agronomy Article Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner SaskiaWindisch1,*,SebastianBott1,Marc-AndreasOhler1,Hans-PeterMock2, RicoLippmann2,RitaGrosch3,KorneliaSmalla4,UweLudewig1andGünterNeumann1 1 DepartmentofNutritionalCropPhysiology,InstituteofCropScience(340h),UniversityofHohenheim, 70599Stuttgart,Germany;[email protected](S.B.);[email protected](M.-A.O.); [email protected](U.L.);[email protected](G.N.) 2 Leibniz-InstitutfürPflanzengenetikundKulturpflanzenforschung,06466Gatersleben,Germany; [email protected](H.-P.M.);[email protected](R.L.) 3 DepartmentPlantHealth,LeibnizInstituteofVegetableandOrnamentalCropsGroßbeeren/Erfurte.V., 14979Großbeeren,Germany;[email protected] 4 JuliusKühn-Institut-FederalResearchCentreforCultivatedPlants,InstituteforEpidemiologyandPathogen Diagnostics,38104Braunschweig,Germany;[email protected] * Correspondence:[email protected];Tel.:+49-170-459-22253 AcademicEditor:RobertJ.Kremer Received:4May2017;Accepted:12June2017;Published:18June2017 Abstract: Previous studies conducted on a unique field site comprising three contrasting soils (diluvialsandDS,alluvialloamAL,loessloamLL)underidenticalcroppinghistory,demonstrated soiltype-dependentdifferencesinbiocontrolefficiencyagainstRhizoctoniasolani-inducedbottomrot disease in lettuce by two bacterial inoculants (Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18). Disease severity declined in the order DS > AL > LL. These differences were confirmed under controlled conditions, using the same soils in minirhizotron experiments. Gaschromatography-massspectrometry(GC-MS)profilingofrhizospheresoilsolutionsrevealed benzoicandlauricacidsasantifungalcompounds;previouslyidentifiedinrootexudatesoflettuce. Pathogeninoculationandpre-inoculationwithbacterialinoculantssignificantlyincreasedtherelease ofantifungalrootexudatesinasoiltype-specificmanner;withthehighestabsolutelevelsdetected ontheleast-affectedLLsoil. Soiltype-dependentdifferenceswerealsorecordedforthebiocontrol effectsofthetwobacterialinoculants;showingthehighestefficiencyafterdouble-inoculationonthe ALsoil. However,thiswasassociatedwithareductionofshootgrowthandroothairdevelopment andalimitedmicronutrientstatusofthehostplants. Obviously,diseaseseverityandtheexpression of biocontrol effects are influenced by soil properties with potential impact on reproducibility of practicalapplications. Keywords: lettuce;soilmicrobiome;rootexudates;planthealth 1. Introduction Pathogen-relatedyieldlossesareamongthemostprominentlimitationsincropproduction[1]. Theuseofresistantcultivars,applicationofchemicalpesticides,aswellascroprotation[2]represent approachesaimedtoreducetheincidenceandseverityofpathogenattacks[1,3].However,particularly forsoil-bornepathogenicfungiwithawidehostspectrum,suchasRhizoctonia,Fusarium,orPythium, thedevelopmentofefficientcontrolstrategiesremainsahighlychallengingtask. Longpersistence of the pathogen in soils as achieved by the formation of sclerotia [4,5] and saprophytic growth stages, as well as restricted availability of resistant crop cultivars or fungicides are major limiting Agronomy2017,7,44;doi:10.3390/agronomy7020044 www.mdpi.com/journal/agronomy Agronomy2017,7,44 2of17 factors[6]. However,distinctsoil-microbialpopulationscaninducesuppressionofpathogens[7],and thegeneralsuppressivenessofsoilsagainstplantpathogens[8]isacharacteristicofsoilqualityand health [9]. This implies that biological control of pathogens via microbial antagonists is a realistic