ebook img

Rings and modules PDF

39 Pages·2013·0.248 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rings and modules

Rings and modules Notation: A ⊂ B means A isasubsetof B, possiblyequalto B. 1. Revision Allringsarecommutativeringswithunity. 1.1. Let f:A → B bearinghomomorphism. Theorem on ring homomorphisms. The kernel I of f is an ideal of A, the image C of f isasubringof B. Thequotientring A/I isisomorphicto C. Proof. Considerthemap g:A/I → C, a+I (cid:55)→ f(a). Itiswelldefined: a+I = a(cid:48)+I implies a−a(cid:48) ∈ I implies f(a) = f(a(cid:48)). The element a+I belongs to the kernel of g iff g(a+I) = f(a) = 0, i.e. a ∈ I, i.e. a+I = I isthezeroelementof A/I. Thus, ker(g) = 0. Theimageof g is g(A/I) = {f(a) : a ∈ A} = C. Thus, g isanisomorphism. Theinversemorphismto g isgivenby f(a) (cid:55)→ a+I. Correspondence theorem. Let I be an ideal of a ring A. Then there is a bijection betweenthesetof allideals J of A suchthat I ⊂ J andthesetof allidealsof A/I: {J : I anidealof A,I ⊂ J} −→ {K : K anidealof A/I} J −→ J/I Proof. Denoteby h themorphism h:A → A/I, a (cid:55)→ a+I, itsimageis A/I andits kernelis I. For an ideal J of A, I ⊂ J, denote by h| :J → A/I,j (cid:55)→ j +I the restriction J of h to J. Its kernel is I. Similarly to the proof of the previous theorem we deduce that h| (J) isisomorphicto J/I whichisanidealof A/I. J For an ideal K of A/I define K(cid:48) = h−1(K) of A. Then K(cid:48) is an ideal of A, I ⊂ K(cid:48). Now we have two maps, J (cid:55)→ J/I and K (cid:55)→ h−1(K). They are inverse to each other, i.e. h−1(J/I) = J and h−1(K)/I = K. Thus, there is a one-to-one correspondencebetweentheideals. 2 Ringsandmodules 1.2. The intersection of ideals of A is an ideal of A. Given a subset S of A, one canspeakabouttheminimalidealof A whichcontains S. Thisidealisequalto {a s + ···+a s : a ∈ A,s ∈ S,m (cid:62) 1}. 1 1 m m i i Oftenitiscalledtheidealgeneratedby S. Let I,J beidealsofaring A. Their sum I +J is the minimal ideal of A which contains both I and J, more explicitly I +J = {i+j : i ∈ I,j ∈ J}. Certainly, I +(J +K) = (I +J)+K. Similarlyonedefinesthesumofseveralideals (cid:80) I . k Their product IJ is the minimal ideal which contains all ij : i ∈ I,j ∈ J, more explicitly IJ = {i j + ···+i j : n (cid:62) 1,i ∈ I,j ∈ J}. 1 1 n n m m Theproductisassociative: (IJ)K = I(JK) anddistributive: (I +J)K = IK +JK. Similarlyonedefinestheproductofseveralideals I ...I . 1 n Notethat (I+J )(I+J ) istheminimalidealwhichcontainsproducts (i +j )(i + 1 2 1 1 2 j ) = (i i +i j +i j )+j j , soitiscontainedin I +J J : 2 1 2 2 1 1 2 1 2 1 2 (I +J )(I +J ) ⊂ I +J J , 1 2 1 2 buttheinverseinclusiondoesnotholdingeneral. Foranelement a of A theprincipalidealgeneratedby a is (a) = aA = {ab : b ∈ A}. In particular, (0) = {0} is the smallest ideal of A and (1) = A is the largest ideal of A. Unless A = {0}, thesearetwodistinctidealsof A. Forseveralelements a , ...,a of A theidealgeneratedbythe a isdenoted 1 n i (a , ...,a ) = a A+ ···+a A = {a b + ···+a b : b ∈ A}. 