ParaskevasAlvanos Riemann-RochSpacesandComputation Paraskevas Alvanos Riemann-Roch Spaces and Computation | Managing Ediror: Aleksandra Nowacka-Leverton Associate Editor: Dimitris Poulakis Language Editor: Nick Rogers PublishedbyDeGruyterOpenLtd,Warsaw/Berlin PartofWalterdeGruyterGmbH,Berlin/Munich/Boston ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0license, whichmeansthatthetextmaybeusedfornon-commercialpurposes,providedcreditisgiventothe author.Fordetailsgotohttp://creativecommons.org/licenses/by-nc-nd/3.0/. Copyright©2014ParaskevasAlvanos publishedbyDeGruyterOpen ISBN978-3-11-042613-7 e-ISBN978-3-11-042612-0 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.dnb.de. ManagingEditor:AleksandraNowacka-Leverton AssociateEditor:DimitrisPoulakis LanguageEditor:NickRogers www.degruyteropen.com Coverillustration: ©ParaskevasAlvanos Contents Preface|VIII Part I: Riemann-RochSpaces 1 ElementsofAlgebra|2 1.1 Domains|2 1.2 RingsandFields|9 1.3 NormandTrace|13 1.4 GroupofUnits|15 2 FunctionFieldsandCurves|17 2.1 AlgebraicFunctionFields|17 2.2 AffineCurves|19 2.3 ProjectiveCurves|23 2.4 GenusofaCurve|27 3 Riemann-RochSpaces|32 3.1 ValuationRings|32 3.2 PlacesandDivisors|36 3.3 Riemann-RochSpace|39 3.4 HolomorphyRings|41 4 IntegralDomains|44 4.1 FractionalIdeals|44 4.2 Localization|46 4.3 R-moduleV|50 Part II: Computation 5 ComputingIntegralBases|54 5.1 Discriminant|54 5.2 IdealBasis|56 5.3 Idealizer|58 5.4 Radical|60 5.5 ComputingtheDiscriminantsIdealRadical |61 5.6 ComputingIdealizersandInverseIdeals|64 5.7 Trager’sAlgorithm|66 5.8 Examples|67 6 ComputingRiemann-RochSpaces|73 6.1 ReducedBasisAlgorithms|73 6.2 TheDimensionofL(D)|79 6.3 ComputingL(D)|81 7 ComputingResultantandNormFormEquations|85 7.1 Resultant|85 7.2 ComputingN (x a +···+x a )=k|90 L/K 1 1 n n 7.3 Examples|92 8 ComputingIntegralPointsonRationalCurves|98 8.1 IntegralPointsonCurves|98 8.2 IntegralPointsonCurveswith|Σ (C)|≥3 |99 ∞ 8.3 IntegralPointsonCurveswith|Σ (C)|=2(i) |106 ∞ 8.4 IntegralPointsonCurveswith|Σ (C)|=2(ii)|109 ∞ 8.5 IntegralPointsonCurveswith|Σ (C)|=1 |112 ∞ Appendices|115 A UnimodularMatrices|115 A.1 TransformationMatrix|115 A.2 UnimodularTransformations|116 B Algorithm’sCodes|118 B.1 IntegralPoints3Algorithm’sCode |118 B.2 IntegralPoints2iAlgorithm’sCode |126 B.3 IntegralPoints2iiAlgorithm’sCode |129 B.4 IntegralPoints1Algorithm’sCode |133 Bibliography|136 Index|139 IndexofAlgorithms|141 | Tomy"Flower" Στο῾῾Τζατζούρι᾿᾿μου Preface Riemann-Rochspaceisafieldoffunctionswithapplicationsinalgebraicgeom- etryandcodingtheory.Thistextbookisfocusedontheoryandoncomputationsthat arerelevanttoRiemann-Rochspaces.Itisnotedthatforthecomputationofintegral points on curves, the study of a Riemann-Roch space is necessary (Alvanos et al., 2011;Poulakisetal.,2000;Poulakisetal.,2002).Besidesthecomputationofintegral pointsoncurves,computationofRiemann-Rochspacesareusedfortheconstruction ofGoppacodes(Goppa,1981;Goppa,1988),symbolicparametrizationsofcurves(Van Hoeij,1995;VanHoeij,1997),integrationofalgebraicfunctions(Davenport,1981)and alotmore(Hirenet.al,2005). Riemann-RochspacearisesfromtheclassicalRiemann-Rochtheoremwhichcom- putesthedimensionofthefieldoffunctionswithspecificzerosandpoles dimD=degD−g+1+i(D). Here D isadivisor, g isthegenusofthefunctionfieldand i(D)aninvariantofthe functionfield.Theinequality dimD≥degD−g+1 