ebook img

Rigidity in higher rank Abelian group actions. Vol.1, Introduction and cocycle problem PDF

321 Pages·2011·1.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rigidity in higher rank Abelian group actions. Vol.1, Introduction and cocycle problem

This page intentionally left blank CAMBRIDGETRACTSINMATHEMATICS GeneralEditors B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN, P.SARNAK,B.SIMON,B.TOTARO 185RigidityinHigherRankAbelianGroupActionsI CAMBRIDGETRACTSINMATHEMATICS GeneralEditors: B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK,B.SIMON,B.TOTARO Acompletelistofbooksintheseriescanbefoundat www.cambridge.org/mathematics. Recenttitlesincludethefollowing: 150.HarmonicMaps,ConservationLawsandMovingFrames(2ndEdition).ByF.HE´LEIN 151.FrobeniusManifoldsandModuliSpacesforSingularities.ByC.HERTLING 152.PermutationGroupAlgorithms.ByA.SERESS 153.AbelianVarieties,ThetaFunctionsandtheFourierTransform.ByA.POLISHCHUK 154.FinitePackingandCovering.ByK.BO¨RO¨CZKY,JR 155.TheDirectMethodinSolitonTheory.ByR.HIROTA.EditedandtranslatedbyA.NAGAI,J.NIMMO, andC.GILSON 156.HarmonicMappingsinthePlane.ByP.DUREN 157.AffineHeckeAlgebrasandOrthogonalPolynomials.ByI.G.MACDONALD 158.Quasi-FrobeniusRings.ByW.K.NICHOLSONandM.F.YOUSIF 159.TheGeometryofTotalCurvatureonCompleteOpenSurfaces.ByK.SHIOHAMA,T.SHIOYA,and M.TANAKA 160.ApproximationbyAlgebraicNumbers.ByY.BUGEAUD 161.EquivalenceandDualityforModuleCategories.ByR.R.COLBYandK.R.FULLER 162.Le´vyProcessesinLieGroups.ByM.LIAO 163.LinearandProjectiveRepresentationsofSymmetricGroups.ByA.KLESHCHEV 164.TheCoveringPropertyAxiom,CPA.ByK.CIESIELSKIandJ.PAWLIKOWSKI 165.ProjectiveDifferentialGeometryOldandNew.ByV.OVSIENKOandS.TABACHNIKOV 166.TheLe´vyLaplacian.ByM.N.FELLER 167. Poincare´ Duality Algebras, Macaulay’s Dual Systems, and Steenrod Operations. By D. MEYER and L.SMITH 168.TheCube-AWindowtoConvexandDiscreteGeometry.ByC.ZONG 169.QuantumStochasticProcessesandNoncommutativeGeometry.ByK.B.SINHAandD.GOSWAMI 170.PolynomialsandVanishingCycles.ByM.TIBA˜R 171.OrbifoldsandStringyTopology.ByA.ADEM,J.LEIDA,andY.RUAN 172.RigidCohomology.ByB.LESTUM 173.EnumerationofFiniteGroups.ByS.R.BLACKBURN,P.M.NEUMANN,andG.VENKATARAMAN 174.ForcingIdealized.ByJ.ZAPLETAL 175.TheLargeSieveanditsApplications.ByE.KOWALSKI 176.TheMonsterGroupandMajoranaInvolutions.ByA.A.IVANOV 177.AHigher-DimensionalSieveMethod.ByH.G.DIAMOND,H.HALBERSTAM,andW.F.GALWAY 178.AnalysisinPositiveCharacteristic.ByA.N.KOCHUBEI 179.DynamicsofLinearOperators.ByF.BAYARTandE´.MATHERON 180.SyntheticGeometryofManifolds.ByA.KOCK 181.TotallyPositiveMatrices.ByA.PINKUS 182.NonlinearMarkovProcessesandKineticEquations.ByV.N.KOLOKOLTSOV 183.PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.DAT,S.ORLIK,andM.RAPOPORT 184.AlgebraicTheories.ByJ.ADA´MEK,J.ROSICKY´,andE.M.VITALE 185.RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem.ByA.KATOKand V.NIT¸ICA˘ 186.Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187.Convexity:AnAnalyticViewpoint.ByB.SIMON Rigidity in Higher Rank Abelian Group Actions Volume I. Introduction and Cocycle Problem ANATOLEKATOK PennsylvaniaStateUniversity VIORELNIT¸ICA˘ WestChesterUniversity,Pennsylvania CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521879095 (cid:2)c A.KatokandV.Ni¸tica˘2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Katok,A.B. RigidityinhigherrankAbeliangroupactions/AnatoleKatok,ViorelNitica. v. cm.