strategy,providedthatitispossibletoidentifyspecificcontrolstrains,whichcanbetransferredto pathogen-affectedsoilstoachieveaspecificsoilsuppressiveness[8]byharnessingthebeneficialsoil microbiomesagainstpathogens[10]. However,theexploitationofmicrobialinoculantsasbiocontrol agentsincropproductionsystemsisfrequentlyhamperedbyinconsistentresultsatthefieldscale[3], likelylinkedtoplantperformance. Inmanycasesthereisstillasubstantiallackofknowledgeabout thefactorsdeterminingthesuccessfulestablishmentofbiocontrolsystems. The rhizosphere of the host plants is the major site for plant-microbial interactions, with rhizodeposition,i.e.,thereleaseoforganiccarbonthroughplantroots,asthemajordrivingforce[11,12]. Duringtheseinteractions,bothbeneficialmicroorganismsandunfavorablepathogensareattractedby theplantroots[12–14]withrhizodepositionsactingassignalsandascarbonandnitrogensources,but alsoascomponentsofplantdefenseagainstpathogens.Constantmicrobiome–rootinteractionsmediate nutrient turnover in the rhizosphere, which enables the plants to acquire nutrients and to receive benefitsduringgrowthphases[15,16],whilesoil-bornepathogensadapttotherhizosphere,compete withbeneficialsoilmicrobesfornutrientavailability,andcanharmthehostplant. Rhizodeposition ishighlyvariableandinfluencedbymanyabioticandbioticfactors. Itcomprisespassivelossesof organiccompounds,aswellashighlyregulatedsecretoryprocesseswithadaptivefunctions[17,18]. Due to the central role of rhizodeposits in shaping rhizosphere-microbial communities, a more detailedunderstandingofthefactorsdeterminingrhizodepositionwithimpactonplantpathogens andmicrobialantagonistsintherhizosphere,willprovideimportantinformationontheconditions required for successful establishment of biocontrol systems. As an example, biological control of Rhizoctoniasolani(Kühn)teleomorphThanatephoruscucumeris(A.B.FrankDonk)[6]bybacterialstrains ofPseudomonasjesseniiandSerratiaplymuthicahasbeenproposedasapromisingapproachagainst bottomrotdiseaseinlettuce(Lactucasativa)[2,19–23]. Torevealdifferencesinbiocontrolefficiencylinkedtothesoiltypeandnotinfluencedbylocal climateorcroppinghistory,Schreiteretal.[23]usedauniqueexperimentalfieldplotsystem,withthree differentsoiltypesstoredatthesamefieldsitefor10yearsunderthesameagriculturalmanagement. Clearsoiltype-dependentdifferencesinthebacterialcommunitystructureofthebulksoilsandthe corresponding lettuce rhizospheres were detected. This was associated with distinct quantitative patternsoflow-molecularweightcompoundsintherhizospheresoilsolutions,mainlyrepresenting rhizodeposits, detected by microsampling and gas chromatography-mass spectrometry (GC-MS) profilinginaparallelminirhizotronstudyconductedwiththesamesoils[16].Particularly,benzoicacid andlauricacidwereofspecialinterestbesidesotherorganicacids,variousaminoacids,amines,sugars, andsugaralcohols. Itisdocumentedthatthesetwocompoundsexhibitantifungalactivityagainst Rhizoctoniasolani,Pythiumultimum,Sclerotiniasclerotiorum,andothers[24,25],andhavebeenpreviously identifiedinrootexudatesoflettucegrowninsoil-freesystemsinhydroponicculture[26]. Inoculation ofthethreesoilswithRhizoctoniasolaniAG1-IB(R.solani)revealedastrongsoiltype-dependenteffect ondiseaseseverityunderfieldconditions,whiletherhizospherecompetenceandthebiocontrolactivity ofthepre-inoculatedbacterialbiocontrolstrainsPseudomonasjesseniiRU47andSerratiaplymuthica 3Re-4-18weremuchlessaffectedbysoiltypedifferences[3]. Based on this background information, the present study addressed the question of whether