ebook img

Riemann-Roch Spaces and Computation PDF

147 Pages·2015·0.898 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Riemann-Roch Spaces and Computation

ParaskevasAlvanos Riemann-RochSpacesandComputation Paraskevas Alvanos Riemann-Roch Spaces and Computation | Managing Ediror: Aleksandra Nowacka-Leverton Associate Editor: Dimitris Poulakis Language Editor: Nick Rogers PublishedbyDeGruyterOpenLtd,Warsaw/Berlin PartofWalterdeGruyterGmbH,Berlin/Munich/Boston ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0license, whichmeansthatthetextmaybeusedfornon-commercialpurposes,providedcreditisgiventothe author.Fordetailsgotohttp://creativecommons.org/licenses/by-nc-nd/3.0/. Copyright©2014ParaskevasAlvanos publishedbyDeGruyterOpen ISBN978-3-11-042613-7 e-ISBN978-3-11-042612-0 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.dnb.de. ManagingEditor:AleksandraNowacka-Leverton AssociateEditor:DimitrisPoulakis LanguageEditor:NickRogers www.degruyteropen.com Coverillustration: ©ParaskevasAlvanos Contents Preface|VIII Part I: Riemann-RochSpaces 1 ElementsofAlgebra|2 1.1 Domains|2 1.2 RingsandFields|9 1.3 NormandTrace|13 1.4 GroupofUnits|15 2 FunctionFieldsandCurves|17 2.1 AlgebraicFunctionFields|17 2.2 AffineCurves|19 2.3 ProjectiveCurves|23 2.4 GenusofaCurve|27 3 Riemann-RochSpaces|32 3.1 ValuationRings|32 3.2 PlacesandDivisors|36 3.3 Riemann-RochSpace|39 3.4 HolomorphyRings|41 4 IntegralDomains|44 4.1 FractionalIdeals|44 4.2 Localization|46 4.3 R-moduleV|50 Part II: Computation 5 ComputingIntegralBases|54 5.1 Discriminant|54 5.2 IdealBasis|56 5.3 Idealizer|58 5.4 Radical|60 5.5 ComputingtheDiscriminantsIdealRadical |61 5.6 ComputingIdealizersandInverseIdeals|64 5.7 Trager’sAlgorithm|66 5.8 Examples|67 6 ComputingRiemann-RochSpaces|73 6.1 ReducedBasisAlgorithms|73 6.2 TheDimensionofL(D)|79 6.3 ComputingL(D)|81 7 ComputingResultantandNormFormEquations|85 7.1 Resultant|85 7.2 ComputingN (x a +···+x a )=k|90 L/K 1 1 n n 7.3 Examples|92 8 ComputingIntegralPointsonRationalCurves|98 8.1 IntegralPointsonCurves|98 8.2 IntegralPointsonCurveswith|Σ (C)|≥3 |99 ∞ 8.3 IntegralPointsonCurveswith|Σ (C)|=2(i) |106 ∞ 8.4 IntegralPointsonCurveswith|Σ (C)|=2(ii)|109 ∞ 8.5 IntegralPointsonCurveswith|Σ (C)|=1 |112 ∞ Appendices|115 A UnimodularMatrices|115 A.1 TransformationMatrix|115 A.2 UnimodularTransformations|116 B Algorithm’sCodes|118 B.1 IntegralPoints3Algorithm’sCode |118 B.2 IntegralPoints2iAlgorithm’sCode |126 B.3 IntegralPoints2iiAlgorithm’sCode |129 B.4 IntegralPoints1Algorithm’sCode |133 Bibliography|136 Index|139 IndexofAlgorithms|141 | Tomy"Flower" Στο῾῾Τζατζούρι᾿᾿μου Preface Riemann-Rochspaceisafieldoffunctionswithapplicationsinalgebraicgeom- etryandcodingtheory.Thistextbookisfocusedontheoryandoncomputationsthat arerelevanttoRiemann-Rochspaces.Itisnotedthatforthecomputationofintegral points on curves, the study of a Riemann-Roch space is necessary (Alvanos et al., 2011;Poulakisetal.,2000;Poulakisetal.,2002).Besidesthecomputationofintegral pointsoncurves,computationofRiemann-Rochspacesareusedfortheconstruction ofGoppacodes(Goppa,1981;Goppa,1988),symbolicparametrizationsofcurves(Van Hoeij,1995;VanHoeij,1997),integrationofalgebraicfunctions(Davenport,1981)and alotmore(Hirenet.al,2005). Riemann-RochspacearisesfromtheclassicalRiemann-Rochtheoremwhichcom- putesthedimensionofthefieldoffunctionswithspecificzerosandpoles dimD=degD−g+1+i(D). Here D isadivisor, g isthegenusofthefunctionfieldand i(D)aninvariantofthe functionfield.Theinequality