–(Cambridgetractsinmathematics;185–) Contents:v.1.Introductionandcocycleproblem ISBN978-0-521-87909-5(hardback) 1. Rigidity(Geometry) 2. Abeliangroups. I. Nitica,Viorel. II. Title. QA640.77.K38 2011 512(cid:3).25–dc22 2011006030 ISBN978-0-521-87909-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Introduction:anoverview page1 PartI:Preliminariesfromdynamicsandanalysis 9 1 Definitionsandgeneralpropertiesofabeliangroupactions 11 1.1 Groupactions,conjugacy,andrelatednotions 11 1.2 Functorialconstructions 12 1.3 Principalbundles 13 1.4 Cocycles 16 1.5 RootsandWeylchambersforlinearactions 19 1.6 Algebraicactions 20 1.7 Measurableandnon-uniformdifferentiablesetting 25 1.8 Uniformdifferentiablesetting 30 2 Principalclassesofalgebraicactions 39 2.1 Automorphismsoftoriand(infra)nilmanifolds 39 2.2 ActionsofZk, k ≥2ontoriandnilmanifolds 53 2.3 HigherrankRk-actions 77 2.4 Affineactionsbeyondtoriandnilmanifolds 92 3 Preparatoryresultsfromanalysis 100 3.1 Introduction 100 3.2 Preparatorynormestimates 101 3.3 Journe´’stheorem 109 3.4 The Jacobian along the stable leaves of a partially hyperbolicdiffeomorphism 118 3.5 SmoothregularitybyFouriermethod 122 v vi Contents 3.6 RealanalyticregularitybyFouriermethod 126 3.7 Smoothregularityviahypoelliptictheory 128 PartII:Cocycles,cohomology,andrigidity 131 4 Firstcohomologyandrigidityforvector-valuedcocycles 133 4.1 Cocyclesovergeneralgroupactions:anoverview 133 4.2 Vector-valuedcocyclesinrank-onehyperboliccase 138 4.3 Cocyclesoverpartiallyhyperbolicsystems 152 4.4 Higherrankresultsforvector-valuedcocycles 163 4.5 CocyclesovergenericAnosovactions 190 4.6 Twistedcocycles 198 5 Firstcohomologyandrigidityforgeneralcocycles 202 5.1 Cocycleswithvaluesincompactabeliangroups 202 5.2 Introduction to rank-one results for non-abelian group- valuedcocycles 207 5.3 Calculationofcohomologyfornon-abeliancocyclesover rank-oneAnosovactions 210 5.4 Invariant foliations for Lie group and diffeomorphism group-valuedextensions 219 5.5 Regularityresultsfornon-abeliancocyclesoverrank-one Anosovactions 240 5.6 Parry’s general cohomological result for cocycles withcompactnon-abelianrange 248 5.7 Lift of regularity for the transfer map from measurabletoHo¨lder 251 5.8 Periodiccyclefunctionals 254 5.9 Non-abeliancocyclesoverTNSactions 259 5.10 Rigidity of non-abelian cocycles over Cartan actions: K-theoryapproach 269 6 Higherordercohomology 276 6.1 Introductiontohighercohomologyofgroupactions 276 6.2 Cohomology for partially hyperbolic actions by toral automorphisms 279 6.3 CohomologyforWeylchamberflows 299 References 302 Index 311 Introduction: an overview 1. Rigidityindynamics In a very general sense, modern theory of smooth dynamical systems deals with smooth actions of “sufficiently large but not too large” groups or semigroups (usually locally compact but not compact) on a “sufficiently small”phasespace(usuallycompact,or,sometimes,finitevolumemanifolds). Important branches of dynamics specifically consider actions preserving a geometricstructurewithaninfinite-dimensionalgroupofautomorphisms,two principal examples being a volume and a symplectic structure. The natural equivalence relation for actions is differentiable (corr. volume preserving or symplectic)conjugacy. Oneversionofthegeneralnotionofrigidityinthiscontextwouldrefertoa certainclassAofactionsbeingdescribedbyafinitesetofparameters,usually