similarplant-pathogeninteractionsandbiocontroleffectsarereproducibleusingthesamefieldsoilsin aminirhizotronstudytoenablethecharacterizationofantifungalrootexudatesintherhizosphere soilsolutionandtheirpotentialrelationshipswiththepresenceofthepathogenand/orthebacterial inoculants. Lettuceplants(LactucasativaL.cv. Tizian)weregrowninminirhizotrons,equippedwith removablerootobservationwindowsfornon-destructivemicro-samplingofrhizospheresoilsolution with sorption filters applied to the surface of different root zones, followed by re-extraction and GC-MSanalysis[16]. Agronomy2017,7,44 3of17 2. Results 2.1. PlantBiomassProductionisAffectedbyRhizoctoniasolaniAG1-IB TheseverityofR.solani-inducedbottomrotdiseasewasclearlyinfluencedbythesoiltypeand increasedintheorderloessloam(LL)<alluvialloam(AL)<diluvialsand(DS)(Table1),asindicated bydecliningshootbiomassproduction. WhileshootbiomassoflettuceplantsgrownontheLLsoil wasnotsignificantlyaffectedbyR.solaniinoculation,shootbiomasssignificantlydeclinedby38%on theALsoil. Thelowestbiomassofnon-inoculatedcontrolplantswasrecordedonDSsoil,wherethe plantsdiedwithinthefirstweekafterpathogeninoculation(Table1). Agronomy 2017, 7, 44 3 of 16 Table1.S2h.1o. oPtladntr yBiommaassss P(rgodpulcatniotn− i1s )AofffecLteadc tbuy cRahsizaotcitvoaniLa .soclva.niT AizGia1-nIBg rownonthreedifferentsoilswithout (control)andTwhei tshevienroitcyu olfa Rti. osonlaonif-iRndhuizcoecdt obnotitaomso lraont idAiseGas1e- wIBas( +clReahrilzyo icntfoluneian)c.ed(+ b+y Pthlea nsotisl tdyipeed anwdi thinthe firstweekinacrfeteasreRd hiinz otchteo noiradesro llaoneissi nlooacmul a(LtiLo)n <) .alluvial loam (AL) < diluvial sand (DS) (Table 1), as indicated by declining shoot biomass production. While shoot biomass of lettuce plants grown on the LL soil was not significantly affected by R. solani inoculation, shoot biomass significantly Treatment DiluvialSand AlluvialLoam LoessLoam declined by 38% on the AL soil. The lowest biomass of non-inoculated control plants was recorded on DCSo nsotirlo, wlhere the plants d0ie.d2 2w±ith0in.2 the first week af1te.r1 3pa±tho0g.1ena inoculation (Ta1b.l3e3 1)±. 0.5a +Rhizoctonia ++ 0.70±0.3b 1.45±0.2a Table 1. Shoot dry mass (g plant−1) of Lactuca sativa L. cv. Tizian grown on three different soils Means±standwairthdoeurt r(ocorsntorofl)f oaunrd iwndithe pineoncduelantitorne opfl iRchaitzeosct.oDniaif sfoelraenni tAcGh1a-IrBa c(+teRrhsizionctdoniciaa)t. e(+s+i gPnlainfitcsa dnitedd ifferencesfor agivensoiltypweit(ht-inte tshte, fpir=st 0w.0ee5k) .after Rhizoctonia solani inoculation). Treatment Diluvial Sand Alluvial Loam Loess Loam 2.2. BiocontrolActiviCtyonotrfoPl seudomonasj0e.s2s2e ±n 0i.i2 RU47andS1e.r1r3a ±t i0a.1p al ymuthica3R1.3e3- 4±- 01.58 a +Rhizoctonia ++ 0.70 ± 0.3 b 1.45 ± 0.2 a 2.2.1. EffectsonSMheoanos t±G straondwartdh errors of four independent replicates. Different characters indicate significant differences for a given soil type (t-test, p = 0.05). OntheDSsoil,nobiocontrolactivityofthebacterialinoculantsagainstR.solaniwasdetectable 2.2. Biocontrol Activity of Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18 duetorapidseedlingdecayduringthefirstweekafterpathogeninoculation(Table1). Thedeclineof shootbiomas2s.2o.1n. EthffeecAts Lons Sohioloitn Gdruowcethd byR.solaniinoculation(Table1)wasmitigatedbypre-inoculation withP.jessenii,reOanc thhien DgS dsoriyl, nmo baitotceorntprorlo adctuivcittyi oonf thneo btacstiegrinali fiincoacunlatnlyts dagiaffinesrte Rn. tsoflarnoim watsh