dimD≥degD−g+1 wasinitiallyprovedbyRiemann(1857)andwasupgradedtoequalitybyRoch(1865). Thescopeofthetextbookisnottoaddoriginalresearchtotheliteraturebuttogive aneducationalperspectiveonRiemann-Rochspacesandthecomputationofalgebraic structuresconnectedtoRiemann-Rochtheorem.Theproofsoftheoremsthatusestiff techniquesareavoided,andproofswitheducationalvalue(accordingtotheauthor’s opinion)arepresented,allowingthereadertofollowthebookwithoutmanydifficult computation.Inordertofollowthetextbook,thereadershouldbeawareofthebasic algebraicstructuressuchasgroup,ring,primeideal,maximalideal,numberfield, modules,vectorspacesandthebasicsoflinearalgebra,matrixtheoryandpolynomial theory. Thefirstpartofthetextbookconsistsoffourchapterswherealgebraicstructures andsomeoftheirpropertiesareanalysed.Thesecondpartofthetextbookconsists offourmorechapterswherealgorithmsandexamplesconnectedtoRiemann-Roch spacesarepresented.Throughoutthetextbookavarietyofexamplescoverthemajor- ityofthecases. Thistextbookisarésuméoftheauthor’sworkandhisresearchthelast15years. Therefore,theauthorwouldliketothankallofhiscolleaguesandfriendsthathelped himineverywayduringthoseyears.Especially,theauthorwouldliketoexpresshis deepgratitudetohisbelovedwife,K.Roditou,forhercommentsandhersupportdur- ingthewritingofthistextbook.Theauthorwouldalsoliketothankverymuchthe refereesfortheircorrectionsandtheirverythoughtfulandusefulcommentsandK. Chatzinikolaouforhissuggestionsaboutthedesignofthecover.Lastbutnotleast, ©2014ParaskevasAlvanos ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0License. Preface | IX theauthorwouldliketoexpresshisultimaterespecttohisformersupervisorandcur- rentmathematicalmentorprof.D.Poulakis. 1 Elements of Algebra Inthisfirstchapterweintroducethealgebraicstructuresthatwillbeusedinthe followingchapters.Definitionsareenrichedwithlotsofexamplesandfiguresforbet- terunderstanding.Wewillonlydealwithcommutativeringsandnumberfieldsand thereforeeveryreferencetoaringorafieldimpliesacommutativeringandanumber fieldrespectively. 1.1 Domains Inthissectionweinvestigatesomebasicpropertiesofdomainsthatareusedthrough- outthetextbook.Startingwiththealgebraicstructureofthecommutativeringand addingpropertiestoit,weestablishthealgebraicstructureofthefield. Definition AcommutativeringRiscalledanintegraldomainifforanytwoelements a,b∈R,a·b=0impliesthata=0orb=0. Thedefinitionofintegraldomainisnecessaryinordertohaveadomainwheredivis- ibilitycanoccur.Asweknowthesetofn×ninvertiblematrices,wheretheidentity elementoftheringistheidentitymatrixandthezeroelementoftheringisthezero matrix,formacommutativering.TheproductoftwomatricesA,Bmightbethezero matrixwhileneitherofAandBarezeromatrices.Forinstance (cid:34) (cid:35) (cid:34) (cid:35) (cid:34) (cid:35) 0 0 2 0 0 0 · = 0 2 0 0 0 0 Thus,theringofn×ndiagonalmatricesisnotanintegraldomain,eventhoughitis acommutativering.Allfields,theringofrationalintegersZandallthesubringsof integraldomainsareintegraldomains. Proposition1.1.1. IfRisanintegraldomainthenR[x]isalsoanintegraldomain. Proof. InordertoprovethatR[x]isanintegraldomainitisequivalenttoprovethat foranytwoelements f(x)=a xn+···+a x+a , a ≠0 n 1 0 n and g(x)=b xm+···+b x+b , b ≠0 m 1 0 m iff(x)g(x)=0thenf(x)=0org(x)=0.Theproductf(x)g(x)is f(x)g(x)=a b xn+m+···+(a b +a b )x+a b =0. n m 1 0 0 1 0 0 Thusa b =0,whichisacontradiction. n m ©2014ParaskevasAlvanos ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0License.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.