1 n 1 n 1 1 n n i 1.3. Aring A isafieldifitcontainsanon-zeroelementandeverynon-zeroelement of A isinvertiblein A. Lemma. Anon-zeroringisafieldiff ithasexactlytwodifferentideals, (0) and (1). 3 Proof. If I is a non-zero ideal of a field F, then I contains a non-zero element a. Therefore it contains aa−1 = 1 and therefore it contains 1b = b for every b in F; so I = F. Conversely, if a non-zero ring has only two distinct ideals then it is a field: for every nonzero element aA must be equal to (1), hence a multiple of a is 1 and a is invertible. An ideal I of a ring A is called maximal if I (cid:54)= A and every ideal J such that I ⊂ J ⊂ A eithercoincideswith A orwith I. By1.1thisequivalentto: thequotient ring A/I has no proper ideals. By the previous lemma this is equivalent to A/I is a field. Soweproved Lemma. I isamaximalidealof A iff A/I isafield. 1.4. Aring A isanintegraldomainif A (cid:54)= 0 andforevery a,b ∈ A ab = 0 implies a = 0 or b = 0. Example: everyfieldisanintegraldomain: ab = 0 and a (cid:54)= 0 implies b = a−1ab = 0. Z is an integral domain. More generally, every non-zero subring of an integral domainisanintegraldomain. If A isanintegraldomain,onecanformthefieldoffractions F of A as {a/b : a ∈ A,b ∈ A\{0}}. Bydefinition a/b = c/d iff ad = bc. This is an equivalence relation: if a/b = c/d and c/d = e/f then ad = bc and cf = ed so adf = bcf = bed, d(af −be) = 0. As d isnotzero, af = be. Definetworingoperations a/b+c/d = (ad+bc)/(bd) and (a/b)(c/d) = (ac)/(bd). Thezeroof F is 0/1 = 0/a foranynon-zero a. Everynonzeroelement a/b of F is invertible: if a/b (cid:54)= 0 then (a/b)−1 = b/a. Thus F isafield. Theringhomomorphism A → F, a (cid:55)→ a/1 is injective: a/1 = 0/1 implies a = 0. Thus A can be identified withthesubring A/1 of F. Then a/b canbeidentifiedwith ab−1 givingthemeaning offractiontothesymbol a/b. Thus, every integral domain is a non-zero subring of a field, and the latter is an integral domain. So the class of integral domains coincides with the class of non-zero subringsoffields. 1.5. An ideal I of a ring A is called prime if I (cid:54)= A and for every a,b ∈ A the inclusion ab ∈ I impliesthateither a ∈ I or b ∈ I. Example: everyfieldhasaprimeideal: (0). Lemma. I isaprimeidealof A iff A/I isanintegraldomain. Proof. Let I be a prime ideal of A. Let (a+I)(b+I) = 0+I, then ab ∈ I. So at leastoneof a,b isin I whichmeansthateither a+I = 0+I or b+I = 0+I. Thus, A/I isanintegraldomain. 4 Ringsandmodules Conversely,let A/I beanintegraldomain. If ab ∈ I then (a+I)(b+I) = I = 0+I, hence either a+I = I and so a ∈ I, or b+I = I and so b ∈ I. Thus, I is a prime idealof A. Example: foraprimenumber p theideal pZ isaprimeidealof Z. Thezeroideal (0) isaprimeidealof Z. Corollary. Everymaximalidealisprime. Proof. Everyfieldisanintegraldomain. Remark. In general, not every prime ideal is maximal. For instance, (0) is a prime idealof Z whichisnotmaximal. 