ebook img

RIPARIAN AREA MANAGEMENT Proper Functioning Condition Assessment for Lotic Areas ... PDF

194 Pages·2012·4.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview RIPARIAN AREA MANAGEMENT Proper Functioning Condition Assessment for Lotic Areas ...

AGENCY REVIEW DRAFT RIPARIAN AREA MANAGEMENT Proper Functioning Condition Assessment for Lotic Areas TR 1737‐15 v.2, 2013 T F A R D 1 AGENCY REVIEW DRAFT Riparian Area Management Proper Functioning Condition   Assessment for Lotic Areas    Melissa Dickard   Steve Smith  Work Group Leader  Team Leader  Aquatic Ecologist   Riparian Ecologist  Bureau of Land Management  Bureau of Land Management  T National Operations Center  National Riparian Service Team  Denver, Colorado  Prineville, Oregon      F Mark Gonzalez  Janice Staats  Riparian/Wetland Ecologist (Soils)  Hydrologist  Bureau of Land Management  U.S. Forest Service  A National Riparian Service Team  National Riparian Service Team   Prineville, Oregon  Prineville, Oregon      R Wayne Elmore  Paul Summers   Riparian Ecologist  Ground water Hydrologist  Bureau of Land Management (Retired)  Bureau of Land Management  Prineville, Oregon  D National Operations Center    Denver, Colorado  Steve Leonard    Riparian Ecologist  Dave Weixelman  Bureau of Land Management (Retired)  Riparian Ecologist  Midvale, Idaho  U.S. Forest Service    Nevada City, California  Dave Smith    Hydrologist  Sandra Wyman  U.S. Fish and Wildlife Service  Rangeland Management Specialist  Flagstaff, Arizona  Bureau of Land Management    National Riparian Service Team    Prineville, Oregon        Technical Reference 1737‐15 v.2, 2013 i Abbreviation list 1 2 3 BLM - Bureau of Land Management 4 5 DMA – Designated Monitoring Area 6 7 FAC – Facultative species 8 9 FACU – Facultative Upland species 10 11 FACW – Facultative Wetland species 12 T 13 FAR – Functional-at-risk 14 15 FWS – Fish and Wildlife Service F 16 17 ID – Interdisciplinary 18 A 19 GIS – Geographic Information System 20 21 MIM – Multiple Indicator Monitoring R 22 23 NF - Nonfunctional 24 25 NRCS – National ResourceDs Conservation Service 26 27 OBL – Obligate Wetland species 28 29 PFC – Proper Functioning Condition, either the method or the rating determination 30 31 TR – Technical Reference 32 33 UPL – Obligate Upland species 34 35 USFS – United States Forest Service 36 37 38 ii Table of Contents 1 2 3 Abbreviation list ............................................................................................................... ii  4 List of Figures .................................................................................................................. v  5 List of Tables ...................................................................................................................vi  6 1. Introduction ................................................................................................................. 1  7 2. Intended Applications .................................................................................................. 6  8 3. Instructions for Completing the PFC Assessment—Step 1: Identify Assessment Area 9 and Assemble Interdisciplinary Team .............................................................................. 8  T 10 A.  Identify Assessment Area................................................................................... 8  11 B.  Assemble ID Team – Skills and Training Requirements .................................... 9  F 12 4. Step 2: Review Existing Information and Delineate and Stratify Reaches ................. 11  13 A.  Gather and Review Existing Information .......................................................... 11  A 14 B.  Delineation and Stratification............................................................................ 12  15 5. Step 3: Determine Reach Potential ........................................................................... 20  16 A.  Determine key attributes andR processes .......................................................... 20  17 B.  Potential and Altered Potential ......................................................................... 23  18 C.  Determine Potential of Stream Reaches .......................................................... 28  D 19 6. Step 4: Complete PFC Assessment .......................................................................... 32  20 A.  Plan the Assessment Approach ....................................................................... 32  21 B.  Complete Reach Information and PFC Assessment Forms ............................. 33  22 C.  Making the Functional Rating ........................................................................... 33  23 D.  Using Quantitative Data to Validate Assessment Items ................................... 40  24 E.  Finalize the PFC Assessment .......................................................................... 41  25 8. Assessment Items ..................................................................................................... 42  26 A.  Hydrology ......................................................................................................... 43  27 Item 1: Floodplain is inundated in “relatively frequent” events. ................................... 46  28 Item 2: Beaver dams are stable. ................................................................................ 