deetcecotanbtlreo ltreatment withoutR.sodlaune itoin raopcidu slaeetdiolinng (dFeicgayu dreur1inbg) t.hVe fiisrsut awlesekc oafrtienr gpaothfopgelna nintocdualamtioang (eTa(bFlei g1)u. Trehe2 d)ercleinvee oafl edthemost shoot biomass on the AL soil induced by R. solani inoculation (Table 1) was mitigated by prominentbiocontroleffectbydouble-inoculationwithP.jesseniiandS.plymuthica(+P.jess./S.ply.), pre-inoculation with P. jessenii, reaching dry matter production not significantly different from the indicatedbycsounrtvroilv traelatomfeanlt lwpitlhaonutts Ri. nsolraenis ipnoocnuslaetitoon (RFi.gsuorela 1nbi). iVniosucaul lsacotriionng .ofD pelasnpt idtaemhaigge h(Fibgiuorec o2)n trolactivity (Figure2),threevleoawlede stthes hmooostt bprioomminaesnst pbiroocodnutrcotl ioefnfecwt abys rdeocuobrled-iendocuinlatitohne wdiothu bP.l eje-sisnenoiic uanladt eSd. variantsin plymuthica (+P. jess./S. ply.), indicated by survival of all plants in response to R. solani inoculation. both treatments with and without R. solani inoculation (Figure 1a,b). Single inoculation revealed Despite high biocontrol activity (Figure 2), the lowest shoot biomass production was recorded in the thatthiseffecdtoucboleu-ilndocbuleatmed avianrilayntas tintr bibotuh tteredatmtoentths ewpithr easnedn wciethoouft SR.. spollaynmi iunothcuiclaatio(nF i(gFiugurere 11ab,b).). Bycontrast, ontheLLsoiSli,nngloe isniogcunliafiticona nretvetraeleadt tmhaet nthtise effffeecct tcsouwlde bree mraeicnolyr adtteridbuatendd tos thheo portesbeinocem oaf Ss.s plpymroudthuicac tionranged betweenmin(.F1ig.3urge 1pbo). tB−y1 caonntdrasmt, aonx .th1e. 7LLg spoiol,t −no1 s(iSgnuipficpanlet mtreeantmtaenryt eFffiegctus rweeSre1 r)e.corded and shoot biomass production ranged between min. 1.3 g pot−1 and max. 1.7 g pot−1 (Supplementary Figure S1). Figure1.Cont. Agronomy 2017, 7, 44 4 of 16 Agronomy 2017, 7, 44 4 of 16 Agronomy2017,7,44 4of17 Figure 1. Habitus (a) and shoot and root dry mass (g pot−1) (b) of Lactuca sativa L. cv. Tizian. The Figure1.Habitus(a)andshootandrootdrymass(gpot−1)(b)ofLactucasativaL.cv .Tizian.Theplants plants were grown on alluvial loam without bacterial inoculation (w/o Bac.), pre-inoculated with wFeirgeugrreo 1w. nHoanbaitlulusv (iaa)l laonadm swhoitohto uantdba rcoteorti adlriyn omcualsast i(ogn p(wot/−1o) B(ba)c .)o,fp Lrea-citnuoccau slaattievda wL.i tchvP. sTeiuzdioamn.o nTahse Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S. ply.), a combination of both (+P. jepslsaenntiis RwUe4r7e (g+rPo.wjenss .o)n,S aerllruavtiiaalp llyomamut hwiciath3oRuet- 4b-1a8ct(e+riSa.l pilnyo.)c,ualcaotimonb i(nwa/toio nBaocf.)b, optrhe(-+inPo.cjeuslsa/teSd. pwlyi.t)h, jess/S. ply.), with and without (Control) subsequent inoculation with Rhizoctonia solani AG1-IB with and without (Control) subsequent inoculation with Rhizoctonia solani AG1-IB (+Rhizoctonia). Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S. ply.), a combination of both (+P. (+Rhizoctonia). Means ± standard errors of four independent replicates. Different characters indicate Means ± standard errors of four independent replicates. Different characters indicate significant jess/S. ply.), with and without (Control) subsequent inoculation with Rhizoctonia solani AG1-IB significant differences (one-way ANOVA, Holm-Sidak test, p = 0.05). differences(one-wayANOVA,Holm-Sidaktest,p=0.05). (+Rhizoctonia). Means ± standard errors of four independent replicates. Different characters indicate significant differences (one-way