smoothmoduli.Examplesofsuchclassesareallactionsintheneighborhood of a given one, or all actions of a continuous group with the same orbits, or all G-extensions of a given action α to a given principal G-bundle. In some situationsthisistoostrongand,ratherthanclassifyingallactionsfromA,one may require that actions equivalent to a given one have a finite codimension inaproperlydefinedsense,e.g.,appearintypicalorgenericfinite-parametric familiesofactions. AperfectextremecaseappearswhenallactionsfromAbelongtoasingle equivalence class. This may be referred to as rigidity in the narrow sense of the word. However, one should point out that for abelian group actions even locallythiscanonlyhappeninthecaseofdiscretegroups,sinceotherwiseone can always compose the original action with a group automorphism close to theidentity. 1 2 Introduction:anoverview 2. Limitedextentofrigidityintraditionaldynamics The material presented in this book relies to a considerable extent on the classical theory of (uniform) hyperbolic and partially hyperbolic systems, i.e., the study of rank-one cases of Z+, Z, and R-actions with hyperbolic or partially hyperbolic behavior. Anosov diffeomorphisms and Anosov flows (seeSection1.8.1)areprimeexamplesofsuchactions. Anosov diffeomorphisms and Anosov flows display certain elements of rigidityofthetopologicalorbitstructure,bothlocally(structuralstability,see e.g.,[67,Corollary18.2.2])andglobally(topologicalrestrictionsontheambi- ent manifolds and homotopy invariants [67, Theorem 18.6.1]). Nevertheless, theirdifferentiablepropertiesarefarfromrigid;atbest,theclassificationwith respect to differentiable conjugacy is given by infinitely many moduli as in the case of Anosov diffeomorphisms of T2 ([67, Section 20.4]), or transitive Anosovflowsonthree-dimensionalmanifolds([105]).Similarly,cohomology classes of sufficiently regular (Ho¨lder or smooth) rank-one cocycles over an Anosovsystemaredeterminedbyinfinitelymanyparameters,e.g.,theperiodic data(seeTheorem4.2.2). It is also worth pointing out that local differentiable rigidity in the more looseparametricsensedoestakeplaceforsomenon-hyperbolicsystems,such as circle rotations with Diophantine rotation number or, more generally, for Diophantinetranslationsandlinearflowsonatorus. 3. Rigidityforactionsofhigherrankabeliangroups The goal of this monograph and its projected sequel is to give an up-to-date and, as much as possible, self-contained presentation of certain rigidity phe- nomenathatappearforactionsofhigherrankabeliangroupsbysmoothmaps oncompactdifferentiablemanifolds.Wewillconsiderhyperbolicandpartially hyperbolicZk-andRk-actions,k ≥2,or,moregenerally,Zk×Rl, k+l ≥2. CertainresultsforhigherrankabeliansemigroupsZk+,k ≥ 2,arealsodis- cussed and, by a slight abuse of terminology, we will use the phrase higher rankabeliangroupsactionsforthemaswell. The list of known examples of Anosov (normally hyperbolic) and par- tially hyperbolic actions of higher rank abelian groups which do not arise from products and other standard constructions is restricted. All such basic examples are differentiably conjugate to algebraic actions. Basic definitions appearinSection1.6;principalclassesofexamplesaresurveyedinChapter2. These actions exhibit a remarkable array of measurable and differentiable

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.