50  29 Item 3: Sinuosity, width/depth ratio, and gradient are in balance with the landscape 30 setting (i.e., landform, geology, and bioclimatic region). ............................................. 54  31 Item 4: Riparian area is expanding or has achieved potential extent. ........................... 60  iii 1 Item 5: The watershed is not contributing to riparian impairment. ............................. 64  2 B.  Vegetation ........................................................................................................ 67  3 Item 6: There is stabilizing riparian vegetation for recovery/maintenance. ................. 70  4 Item 7: There is recruitment of stabilizing riparian vegetation for recovery/maintenance. 5 ............................................................................................................................... 73  6 Item 8: Species present indicate maintenance of riparian soil‐moisture characteristics. 76  7 Item 9: Plant communities that have root masses capable of withstanding high 8 streamflow events are present along the streambank. ................................................ 79  9 Item 10: Riparian plants exhibit high vigor. ............................................................... 82  10 Item 11: Adequate stabilizing riparian vegetative cover is present to protect banks and T 11 dissipate energy during high flows. ........................................................................... 84  12 Item 12: Plant communities are an adequate source of woody material for F 13 maintenance/recovery. ............................................................................................ 88  14 C. Geomorphology .................................................................................................... 90  A 15 Item 13: Floodplain and channel characteristics (i.e., rocks, woody material, vegetation, 16 floodplain size, overflow channels) are adequate to dissipate energy. .......................... 93  17 Item 14: Point bars are revegetatinRg with stabilizing riparian plants. ......................... 97  18 Item 15: Stream banks are laterally stable. .............................................................. 103  19 Item 16: Stream system is not incising. .................................................................... 108  D 20 Item 17: Stream is in balance with the water and sediment that is being supplied by the 21 drainage basin (i.e., no excessive erosion or deposition). ........................................... 113  22 9. Instituting the Riparian Management Process ......................................................... 116  23 Step 5: Determine Resource Values ........................................................................ 117  24 Step 6: Develop Goals and Prioritize Actions .......................................................... 117  25 Step 7: Collect Baseline Data & Establish or Modify Objectives .............................. 118  26 Step 8: Implement Planned Actions ......................................................................... 120  27 Step 9: Monitor Effectiveness of Actions – Update PFC Status ............................... 120  28 Step 10: Implement Adaptive Actions as Necessary ............................................... 121  29 References .................................................................................................................. 122  30 Glossary ...................................................................................................................... 132  31 Appendix A—Instructions and Forms .......................................................................... 136  32 Appendix B—Rosgen Classification System ............................................................... 150  iv 1 Appendix C—Example Assessment ............................................................................ 152  2 Appendix D—Applying Potential to Human-altered Stream Reaches ......................... 164  3 Appendix E—Quantitative Measures for Assessment Items ....................................... 168  4 Appendix F—Ground Water/Surface Water Interactions ............................................. 177  5 List of Figures 6 7 Figure 1. Schematic drawing of a riparian area. .............................................................. 1  8 Figure 2. Stream Functions Pyramid, adapted from Harman et al. 2012. ........................ 3  9 Figure 3. Steps for Completing the PFC Assessment ..................................................... 8  T 10 Figure 4. Alternating complexes within a valley segment. ............................................. 16  11 Figure 5. Lotic (complex A) and lentic (complex B) complexes alternate within an 12 assessment reach. ......................................................F.................................................. 17  13 Figure 6. Succession of states for alluvial valley-bottom type. ...................................... 22  14 Figure 7. Headcut is moving up through a meadow, making the area above functional- A 15 at-risk. ........................................................................................................................... 35  16 Figure 8. Example of succession as it relates to stream recovery and function. ........... 38  17 Figure 9. Stream cross sections depicting the states displayed in Figure 8. ................. 39  R 18 Figure 10. Conducting monitoring at a DMA. ................................................................ 