wasinitiallyprovedbyRiemann(1857)andwasupgradedtoequalitybyRoch(1865). Thescopeofthetextbookisnottoaddoriginalresearchtotheliteraturebuttogive aneducationalperspectiveonRiemann-Rochspacesandthecomputationofalgebraic structuresconnectedtoRiemann-Rochtheorem.Theproofsoftheoremsthatusestiff techniquesareavoided,andproofswitheducationalvalue(accordingtotheauthor’s opinion)arepresented,allowingthereadertofollowthebookwithoutmanydifficult computation.Inordertofollowthetextbook,thereadershouldbeawareofthebasic algebraicstructuressuchasgroup,ring,primeideal,maximalideal,numberfield, modules,vectorspacesandthebasicsoflinearalgebra,matrixtheoryandpolynomial theory. Thefirstpartofthetextbookconsistsoffourchapterswherealgebraicstructures andsomeoftheirpropertiesareanalysed.Thesecondpartofthetextbookconsists offourmorechapterswherealgorithmsandexamplesconnectedtoRiemann-Roch spacesarepresented.Throughoutthetextbookavarietyofexamplescoverthemajor- ityofthecases. Thistextbookisarésuméoftheauthor’sworkandhisresearchthelast15years. Therefore,theauthorwouldliketothankallofhiscolleaguesandfriendsthathelped himineverywayduringthoseyears.Especially,theauthorwouldliketoexpresshis deepgratitudetohisbelovedwife,K.Roditou,forhercommentsandhersupportdur- ingthewritingofthistextbook.Theauthorwouldalsoliketothankverymuchthe refereesfortheircorrectionsandtheirverythoughtfulandusefulcommentsandK. Chatzinikolaouforhissuggestionsaboutthedesignofthecover.Lastbutnotleast, ©2014ParaskevasAlvanos ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0License. Preface | IX theauthorwouldliketoexpresshisultimaterespecttohisformersupervisorandcur- rentmathematicalmentorprof.D.Poulakis. 1 Elements of Algebra Inthisfirstchapterweintroducethealgebraicstructuresthatwillbeusedinthe followingchapters.Definitionsareenrichedwithlotsofexamplesandfiguresforbet- terunderstanding.Wewillonlydealwithcommutativeringsandnumberfieldsand thereforeeveryreferencetoaringorafieldimpliesacommutativeringandanumber fieldrespectively. 1.1 Domains Inthissectionweinvestigatesomebasicpropertiesofdomainsthatareusedthrough- outthetextbook.Startingwiththealgebraicstructureofthecommutativeringand addingpropertiestoit,weestablishthealgebraicstructureofthefield. Definition AcommutativeringRiscalledanintegraldomainifforanytwoelements a,b∈R,a·b=0impliesthata=0orb=0. Thedefinitionofintegraldomainisnecessaryinordertohaveadomainwheredivis- ibilitycanoccur.Asweknowthesetofn×ninvertiblematrices,wheretheidentity elementoftheringistheidentitymatrixandthezeroelementoftheringisthezero matrix,formacommutativering.TheproductoftwomatricesA,Bmightbethezero matrixwhileneitherofAandBarezeromatrices.Forinstance (cid:34) (cid:35) (cid:34) (cid:35) (cid:34) (cid:35) 0 0 2 0 0 0 · = 0 2 0 0 0 0 Thus,theringofn×ndiagonalmatricesisnotanintegraldomain,eventhoughitis acommutativering.Allfields,theringofrationalintegersZandallthesubringsof integraldomainsareintegraldomains. Proposition1.1.1. IfRisanintegraldomainthenR[x]isalsoanintegraldomain. Proof. InordertoprovethatR[x]isanintegraldomainitisequivalenttoprovethat foranytwoelements f(x)=a xn+···+a x+a , a ≠0 n 1 0 n and g(x)=b xm+···+b x+b , b ≠0 m 1 0 m iff(x)g(x)=0thenf(x)=0org(x)=0.Theproductf(x)g(x)is f(x)g(x)=a b xn+m+···+(a b +a b )x+a b =0. n m 1 0 0 1 0 0 Thusa b =0,whichisacontradiction. n m ©2014ParaskevasAlvanos ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivs3.0License.