1.6. For rings A define their product A × ···×A as the set theoretical product i 1 n endowedwiththecomponentwiseadditionandmultiplication. Chinese Remainder Theorem. Let I , ...,I be ideals of A such that I +I = A 1 n i j forevery i (cid:54)= j. Then (cid:89) A/(I1...In) (cid:39) A/Ik, a+I1...In (cid:55)→ (a+Ik)1(cid:54)k(cid:54)n. 1(cid:54)k(cid:54)n Proof. Firstlet n = 2. Then I I ⊂ I ∩I = (I ∩I )A = (I ∩I )(I +I ) ⊂ (I ∩I )I +(I ∩I )I ⊂ I I . 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 So I I = I ∩I . Thekernelofthehomomorphism 1 2 1 2 (cid:89) A → A/I , a (cid:55)→ (a+I ,a+I ) k 1 2 1(cid:54)k(cid:54)2 is I ∩I = I I . Itissurjective: since I +I = A, thereareelements x ∈ I ,y ∈ I 1 2 1 2 1 2 1 2 such that x + y = 1 and hence bx + ay = a + (b − a)x ∈ a + I and similarly 1 bx+ay ∈ b+I . 2 Now proceed by induction on n. Denote J = I ,J = I ...I , so J J = 1 1 2 2 n 1 2 I ...I . Since I +I = A forall k > 1, wededuceusing1.2that 1 n 1 k J +J = I +I ...I ⊃ (I +I )...(I +I ) = A, 1 2 1 2 n 1 2 1 n so J +J = A. Nowinthesamewayasinthepreviousparagraphonegets A/(J J ) (cid:39) 1 2 1 2 (cid:81) (cid:81) A/J . Bytheinductionhypothesis A/J (cid:39) A/I . Thus, 1(cid:54)k(cid:54)2 k 2 2(cid:54)k(cid:54)n k (cid:89) A/(I ...I ) (cid:39) A/I . 1 n k 1(cid:54)k(cid:54)n 5 Example. Let p bedistinctprimesand r positiveintegers. Then i i (cid:89) Z/(pr1...prnZ) (cid:39) Z/priZ. 1 n i 6 Ringsandmodules 2. Modules over rings 2.1. Let A be a ring. An abelian group M is called an A-module if there is a multiplication A×M → M suchthat a(x+y) = ax+ay,(a+b)x = ax+bx,a(bx) = (ab)x,1x = x. Examples. Everyabeliangroupisa Z-module,sotheclassofabeliangroupscoincide withtheclassof Z-modules. Everyvectorspaceoverafield F isan F-module. 2.2. A map f:M → N is called a homomorphism of A-modules if f(x + y) = f(x)+f(y) forevery x,y ∈ M and f(ax) = af(x) forevery a ∈ A, x ∈ M. Aho- momorphism f of A-modulesiscalledanisomorphismof A-modules,oralternatively an A-isomorphism,if f isbijective. 2.3. Asubgroup N ofan A-module M iscalledan A-submoduleof M if an ∈ N forevery a ∈ A,n ∈ N. Example: Submodulesofthe A-module A areidealsof A. For an A-module M and its A-submodule N define the quotient module M/N as the quotient set of cosets m + N with the natural addition and multiplication by elementsof A. Similarly to 1.1 one proves: If M,N are A-modules and f:M → N is an A-module homomorphism, then the kernel of f is a submodule of M and the image of f isasubmoduleof N, and M/ker(f) is A-isomorphicto im(f). Similarlyto1.1submodulesofthequotientmodule M/N arein1–1correspondence withsubmodulesof M containing N. Inparticular,if f:M → N isan A-modulehomomorphism,and K isasubmodule of ker(f), then f inducesan A-modulehomomorphism g:M/K → N, m+K (cid:55)→ f(m). 2.4. For A-modules M,N the intersection M ∩N is an A-module. So if M,N arecontainedinalargermodule L, onecanspeakabouttheminimal A-modulewhich containsafixedsetofelementsrelatedto M and N. Then the M +N = {m+n : m ∈ M,n ∈ N} is the minimal A-module which containsallallelementsof M and N. Define the direct sum of modules as the set theoretical product with the natural additionandmultiplicationbyelementsof A. Lemma. Let N,K be A-submodulesofan A-module M. Amap f:N⊕K → N+K, f((n,k)) = n+k isasurjective A-modulehomomorpismwhosekernelis A-isomorphic tothesubmodule N∩K. Therefore,if N∩K = {0}, N⊕K isisomorphicto N+K. 7 Proof. Clearly f is surjective. Its kernel is {(n,k) : n+k = 0}. Then n = −k ∈ N ∩K. Amap {(n,k) : n+k = 0} → N ∩K, (n,−n) (cid:55)→ n isabijection. 