ANOVA, Holm-Sidak test, p = 0.05). Figure2.VisualscoringofdiseaseincidenceofLactucasativaL.cv.Tizian,expressedaspercentageof Figure 2. Visual scoring of disease incidence of Lactuca sativa L. cv. Tizian, expresse d as percentage of healthy,weak(growthdepressionandleafnecrosisduetofungalinfection),anddeadplants.Theplants healthy, weak (growth depression and leaf necrosis due to fungal infection), and dead plants. The wFeirgeugrreo 2w. nViosnuaall lsucvoirailnlgo aomf dwisiethaoseu tinbcaicdteenricael oinfo Lcaucltautcioa nsa(twiv/ao LB. cavc..) T,pizriea-nin, oecxuplraetessdewd iatsh pPesrecuednotmaognea osf plants were grown on alluvial loam without bacterial inoculation (w/o Bac.), pre-inoculated with jesseniiRU47(+P.jess.),Serratiaplymuthica3Re-4-18(+S.ply.),acombinationofboth(+P.jess/S.ply.), healthy, weak (growth depression and leaf necrosis due to fungal infection), and dead plants. The Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S. ply.), a combination of both (+P. withandwithout(Control)subsequentinoculationwithRhizoctoniasolaniAG1-IB(+Rhizoctonia). plants were grown on alluvial loam without bacterial inoculation (w/o Bac.), pre-inoculated with jess/S. ply.), with and without (Control) subsequent inoculation with Rhizoctonia solani AG1-IB Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S. ply.), a combination of both (+P. (+Rhizoctonia). 2.2.2. EffectsonRootGrowthandMorphology jess/S. ply.), with and without (Control) subsequent inoculation with Rhizoctonia solani AG1-IB 2.2.2.N (E+ofRfsehiicgztonsc itofionnc iaRan)o.t ottr eGartomwetnht aenffdec Mtsowrpehreorloegcoyr dedforrootbiomassoflettuceplants,neitheronthe AL (Figure 1), nor on the LL soil. A trend for lower root biomass production was detectable for No significant treatment effects were recorded for root biomass of lettuce plants, neither on the 2.2.2. Effects on Root Growth and Morphology theALsoilinthetreatmentswithR.solaniinoculation(Figure1). However,inalltreatmentswith AL (Figure 1), nor on the LL soil. A trend for lower root biomass production was detectable for the S. plymNuot hsiigcaniifnicoacnutl atrtieoantmoenntth eeffAecLtss woiel,rer oroectohradierdle fnogr trhoo(Ft ibgiuormea3sbs )owf laesttsuicgen pifilacanntst,l ynerietdhuerc eodn bthye 3 A0–L5 0(F%iginurteh e1)p, rneosern ocne othfeR .LsLo lsaonii.l.S Aim tirleanrldy ,frooro ltohwaeirr dreonosti tbyio(Fmigaussr ep3rco)dduecctliionne dwaafste dreptreec-tianbolceu floarti othne Agronomy 2017, 7, 44 5 of 16 AL soil in the treatments with R. solani inoculation (Figure 1). However, in all treatments with S. Agronomy2017,7,44 5of17 plymuthica inoculation on the AL soil, root hair length (Figure 3b) was significantly reduced by 30– 50% in the presence of R. solani. Similarly, root hair density (Figure 3c) declined after pre-inoculation wwitihthS S.p. lpylmymuuthtihciac,a,b booththi nint htheec oconntrtorlotl rteraetamtmenentta nandda fatfetrerin ioncouculaltaitoinonw witihthR R.s. osloalnain.iN. Nooc ocmompparaarbablele efeffefcetcstsw wereered edteetcetcatbalbeloe nonth tehLe LLLso silo,iwl, hwehreerreo orotohta hiraliern lgetnhgrthan rgaendgebde tbweetwene0e.n7 10.m71m mamnd a0n.d87 0m.87m minm ailnlt arella ttrmeaetnmtse(nStus p(SpulepmpelenmtaernytaFrigyu FrieguS2re). S2). Figure3. Roothairdevelopment(a),roothairlength(mm)(b)androothairdensity(mm−1)(c)of Figure 3. Root hair development (a), root hair length (mm) (b) and root hair density (mm−1) (c) of Lactuca LactucasativaL.cv. Tizian. Theplantsweregrownonalluvialloamwithoutbacterialinoculation