2.3.9 2-37 APET Endstate Characterization. .................................. 2.3.10 2-37 Design-Specific Influences ............................................... 2.4 2-38 Accident Progression and Thermal -Hydraul ic Response .............. 2.4.1 2-39 Maintenance of the Loop Seal ..................................... 2.4.2 2-40 2.4.3 P1 ant Capabi 1i t i es and Operator Actions to Depressurize .......... 2-40 Pressurizer PORV/SV Fai lure Probabi 1i t ies ........................ 2.4.4 2-41 Steam Generator ADV/SV Fai 1u re Probabi 1i t i es ..................... 2.4.5 2-41 Probability and Magnitude of Seal LOCAs .......................... 2.4.6 2-41 Steam Generator Degradation Mechanisms and Associated F1 aw 2.4.7 Distributions ........................................................... 2-42 Recommendations .................................................. 2.4.8 2-42 Best-Estimate Thermal -Hydraul ic Conditions ................................... 3 3-1 Scope and Objectives of Thermal -Hydraulic Analyses ...................... 3.1 3-1 Steam Generator Tube Pressure and Temperature Predictions ............... 3.2 3-2 Analytical Approach .............................................. 3.2.1 3-2 Summary of Analyses and Results .................................. 3.2.2 3-6 Surry .................................................. 3.2.2.1 3-6 .................................................. 3.2.2.2 ANO-2 3-9 Modeling and Analytical Uncertainties ................................... 3.3 3-12 SG Inlet Plenum Mixing Parameters Sensitivity Study .............. 3.3.1 3-13 Hot Tube Nodal iz atio n Sensitivity Study .......................... 3.3.2 3-14 Extended Sensitivity Study ....................................... 3.3.3 3.1-5 Fission Product Deposition ....................................... 3.3.4 3.-17 Relevance of Design-Specific Factors .................................... 3.4 3-17 Loop Seal Clearing ............................................... 3.4.1 3-20 4 RCPB Severe Accident Vu1 nerabi 1i t ie s ........................................ 4-1 RCPB Component Performance Under Severe Accident Conditions ............. 4.1 4-1 NUREG-1570 vi CONTENTS (conti nued) Page 4.1.1 Degraded Steam Generator Tube Performance Under Severe Accident Conditions ....................................................... 4-1 4.1.2 Relative Failure Times for RCS Components ........................ 4-2 4.1.3 Other RCS Weak Points ............................................ 4-3 4.1.3.1 46-cm (18-inch) Steam Generator Manway/Pressurizer Manway ........................................................... 4-4 4.1.3.2 76-cm (30-inch) Loop Isolation Valves ................... 4-4 4.1.3.3 Pressurizer Safety Valves/Power-Operated Relief Valves .. 4-5 4.1.4 Steam Generator Tube Plug and Sleeve Performance ................. 4-6 4.1.5 Effects of Leaking Tubes Under Accident Conditions ............... 4-7 4.1.5.1 Design-Basis Accident Conditions ........................ 4-7 4.1.5.2 Severe Accident Conditions .............................. 4-7 4.1.6 ...................................... 4-10 Conclusions/Recommendations 4 .2 Representative Flaw Distributions ....................................... 4-11 4.2.1 NRR F aw Distribution ............................................ 4-11 4.2.1 1 General Approach ........................................ 4-11 . 4.2.1 2 Case 1 Plants with Low Susceptibility to Degradation ... 4-12 4.2.1 3 Case 2. Plants with Medium Susceptibility to Degradation 4-14 4.2.1 4 Case 3. Plants with High Susceptibility to Degradation .. 4-16 4.2.2 RES F aw Distribution ............................................ 4-17 4.2.2. 1 Freespan Cracking ....................................... 4-18 4.2.2.2 IGA/SCC i n Sludge Piles ................................. 4-19 4.3 Flawed Tube Failure Models .............................................. 4-19 4.3.1 Background ....................................................... 4-20 4.3.2 Analysis of Steam Generator Tubes with Cracks .................... 4-20 4.3.2.1 Through-Wall Cracks ..................................... 