2.5. The submodule M generated by elements x is the minimal submodule which i containsallofthem,itconsistsoffinite A-linearcombinationsof x ; elements x ∈ M i i arecalledgeneratorsof M. Theminimalnumberofgenerators(ifitexists)of M iscalledtherankof M. M issaidtobeoffinitetypeifithasafinitenumberofgenerators. (cid:80) An A-module M is called free if M has generators x such that a x = 0 i i i implies a = 0 forall i. Thesetof x iscalledthenabasisof M. i i 2.6. Lemma. (1)Themodule An = ⊕1(cid:54)i(cid:54)nA isfreeof rank n. (2)Let M bean A-moduleof finitetypeandlet x , ...,x begeneratorsof M. 1 n Defineahomomorphism (cid:88) f:An → M, (a , ...,a ) (cid:55)→ a x . 1 n i i Itissurjective. If N isthekernelof f, then M isisomorphictothequotientmodule (A)n/N. Thus, every A-module of finite type is isomorphic to a quotient of a free module. (3)Everyfreemoduleof finiterank n isisomorphicto An. Proof. (1),(2)followfromthedefinitions. If M isfreeandthenumberofgenerators isfiniteequalto n, thenthehomomorphism (A)n → M issurjectiveandinjective. Elementsof N serveasrelationsforgeneratorsof M. Asacorollarywededucethatthedirectsumoffreemodulesisfree: An ⊕Am (cid:39) An+m. Examples. 1. Fromlinearalgebraitisknownthateverymoduleoffiniterankovera fieldhasabasisandisfree. 2. Let A = Z and M = Z/nZ for n > 1. Then M has rank 1 and is not a free A-module,sinceif M (cid:39) (Z)1 then M wouldhavebeeninfinite. 3. Polylinear constructions 3.1. Thesetof A-modulehomomorphismsfroman A-module M to N isan A-module: (af)(m) = a·f(m), (f +g)(m) = f(m)+g(m). Itisdenoted Hom (M,N). A 8 Ringsandmodules Example. Let A = F be a field, and let M be an F-vector space of dimension d 1 and N be an F-vector space of dimension d . Fix a basis {m } in M and a basis 2 i {n } in N. Let C be a matrix of order d ×d with entries in F. Define a map j 1 2 (cid:80) (cid:80) f:M → N, f( a m ) = b n where (b ,...,b ) = (a ,...,a )C. The map f i i j j 1 d2 1 d1 is an F-linear map. Conversely, every F-linear map M → N is determined by its values on {m : 1 (cid:54) i (cid:54) d }. Write f(m ) = (cid:80)c n and define C = (c ). This i 1 i ij j ij givesaninversemaptothepreviousmap. Thus, Hom (M,N) is F-isomorphictothe F F-moduleofmatricesoforder d ×d withentriesin F. 1 2 Examples–Exercises. Hom (0,N) = Hom (M,0) = 0. Hom (A,N) (cid:39) N, A A A Hom (M,N ⊕N ) (cid:39) Hom (M,N )⊕Hom (M,N ). A 1 2 A 1 A 2 3.2. Amap f:M ×N → R iscalled A-bilinearifforall m,m ,m ,n,n ,n ,a 1 2 1 2 f(m,n +n ) = f(m,n )+f(m,n ), f(m,an) = af(m,n) 1 2 1 2 f(m +m ,n) = f(m ,n)+f(m ,n), f(am,n) = af(m,n). 