40  19 Figure 11. Stream channel cross-section with important flow features identified. ......... 46  20 Figure 12. Very stable beaver dam covered with a thick growth of herbaceous and D 21 woody vegetation. ......................................................................................................... 51  22 Figure 13. Beaver dam totally overgrown with woody riparian vegetation. .................... 52  23 Figure 14. Low stature beaver dam constructed with cattail and bulrush stems, .......... 52  24 Figure 15. Stream length (yellow line) and valley length (red line) used to calculate 25 stream sinuosity. ........................................................................................................... 55  26 Figure 16. Stream channel cross-section showing bankfull width and current active 27 discharge width. ............................................................................................................ 55  28 Figure 17. The Colorado River in Dead Horse Point State Park, Utah, has a sinuosity 29 close to 1.0 .................................................................................................................... 56  30 Figure 18. Example of riparian area expansion 1992, 1998. ......................................... 60  31 Figure 19. Channel narrowing due to riparian area expansion, 1977, 1984, 2008. ....... 61  32 Figure 20. Example of (A) a mid-channel bar and (B) an overloaded point bar. ............ 65  33 Figure 21. Age class population distribution forms. ....................................................... 75  34 Figure 22. Baltic rush exhibiting highly stabilizing root masses. ................................... 80  35 Figure 23. The shrubs to the left of the fence line show high vigor while those to the 36 right of the fence line do not. ......................................................................................... 83  37 Figure 24. Lane/Borland balance. ................................................................................ 91  v 1 Figure 25. Overflow channel (A) adjacent to a stream (B). ............................................ 95  2 Figure 26. Eroded point bar with vertical bank. ............................................................. 97  3 Figure 27. Idealized cross-section through a point bar. ................................................. 98  4 Figure 28. Point bars colonized with riparian vegetation. ............................................ 100  5 Figure 29. Point bar and establishment of vegetation. ................................................ 101  6 Figure 30. Schematic, planimetric view of idealized point bar features. ...................... 101  7 Figure 31. The typical stable streambank. ................................................................... 104  8 Figure 32. Planimetric view illustrates the contrast between idealized stable and 9 unstable bank margins. ............................................................................................... 105  10 Figure 33. Bank erosion in an unstable channel. ........................................................ 105  11 Figure 34. Irregular bank margins (white dotted line). ................................................. 105  12 Figure 35. Landform-controlled streams have little opportunity to move laterally. ....... 106  T 13 Figure 36. Schematic diagrams illustrating the relations between channel cross- 14 sectional area and discharges of different recurrence interval. ................................... 109  15 Figure 37. Longitudinal gradient of a stream across (A) a knickpoint, and across (B) a F 16 knickzone. ................................................................................................................... 110  17 Figure 38. Steps for completing the PFC assessment ............................................... 116  18 Figure 39. Recommended steps for IncorporaAting PFC into management .................. 117  19 R List of Tables 20 21 Table 1. Hierarchy of stratification levels and possible data sources ............................ 19  22 Table 2. Attributes/processeDs list. ................................................................................. 20  23 Table 3. Indicator categories ......................................................................................... 77  24 vi 1. Introduction 1 2 3 Riparian areas are transitional areas regularly influenced by fresh water, normally 4 extending from the edges of water bodies to the edges of upland communities (Naiman 5 et al. 2005) (Figure 1). They reflect interactions between aquatic and terrestrial 6 components of a landscape, and are where hydrology, vegetation, and soils come 7 together on a stream to influence physical function. These areas exhibit vegetation or 8 physical characteristics reflective of permanent surface or subsurface water influence. 