ebook img

Risk Allocation and Asset Liability Optimization - Universität St.Gallen PDF

171 Pages·2005·1.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Risk Allocation and Asset Liability Optimization - Universität St.Gallen

Hybrid Pension Schemes: Risk Allocation and Asset Liability Optimization DISSERTATION oftheUniversityofSt. Gallen GraduateSchoolofBusinessAdministration, Economics,LawandSocialSciences(HSG) toobtainthetitleofDoctorofEconomics submittedby RogerTitusBaumann from Aeschlen(Bern) Approvedontheapplicationof Prof. Dr. HeinzMu¨ller and Prof. Dr. HeinzZimmermann DissertationNr. 3067 Difo-DruckGmbH,Bamberg2005 The University of St. Gallen, Graduate School of Business Administration, Economics, LawandSocialSciences(HSG)herebyconsentstotheprintingofthepresentdissertation, withoutherebyexpressinganyopinionontheviewshereinexpressed. St. Gallen,June30,2005 ThePresident: Prof. ErnstMohr,PhD Acknowledgements Alles,wasdieMenscheninBewegungsetzt,mussdurchihrenKopfhindurch; aberwelcheGestaltesindiesemKopfannimmt,ha¨ngtsehrvondenUmsta¨ndenab. –FriedrichEngels InthesenseoftheabovequoteIwouldliketothankparticularlyProfessorHeinzMu¨ller forhissupport. Ibecame interestedinthecombination ofoldagepensionschemes,risk and portfolio optimization through our common projects. His flexibility to give me as much time as I needed, and his willingness to discuss subject issues at any time, have contributedtokeepmegroundedthroughouttheuncertainandbold ventureofwriting athesis. IwouldalsoliketoexpressmysincerethankstoProfessorHeinzZimmermann forhis assistance. His dedicationtothis area hasbeen trulyinspiring, and his economic advicehasprovedinvaluable. Equally, I would like to thank Stephan Mu¨ller for the numerous constructive discus- sions on portfolio optimization. With his intuition and his analytical expertise he has pointed out both possibilities as well as limits. Thanks also go to Thomas Pfiffner, Reto Leibundgut, Evelyn Ribi and Alex Gulde for the proof reading of different parts of my dissertation, and David Schiess for thoroughly checking the intricate appendix of chap- ter five with the same generous and unselfish dedication for which I have always re- spected and esteemed him on the football ground. Additional thanks go to Christian JaagandBernhardTho¨nyforcriticalcommentsonmyideasaswellastherefreshingde- batesabout”Godandtheworld”onairandduringthebreaks. Specialthanksalsogoto ThomasHa¨ussler,whohasbeenashortheadaheadin languagesalready inhighschool andwhohasgivenalastpolishtomyEnglish. Furthermore,Iwouldalsoliketothankmymotherandmylatefather,whohaveknown to motivate me by giving me self-confidence throughout the whole of my school days without ever exerting pressure. Finally, I owe very much to Yvonne, who has been particularly understanding during the final stage of my dissertation and who gives me strength. St. Gallen,July2005 RogerBaumann iii Contents ListofFigures viii Notation ix 1 Introduction 1 1.1 Premises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 PensionSchemes,FinancialRiskandYieldGuarantee . . . . . . . . . . . . 6 1.3 LiteratureOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 ContentsandResultsofThesis . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 TheModelBasics 19 2.1 AssumptionsandDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 HybridPensionScheme . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 FinancialMarket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.4 Liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.5 FundingRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.6 StoppingTime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.7 UtilityFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.8 TheExpectedUtilityHypothesis . . . . . . . . . . . . . . . . . . . . 25 2.1.9 ParetoOptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 TheHamilton-Jacobi-Bellmann equation . . . . . . . . . . . . . . . . . . . . 26 2.2.1 GeneralHJBEquation . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 OptimalTerminalValue . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Time-HomogeneousSetting . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.4 Long-TermGrowthRate . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.5 AUsefulTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.A.1 ProofofTheorem2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.A.2 ProofofTheorem2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 36 v vi Contents 3 AssetLiabilityOptimizationwithExogenousLiability 39 3.1 Merton’sProblemRevisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 OptimalConsumptionandBequestMotive . . . . . . . . . . . . . . 39 3.1.2 TerminalWealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 OptimalFundingRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 GeneralModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 SpecialCase: NoNetContributions . . . . . . . . . . . . . . . . . . 46 3.3 TheImpactoftheYieldGuarantee . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.1 UnderfundedPension . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 OverfundedPension . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.A.1 ProofofProposition3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.A.2 DistributionFunctionofτ . . . . . . . . . . . . . . . . . . . . . . . 57 4 MinimumYieldGuaranteeandSurplus 61 4.1 LowMinimumYieldGuaranteeandBoundedFundingRatio . . . . . . . 