4-20 4.3.2.2 Part-Through-Wall Cracks ................................ 4-21 4.3.2.3 Improved Correlation for mp ............................. 4-22 4.3.3 Models for Predicting Failure Under Severe Accident Conditions ... 4-23 4.3.3.1 Flow Stress Models ...................................... 4-24 4.3.3.2 Creep Rupture Model ..................................... 4-25 4.3.3.3 Creep Rupture Properties of Alloy 600 ................... 4-26 4.3.4 Validation Tests for the Creep Rupture Model ..................... 4-27 4.3.4.1 Isothermal Failure Tests ................................ 4-27 4.3.4.2 Failure Tests of Specimens with Deep Cracks ............. 4-28 4.3.4.3 Pressure and Temperature Ramp Tests ..................... 4-29 4.3.5 Failure Tests for Evaluating Postulated Severe Accident Time-Temperature His tories ....................................... 4-31 4.3.5.1 Evaluation of Stress Magnification Factor i n Flawed Tubes for High-Temperature Tests ....................................... 4-34 vi i NUREG-1570 CONTENTS in ued) (cont Page 4.3.5.2 Predictions by Flow Stress Models ....................... 4-:34 4.3.6 Uncerta nty i n Predictions ....................................... 4-:34 4.3.6.1 Uncertainty in Stress Magnification Factor .............. 4-:35 4.3.7 Discussion of Models and Conclusions ............................. 4-37 5 Results ...................................................................... 5-1 5.1 Fin al Event Tree Quanti fic atio n ......................................... 5-1 5.1.1 Representative Sequences for APET Branches ....................... 5-1 5.1.2 SG Flaw Distributions ............................................ 5-3 5.1.3 Probabi 1i t y of TI-SGTR for Representative Sequences .............. 5-4 5.1.4 Probability of TI-SGTR for APET Branches ......................... 5-4 5.2 Estimation of Conditional Failure Probabilities for SG Tubes ............. 5-5 5.2.1 Methodology ...................................................... 5-5 5.2.2 Results of TI-SGTR Probability Analysis .......................... 5-13 5.2.3 Concl usi ons Regardi ng Probabi 1i t y of Tube Fai 1u re ................ 5-17 5.3 Estimate of Containment Bypass Frequency ................................ 5-17 5.3.1 Base Case ........................................................ 5-17 5.3.2 APET Sensitivity Analyses ........................................ 5-20 5.3.2.1 Eliminate Potential for Late SG.Depressurization ........ 5-20 5.3.2.2 Reduced Probability of Early SG Depressurization ........ 5-21 5.3.2.3 Reduced Probability of Early and Late SG Depressurization ................................................. 5-21 5.3.2.4 Assure Late Primary System Depressurization ............. 5-22 5.3.2.5 Preclude Late Primary System Depressurization ........... 5-22 5.3.2.6 Eliminate RCP Seal LOCA Sequences ....................... 5-23 5.3.2.7 Increase SG Temperature Histories ....................... 5-23 5.3.2.8 Eliminate All Flaws i n SG Tubing ........................ 5-24 5.3.2.9 No Loop Seal Clearing in RCP Seal LOCA Sequences ........ 5-24 5.3.3 Impact of Different Flaw Distributions ........................... 5-25 6 Conclusions .................................................................. 6.-1 6.1 Surry Results ........................................................... 6.-1 6.2 Plant- and Design-Specific Factors ...................................... 6.-2 6.3 General Findings ........................................................ 6-3 7 References ................................................................... 7 .1 NUREG-1570 viii CONTENTS ( i nued) cont Page Appendices A Frequency of High Primary/Dry Secondary Challenge from NUREG 1150.. .......... A-1 B Other SGTR Contributions to Core Damage Frequency and Containment Bypass Frequency. ................................................................... B- 1 C Comparisons to Other NPP Designs using the IPE Database.. .................... C-1 D Effect of Fission Product Transport and Deposition on Steam Generator Tube Integrity .................................................................... D-1 ix NUREG- 1570
Description: