ebook img

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions PDF

371 Pages·2015·6.531 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions OT146_Trogdon_FM.indd 1 11/12/2015 2:20:33 PM Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions Thomas Trogdon New York University New York, New York Sheehan Olver The University of Sydney New South Wales, Australia Society for Industrial and Applied Mathematics Philadelphia OT146_Trogdon_FM.indd 3 11/12/2015 2:20:33 PM Copyright © 2016 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Mathematica is a registered trademark of Wolfram Research, Inc. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Publisher David Marshall Acquisitions Editor Elizabeth Greenspan Developmental Editor Gina Rinelli Managing Editor Kelly Thomas Production Editor David Riegelhaupt Copy Editor Nicola Howcroft Production Manager Donna Witzleben Production Coordinator Cally Shrader Compositor Techsetters, Inc. Graphic Designer Lois Sellers Library of Congress Cataloging-in-Publication Data Trogdon, Thomas D. Riemann–Hilbert problems, their numerical solution, and the computation of nonlinear special functions / Thomas Trogdon, New York University, New York, New York, Sheehan Olver, The University of Sydney, New South Wales, Australia. pages cm. -- (Other titles in applied mathematics ; 146) Includes bibliographical references and index. ISBN 978-1-611974-19-5 1. Riemann–Hilbert problems. 2. Differentiable dynamical systems. I. Olver, Sheehan. II. Title. QA379.T754 2016 515’.353--dc23 2015032776 is a registered trademark. OT146_Trogdon_FM.indd 4 11/12/2015 2:20:33 PM To Karen and Laurel t OT146_Trogdon_FM.indd 5 11/12/2015 2:20:33 PM Contents Preface xi NotationandAbbreviations xv I Riemann–HilbertProblems 1 1 ClassicalApplicationsofRiemann–HilbertProblems 3 1.1 Error function: From integral representation to Riemann–Hilbert problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Ellipticintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Airyfunction: FromdifferentialequationtoRiemann–Hilbert problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Jacobioperatorsandorthogonalpolynomials . . . . . . . . . . . . . . . 13 1.6 SpectralanalysisofSchrödingeroperators . . . . . . . . . . . . . . . . . 16 2 Riemann–HilbertProblems 23 2.1 PrecisestatementofaRiemann–Hilbertproblem . . . . . . . . . . . . 23 2.2 HöldertheoryofCauchyintegrals . . . . . . . . . . . . . . . . . . . . . . 25 2.3 ThesolutionofscalarRiemann–Hilbertproblems . . . . . . . . . . . . 34 2.4 ThesolutionofsomematrixRiemann–Hilbertproblems . . . . . . . 40 2.5 HardyspacesandCauchyintegrals . . . . . . . . . . . . . . . . . . . . . . 44 2.6 Sobolevspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.7 Singularintegralequations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.8 Additionalconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3 InverseScatteringandNonlinearSteepestDescent 87 3.1 Theinversescatteringtransform . . . . . . . . . . . . . . . . . . . . . . . 88 3.2 Nonlinearsteepestdescent . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 II NumericalSolution ofRiemann–Hilbert Problems 107 4 ApproximatingFunctions 109 4.1 ThediscreteFouriertransform . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2 Chebyshevseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3 Mappedseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4 Vanishingbases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 vii viii Contents 5 NumericalComputationofCauchyTransforms 125 5.1 ConvergenceofapproximationofCauchytransforms . . . . . . . . . 126 5.2 Theunitcircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3 Casestudy: Computingtheerrorfunction . . . . . . . . . . . . . . . . . 130 5.4 Theunitintervalandsquarerootsingularities . . . . . . . . . . . . . . 131 5.5 Casestudy: Computingellipticintegrals . . . . . . . . . . . . . . . . . . 135 5.6 Smoothfunctionsontheunitinterval . . . . . . . . . . . . . . . . . . . . 136 5.7 ApproximationofCauchytransformsnearendpointsingularities . . 144 6 TheNumericalSolutionofRiemann–Hilbert Problems 155 6.1 Projectionmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2 CollocationmethodforRHproblems . . . . . . . . . . . . . . . . . . . 160 6.3 Casestudy: Airyequation . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.4 Casestudy: MonodromyofanODEwiththreesingularpoints . . . 168 7 UniformApproximation TheoryforRiemann–HilbertProblems 173 7.1 AnumericalRiemann–Hilbertframework . . . . . . . . . . . . . . . . 175 7.2 SolvinganRHproblemondisjointcontours . . . . . . . . . . . . . . . 177 7.3 Uniformapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 Acollocationmethodrealization . . . . . . . . . . . . . . . . . . . . . . . 187 III The Computation of Nonlinear Special Functions and Solutions of NonlinearPDEs 191 8 TheKorteweg–deVriesandModifiedKorteweg–deVriesEquations 193 8.1 ThemodifiedKorteweg–deVriesequation . . . . . . . . . . . . . . . . . 202 8.2 TheKorteweg–deVriesequation . . . . . . . . . . . . . . . . . . . . . . . 209 8.3 Uniformapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9 TheFocusingandDefocusingNonlinearSchrödingerEquations 231 9.1 IntegrabilityandRiemann–Hilbertproblems . . . . . . . . . . . . . . . 232 9.2 Numericaldirectscattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 9.3 Numericalinversescattering . . . . . . . . . . . . . . . . . . . . . . . . . . 237 9.4 ExtensiontohomogeneousRobinboundaryconditionsonthehalf- line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 9.5 Singularsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 9.6 Uniformapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10 ThePainlevé IITranscendents 253 10.1 Positivex,s =0,and0≤1−s s ≤1 . . . . . . . . . . . . . . . . . . . . 256 2 1 3 10.2 Negativex,s =0,and1−s s >0 . . . . . . . . . . . . . . . . . . . . . . 258 2 1 3 10.3 Negativex,s =0,ands s =1 . . . . . . . . . . . . . . . . . . . . . . . . 263 2 1 3 10.4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 11 TheFinite-GenusSolutions oftheKorteweg–deVriesEquation 269 11.1 Riemannsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 11.2 Thefinite-genussolutionsoftheKdVequation . . . . . . . . . . . . . . 274 11.3 FromaRiemannsurfaceofgenus g tothecutplane . . . . . . . . . . . 278 11.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.5 ARiemann–Hilbertproblemwithsmoothsolutions . . . . . . . . . . 284 Contents ix 11.6 Numericalcomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 11.7 AnalysisofthedeformedandregularizedRHproblem . . . . . . . . . 297 11.8 Uniformapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 12 TheDressingMethodandNonlinearSuperposition 303 12.1 AnumericaldressingmethodfortheKdVequation . . . . . . . . . . . 304 12.2 AnumericaldressingmethodforthedefocusingNLSequation . . . 315 IV Appendices 321 A FunctionSpacesandFunctionalAnalysis 323 A.1 Banachspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 A.2 Linearoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 A.3 Matrix-valuedfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 B FourierandChebyshevSeries 333 B.1 Fourierseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 B.2 Chebyshevseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 C ComplexAnalysis 345 C.1 Inferredanalyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 D RationalApproximation 347 D.1 Boundedcontours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 D.2 Lipschitzgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 E AdditionalKdVResults 357 E.1 Comparisonwithexistingnumericalmethods . . . . . . . . . . . . . . 357 E.2 TheKdV g-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Bibliography 363 Index 371 Preface Thisbook grew out ofthe collaboration oftheauthors, which began in theSpring of2010,andthefirstauthor’sPhDdissertation. Thesecondauthordeveloped muchof thetheoryinPartIIduringhisJuniorResearchFellowshipatSt. John’sCollegeinOx- ford,applyingittothePainlevéIIequationinthenonasymptoticregime. Theauthors, togetherwithBernardDeconinck,thendevelopedthemethodologypresentedinChap- ter 8 fortheKorteweg–deVries(KdV) equation. Theaccuracy thatis observed begged foranexplanation, leadingtotheframeworkinChapter 7. Aroundthesametime,the approachesforthenonlinearSchrödinger(NLS)equations,thePainlevéIItranscendents, andthefinite-genussolutionsoftheKdVequationweredeveloped. Theseapplications, alongwiththeoriginalKdVmethodology,makeupPartIII.Motivatedbythedifficultyin findingacomprehensive,beginninggraduate-level referenceforRiemann–Hilbertprob- lems (RH problems) that included the L2 theory of singular integrals, the first author compiledmuchofPartIduringhisPhDstudiesattheUniversityofWashington. Centraltothephilosophyofthisbookisthequestion,Whatdoesitmeanto“solve” an equation? Themostbasicansweristoestablishexistence—theequationhasatleast one solution —and uniqueness—theequation hasone andonly onesolution. A more concreteansweristhatanequationissolvedifitssolutioncanbe evaluated,typicallyby approximationinareliableandefficientway. Thiscanbeaccomplishedviaasymptotics: thesolutiontotheequationisgivenbyanapproximationthatimproveswithaccuracyin certain parameter regimes. Otherwise, thesolution canbeevaluated bynumerics, ase- quenceofapproximationsthatconvergetothetruesolution. Inthecaseoflinearpartial differentialequations(PDEs),standardsolutionsaregivenasintegralrepresentationsob- tainedvia,say,FourierseriesorGreen’sfunctions. Integralrepresentationsarepreferable totheoriginalPDEbecausetheysatisfyallthepropertiesofa“solution”totheequation: 1. Existenceanduniquenessgenerallyfollowdirectlyfromthewell-understoodintegra- tiontheory. 2. Asymptoticsareachievableviathemethodofstationaryphaseorthemethodofsteepest descent. 3. Numericsforintegralshaveawell-developedtheory,andtheintegralrepresentations canbereadilyevaluatedviaquadrature. Inplaceofintegralrepresentations,fundamentalintegrablenonlinearordinarydiffer- entialequations(ODEs)andPDEshaveanRHproblem representation. RHproblems areboundary-valueproblemsforpiecewise(orsectionally)analyticfunctionsinthecom- plexplane. OurgoalistosolvetheseintegrablenonlinearODEsandPDEsbyutilizing theirRHproblemrepresentationsinamanneranalogoustointegralrepresentations. In somecases,weuseRHproblemstoestablishexistenceanduniqueness,aswellasderive xi xii Preface asymptotics. But mostimportantly, wewanttobeabletoaccurately evaluatethesolu- tionsinsideandoutsideofasymptoticregimeswithaunifiednumericalapproach. Thestringentrequirementsweputintoourdefinitionofa“solution”forceallsolu- tions we find to be in a very particular category: nonlinear special functions. A special function is shorthand for a mathematical function which arises in many physical, bio- logical,orcomputationalcontextsorinavarietyofmathematicalsettings. Anonlinear specialfunctionisaspecialfunctionarisingfromafundamentallynonlinearsetting. For centuries, mathematicians have been studying special functions. An important feature thatseparatesspecialfunctionsfromotherelementaryfunctionsisthattheygenerically takeatranscendental1form. Thecatenary,discoveredbyLeibniz,Huygens,andBernoulliinthe1600s,describes theshapeofafreelyhangingropeintermsofthehyperboliccousin ofthecosinefunc- tion. Thestudyofspecialtranscendentalfunctionscontinuedwiththediscoveryofthe Airy and Bessel functions which share similar but more complicated series representa- tionswhencomparedtothehyperboliccosinefunction. Theseseriesrepresentationsare oftenderivedusingadifferentialequationthatissatisfiedbythegivenfunction. Sucha derivationsucceedsinmanycaseswhenthedifferentialequationislinear. The19thcenturywasagoldenageforspecialfunctiontheory. Techniquesfromthe field of complex analysis were invoked to study the so-called elliptic functions. These functionsareofafundamentallynonlinearnature: ellipticfunctionsaresolutionsofnon- lineardifferential equations. Theearly20thcentury marked thework ofPaul Painlevé andhiscollaboratorsinidentifyingtheso-calledPainlevétranscendents.ThePainlevétran- scendentsare solutionsof nonlineardifferential equationsthat possess important prop- erties in the complex plane. Independent of their mathematical properties, which are describedatlengthin[52],thePainlevétranscendentshavefounduseintheasymptotic study ofwater wavemodels [4,32,35] and in statisticalmechanics and random matrix theory[109,120]. ThroughthestudyofRHproblems, wediscussclassical special functions(theAiry function,ellipticfunctions,andtheerrorfunction),canonicalnonlinearspecialfunctions (ellipticfunctionsandthePainlevéIItranscendents),andsomenoncanonicalspecialfunc- tions (solutions of integrable nonlinear PDEs) which we advocate for inclusion in the pantheonofnonlinearspecialfunctionsbasedonthestructurewedescribe. Wenowpresentthelayoutofthebooktoguidethereader. Acomprehensivetableof notationsisgivenafterthePreface,andoptionalsectionsaremarkedwithanasterisk. • PartIcontainsanintroductiontotheappliedtheoryofRHproblems. Chapter1 contains a survey of applications in which RH problems arise. Then Chapter 2 describes the classical development of the theory of Cauchy integrals of Hölder continuousfunctions. ThistheoryisusedtoexplicitlysolvemanyscalarRHprob- lems. Lebesgue andSobolev spaces areused todevelop thetheory ofsingular in- tegralequationsinordertodealwiththematrix,ornoncommutative,case. Some oftheseresultsarenew,whilemanyothersarecompiledfromamultitudeofrefer- ences. Finally,themethodofnonlinearsteepestdescentdevelopedbyP.Deiftand X.ZhouisreviewedinasimplifiedforminChapter3. Onfirstreading,manyof theproofsinthispartcanbeomitted. • PartIIcontainsadetaileddevelopmentofthenumericalmethodologyusedtoap- proximate the solutions of RH problems. While there is certainly some depen- denceofPartIIonPartI,forthemorenumericallyinclined,itcanbereadmostly 1Inthiscontext,transcendentalmeansthatthefunctioncannotbeexpressedasafinitenumberofalgebraic steps,includingrationalpowers,appliedtoavariableorvariables[63].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.