62 4.1.1 ModelSetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 HighMinimumYieldGuaranteeandSurplus . . . . . . . . . . . . . . . . . 69 4.2.1 GeneralModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.2 SpecialCase: CIES-Utility . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 SpecialCase: CIES-UtilityandConstraintonFundingRatio . . . . 75 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 IndividualRisk-SharingModels 83 5.1 TheBasicsoftheSettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 TheReferenceYieldPlan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.1 GeneralModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.2 SpecialCase: NoNetContributionsandCRRAUtility . . . . . . . 92 5.2.3 ImpactoftheReferenceYield . . . . . . . . . . . . . . . . . . . . . . 95 5.3 FreePensionSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.1 GeneralModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.2 SpecialCase: NoNetContributionsandCRRAUtility . . . . . . . 106 Contents vii 5.3.3 ImpactoftheQuasi-Guarantee . . . . . . . . . . . . . . . . . . . . . 109 5.4 ContractModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.1 GeneralModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.2 SpecialCase: NoNetContributionsandCRRAUtility . . . . . . . 114 5.4.3 ImpactoftheQuasi-Guarantee . . . . . . . . . . . . . . . . . . . . . 124 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.A.1 ProofofProposition5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.A.2 ProofofCorollary5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.A.3 ProofofProposition5.4 . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.A.4 ProofofProposition5.5 . . . . . . . . . . . . . . . . . . . . . . . . . 148 Bibliography 151 List of Figures 3.1 Upperboundaryrˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 0,T 3.2 Upperboundaryrˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 0,p 3.3 Distributionfuctionofτ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1 TrajectoriesofW, L (or X )and F. . . . . . . . . . . . . . . . . . . . . . . . . . 64 t t t t 4.2 DevelopmentofX and F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 t t 4.3 Relationofrˇ andr¯ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 0 0 5.1 Referenceyieldplanoryieldguaranteesetting? Theemployee’sperspective. 94 5.2 Referenceyieldplanoryieldguaranteesetting? Theplansponsor’sperspective. 97 5.3 Referenceyieldsetting: Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Referenceyieldplanwithcontractoryieldguaranteesetting? Theemployee’s perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 Referenceyieldplanwithcontractoryieldguaranteesetting? Theplanspon- sor’sperspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.6 Optimafortheplansponsorandtheemployeeforconstantportfolio. . . . . 107 5.7 Freepensionchoice: Thechoice. . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.8 Freepensionchoice vs. autonomousinvestmentand yield guaranteesetting: Boundariesforr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 0 5.9 Contractsetting: Offers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.10 Contractsetting: Contract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.11 Contractsetting: Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.12 Contractsetting: Solutions3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.13 Contractsetting: ParetoboundariesR . . . . . . . . . . . . . . . . . . . . 122 e,Pareto 5.14 Example for parameters where the contract setting is worse than the yield guaranteesetting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.15 Contractsetting: Paretooptimality. . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.16 Contractsetting: Possibler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 0∗ viii Notation Uppercase Letters B point,seeproposition5.1, C netcontributionprocess D domain D diagonalmatrixwithelementsa a E expectationoperator F fundingratioprocess I indirectutilityfunctionoftheemployee J indirectutilityfunctionoftheplansponsor, J-function L liability process M indexfor”Mertonsolution”;martingaleprocess P probabilityoperator P probabilitymeasure Q radicandofthesolutionofacubicequation R riskaversionoftheCRRAutility R employee’sriskaversion e R plansponsor’sriskaversion p S priceprocess T timehorizon U utilityfunction W wealthprocess X accruedretirementassetsprocess Z Wienerprocess ix x Notation Lowercase Letters a,b,c,d,g,h,k,q realsupportparameters b vectorprocess c individualcontributionprocess i f (.),g(.),h(.),m(.),y(.) real-valuedsupportfunctions i,j integerindexes k,m,n dimensions l liability suplementprocess p probability r returnoftherisklessasset yieldguarantee,minimumyield, r 0 referenceyield,quasi-guarantee s servicecostsprocess t pointoftime timeindependentpart u(.) oftheutilityfunction w process x arguments x argument;proportionofthegrowthoptimalportfolio z argument Uppercase Greek Letters Γ,Θ,Ξ staticobjectivefunctions Π portfoliovalueprocess Σ variance-covariance matrix Φ distributionfunction Ψ constraintprocess Ω setofstates

Description:
However, since it is not possible for everybody to prepare individually for the unpro- .. allowed for more general price processes and obtained a three-fund separation The theory of viscosity solutions serves to study stochastic control . See e.g. Mas-. Colell, Whinston, and Green (1995) or Laff
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.