1 2 1 2 So for every m the map N → R,n (cid:55)→ f(m,n) is a homomorphism of A-modules andforevery n themap M → R,m (cid:55)→ f(m,n) isahomomorphismof A-modules. Note that an A-bilinear map f does not induce a homomorphism of A-modules M ⊕N → R, since f(a(m,n)) = f(am,an) = a2f(m,n) isnotequalto af(m,n) in general. Denote the set of all A-bilinear maps f:M ×N → R by Bil (M,N;R). The A latter is an A-module with respect to the sum of maps and multiplication of a map by anelementof A. Similarlyonecandefine A-n-linearmaps. Example. Let A = F be a field, and let M be an F-vector space of dimension d and N be an F-vector space of dimension d . Fix a basis {m } in M and a 1 2 i basis {n } in N. Let C be a matrix of order d ×d with entries in F. Define j 1 2 a map f:M × N → F, f(m,n) = mCn◦ where m is written as a row and n◦ as a column. The map f is an F-bilinear map. Conversely, every F-bilinear map M × N → F is determined by its values on {(m ,n ) : 1 (cid:54) i (cid:54) d ,1 (cid:54) j (cid:54) i j 1 (cid:80) (cid:80) (cid:80) d }: f( a m , b n ) = a b f(m ,n ). Now form a matrix C whose entries 2 i i j j i j i j are f(m ,n ). Thus, there is a one-to-one correspondence between bilinear maps i j M ×N → F andmatricesoforder d ×d withentriesin F. 1 2 3.3. To study A-bilinear maps from M ×N to R it is useful to introduce another A-module T andabilinearmap g:M×N → T suchthatbilinearmaps f:M×N → R are in one-to-one correspondence with homomorphisms of A-modules T → R via g. In other words, we define an isomorphism of A-modules Bil (M,N;R) (cid:39) A Hom (T,R); T doesnotdependon R butonlyon A-modules M and N. A Todefine T firstdenoteby L thefree A-modulewithabasisconsistingofelements l indexed by elements of M ×N. So an arbitrary element of L is a finite sum m,n 9 (cid:80) a l with a ∈ A, m ∈ M and n ∈ N. Let K be the A-submodule of L i mi,ni i i i generatedbyelements l −l −l , l −l −l , m1+m2,n m1,n m2,n m,n1+n2 m,n1 m,n2 l −al , l −al am,n m,n m,an m,n (forall a ∈ A, m ∈ M and n ∈ N). Denote T = L/K. The image of l in T, i.e. the coset l +K is usually m,n m,n denotedby m⊗n. Since L isgeneratedby l , themodule T isgeneratedby m⊗n, i.e. m,n (cid:8)(cid:88) (cid:9) T = a m ⊗n : a ∈ A,m ∈ M,n ∈ N . i i i i i i Thesesatisfyrelations: (m +m )⊗n = m ⊗n+m ⊗n, (am)⊗n = a(m⊗n), 1 2 1 2 m⊗(n +n ) = m⊗n +m⊗n , m⊗(an) = a(m⊗n) 1 2 1 2 (forall a ∈ A, m ∈ M and n ∈ N). The module T is denote M ⊗ N and is called the tensor product of M and N A over A. If M, N arefinitelygenerated A-modules,withgenerators m ,n , then M⊗ N i j A isafinitelygenerated A-modulewithgenerators m ⊗n . i j Wehave n⊗0 = 0(n⊗1) = 0. Nowdefineamap g:M×N → M⊗ N by (m,n) (cid:55)→ m⊗n. Itisan A-bilinear A map. 3.4. Theorem. For an A-bilinear map f:M ×N → R define f(cid:48):M ⊗ N → R A as f(cid:48)((cid:80)a m ⊗n ) = (cid:80)a f(m ,n ). It is a well defined map and it is a homomor- i i i i i i phism of A-modules. The correspondence f (cid:55)→ f(cid:48) is an isomorphism of A-modules Bil (M,N;R) and Hom (M ⊗ N,R). A A A Proof. Extend f to a homomorphism L → R defined on elements of the basis of L by l (cid:55)→ f(m,n). m,n Since f is