9 Ephemeral streams or washes that do not exhibit the presence of vegetation dependent 10 upon free water in the soil are not included. T 11 This technical reference addresses the physical functioning of perennial or intermittent 12 lotic (flowing water) riparian systems, such as rivers or streams. Lentic (still or very 13 slow water) riparian systems, such as wetlands, ponds, or marshes, are addressed in F 14 TR 1737-16. This technical reference provides instructions for the application of the 15 PFC protocol. It is not intended to serve as a textbook addressing every aspect of 16 stream and riparian function and ecology. A R D 17 18 Figure 1. Schematic drawing of a riparian area. 19 Riparian areas are complex, dynamic ecosystems incorporating biological, physical, and 20 chemical processes. The Proper Functioning Condition (PFC) assessment method was 21 created to qualitatively evaluate the foundation of these process—specifically the 22 functionality of the physical processes occurring on a stream. These physical 23 processes include the interactions of hydrology, stabilizing vegetation, and 1 1 geomorphology. Professionals with background in these subjects assess the stream 2 together as an interdisciplinary team (ID team). Because the PFC assessment 3 compares each stream to its own potential, it is universally applicable to all but the most 4 highly modified perennial and intermittent streams. 5 The term PFC is used to describe both the assessment process, and a defined, on-the- 6 ground condition of a riparian area. The on-the-ground condition termed PFC refers to 7 how well physical processes are functioning. A system in PFC displays a resilience that 8 will allow the riparian area to remain reasonably intact during high-flow events (such as 9 the 5-, 10- or 25-year flow), and recover quickly, with a high degree of reliability. 10 The PFC assessment refers to a consistent approach for considering hydrologic, 11 vegetation, and geomorphic attributes and processes to assess the condition of riparian T 12 areas at a point in time. An assessment form (Appendix A), synthesizes information that 13 is foundational to determining the physical functioning of a riparian system. Following 14 completion of the assessment form, the stream reach Fis placed in one of three rating 15 categories: A Proper Functioning Condition (PFC): A lotic riparian area is considered to be in PFC, or “functioning properly” when adequate vegetation, landform, or large woody material is present to: R • Dissipate stream energy associated with high waterflow, thereby reducing erosion and improving water quality. • Filter sediment, capture bedload, and aid floodplain development. D • Improve flood-water retention and ground-water recharge. • Develop root masses that stabilize streambanks against erosion. • Maintain channel characteristics. Functional—At Risk (FAR): Riparian areas that are in functional condition, but an existing landform, water, or vegetation attribute makes them susceptible to impairment. Nonfunctional (NF): Riparian areas that clearly are not providing adequate vegetation, landform, or large woody material to dissipate stream energy associated with high flows, and thus are not reducing erosion, improving water quality, etc. 16 17 18 The physical functionality of a riparian area is the foundation of stream processes 19 (Figure 2). Physical attributes and processes of the stream exist in a hierarchical 20 relationship with chemical processes and biological processes. The dotted lines around 21 each stratum indicate that each level of the pyramid interacts with the adjoining levels. 22 The arrows indicate the direction of influence. Although biological and chemical 23 processes act upon physical function, the majority of the cause-and-effect relationships 2 1 flow upward through the pyramid. Stream processes are underlain by geology and 2 climate. 3 If the riparian area is functioning properly, then it is capable of producing good water 4 quality and suitable habitat. If, on the other hand, the riparian area is not functioning 5 properly, it is likely that chemical processes, such as the production of good water 6 quality, and biological processes, such as the creation of suitable habitat will also be 7 impaired (Harman et al. 2012, Shields et al. 2010). However, PFC does not guarantee 8 that chemical and biological processes are functioning well. For example, sediment, 9 thermal, or nutrient regimes could remain impaired because of upstream impacts that 10 are transmitted downstream. If a parameter representing a biological or chemical 11 process, such as habitat complexity, is of interest, the ID team should use a protocol 12 specifically intended to assess that parameter, in conjunction Twith the PFC assessment. 13 F Biological A Chemical R Physical       (Hydrology, Stabilizing Vegetation, Geomorphology) D               Geology                                               Climate 14 15 Figure 2. Stream Functions Pyramid, adapted from Harman et al. 2012. 16 17 An interdisciplinary team must possess an understanding of stream dynamics and 18 potential to accurately complete the assessment, and discussion among experts using 19 their professional experience and judgment is key to producing a quality product. So, 20 although PFC relies on basic concepts of stream function, it cannot be completed by a 21 non-professional after a half-day training. PFC involves both the art and the science of 22 “reading the stream,” and a working understanding of each takes time to develop. 23 24 25 26 3

Description:
DRAFT ii. Abbreviation list. 1. 2. BLM - Bureau of Land Management. 3. 4. DMA – Designated Monitoring Area. 5. 6. FAC – Facultative species. 7. 8 . Complete Reach Information and PFC Assessment Forms Item 17: Stream is in balance with the water and sediment that is being supplied by the. 20.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.