bilinear, all generators of K are mapped to zero, so we get f(cid:48) = α(f):M ⊗ N → R, f(cid:48)((cid:80)a m ⊗n ) = (cid:80)a f(m ,n ). Themap α isahomomor- A i i i i i i phismof A-modules. Conversely, if f(cid:48):M ⊗ N → R is a homomorphism of A-modules, then define A f = β(f(cid:48)):M ×N → R as f(m,n) = f(cid:48)◦g(m,n). Then f isan A-bilinearmap. Now α◦β(f(cid:48)) = α(f(cid:48)◦g) andso α◦β(f(cid:48))((cid:80)a m ⊗n ) = (cid:80)a f(cid:48)◦g(m ,n ) = i i i i i i f(cid:48)((cid:80)a m ⊗n ). We also have β ◦α(f)(m,n) = α(f)◦g(m,n) = α(f)(m⊗n) = i i i f(m,n). Thus, α and β areisomorphisms. 10 Ringsandmodules Thus,usingthetensorproductonecanreducethestudyofbilinearmapstothestudy oflinearmaps. Example. Let A = F be a field. Let M,N be two F-vector spaces of dimensions d and d . In accordance with the previous theorem the vector space of linear maps 1 2 M ⊗N → F is isomorphic to the vector space of bilinear maps M × N → F. In F accordance with Example in 3.2 the dimension of the space Bil(M,N;F) is d d ; if 1 2 m , ...,m is a basis of M and n , ...,n is a basis of N, then every bilinear 1 d1 1 d2 map f:M ×N → F isdeterminedbyitsvalueson {(m ,n )}. i j Therefore, the dimension of the vector space Hom (M ⊗ N,F) is d d . It F F 1 2 is known from linear algebra that the dimension of a vector space V equals to the dimensionof Hom (V,F). Sothedimensionof M ⊗N is d d ; the F-vectorspace F 1 2 M ⊗ N hasabasis m ⊗n , 1 (cid:54) i (cid:54) d ,1 (cid:54) j (cid:54) d . F i j 1 2 Note that in the particular case of M = N the space N ⊗ N has dimension F equaltothesquareofthedimensionof N. Inphysics, N over F = C representsthe statevectorofaparticle,and N ⊗C N representsthestatevectorsoftwoindependent particlesofthesamekind. 3.5. Firstpropertiesofthetensorproduct: Lemma. (i) M ⊗ A (cid:39) M, A (ii) M ⊗ N (cid:39) N ⊗ M, A A (iii) (M ⊗ N)⊗ R (cid:39) M ⊗ (N ⊗ R), A A A A (iv) M ⊗ (N ⊕R) (cid:39) (M ⊗ N)⊕(M ⊗ R), A A A (v) Hom (M⊗ N,K) (cid:39) Hom (M,Hom (N,K)) (cid:39) Hom (N,Hom (M,K)). A A A A A A Proof. To prove (i) we first define an A-homomorphism f:L → M,l (cid:55)→ am m,a where L is a free A-module with a basis l , m ∈ M,a ∈ A. Then K (which m,a is the submodule of L defined as in 3.3) is in the kernel of f. So f induces an A-homomorphism g:M ⊗ A = L/K → M, m ⊗ a (cid:55)→ am. Define h:M → A M ⊗ A,m (cid:55)→ m⊗1. Then g and h areinversetoeachother. A To prove (ii) use an A-homomorphism f:M ⊗N → N ⊗M,m⊗n (cid:55)→ n⊗m whichcorrespondstoamap l (cid:55)→ n⊗m andan A-homomorphism g:N ⊗M → m,n M ⊗N,n⊗m (cid:55)→ m⊗n. f and g areinversetoeachother. Toprove(iii)use m⊗(n⊗r) (cid:55)→ (m⊗n)⊗r,(m⊗n)⊗r (cid:55)→ m⊗(n⊗r). For (iv) use m⊗(n,r) (cid:55)→ (m⊗n,m⊗r), (m ⊗n,m ⊗r) (cid:55)→ m ⊗(n,0)+ 1 2 1 m ⊗(0,r). 2 For(v)use h ∈ Hom (M⊗ N,K) (cid:55)→ h(cid:48) ∈ Hom (M,Hom (N,K)), h(cid:48)(m)(n) = A A A A h(m⊗n) and h(cid:48) ∈ Hom (M,Hom (N,K)) (cid:55)→ h ∈ Hom (M⊗ N,K), h(m⊗n) = A A A A h(cid:48)(m)(n). 3.6. Examples. (1) An⊗ Am = Anm. A

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.