sativa L. cv. Tizian. The plants were grown on alluvial loam without bacterial inoculation (w/o Bac.), (w/o Bac.), pre-inoculated with Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 pre-inoculated with Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S. ply.), a (+S.ply.),acombinationofboth(+P.jess/S.ply.),withandwithout(Control)subsequentinoculation combination of both (+P. jess/S. ply.), with and without (Control) subsequent inoculation with Rhizoctonia withRhizoctoniasolaniAG1-IB(+Rhizoctonia).Means±standarderrorsoffourindependentreplicates. solani AG1-IB (+Rhizoctonia). Means ± standard errors of four independent replicates. Different characters Differentcharactersindicatesignificantdifferences(one-wayANOVA,Holm-Sidaktest,p=0.05). indicate significant differences (one-way ANOVA, Holm-Sidak test, p = 0.05). 22.2.2.3.3..P Plalannt-tN-NuutrtirtiitoionnaallS Statatutuss ForthemacronutrientsN,P,K,andMgsuppliedtothesoilsasfertilizersinsufficientamounts priortoplantcultivation,nosignificanttreatmenteffectsorcharacteristicdeficiencysymptomswere re corded for the lettuce plants grown on the AL and the LL soil (not shown). However, on AL Agronomy 2017, 7, 44 6 of 16 For the macronutrients N, P, K, and Mg supplied to the soils as fertilizers in sufficient amounts prior to plant cultivation, no significant treatment effects or characteristic deficiency symptoms were recorded for the lettuce plants grown on the AL and the LL soil (not shown). However, on AL soil, micronutrient shoot concentrations of Zn, Mn, and Fe (Figure 4a–c) of the treatments with R. solani inoculation showed a trend of decline in the order w/o Bac. > P. jessenii > S. plymuthica > P. jessenii +S. Apglyromnoumtyhi2c0a1,7 ,7f,in44ally reaching critical values close to the deficiency thresholds [27] for6 ofth17e double-inoculation. In the control treatment without R. solani inoculation, this effect was restricted to lettuce plants with double-inoculation with P. jessenii and S. plymuthica (+P. jess./S. ply.). soil, micronutrient shoot concentrations of Zn, Mn, and Fe (Figure 4a–c) of the treatments with For lettuce plants grown on LL soil, no significant treatment effects in shoot micronutrient R.solaniinoculationshowedatrendofdeclineintheorderw/oBac. >P.jessenii>S.plymuthica>P. concentrations were recorded. Shoot concentrations of Mn ranged between 29.4 mg kg−1 DM and jessenii+S.plymuthica,finallyreachingcriticalvaluesclosetothedeficiencythresholds[27]forthe 53.4 mg kg−1 DM, and Zn between 20.4 mg kg−1 DM and 29.5 mg kg−1 DM (Supplementary Figure S3). double-inoculation. InthecontroltreatmentwithoutR.solaniinoculation,thiseffectwasrestrictedto No nutrient analysis was conducted for the plants on DS soil due to the rapid decay already during lettuceplantswithdouble-inoculationwithP.jesseniiandS.plymuthica(+P.jess./S.ply.). the first week after R. solani inoculation. FFiigguurree 44.. MMicicroronnuutrtireiennt tcocnocnecnetnrtartaiotinosn osfo ZfnZ (na)( Ma)nM (bn) (abn)da Fned (cF)e in(c s)hionotssh (omotgs k(gm−1g DkMg−) 1ofD LMac)tuocfa Lsaactitvuac aL.s actviv. aTiLz.iacnv.. TThiez ipanla.nTtsh weeprlea ngtrsowwne roeng arlolwuvniaol nloaalmlu vwiaitlhloouatm bawctiethrioaul tinboaccutelartiiaolni n(owc/uol aBtaioc.n), (w/o Bac.), pre-inoculated with Pseudomonas jessenii RU47 (+P. jess.), Serratia plymuthica 3Re-4-18 (+S.ply.),acombinationofboth(+P.jess/S.ply.),withandwithout(Control)subsequentinoculation withRhizoctoniasolaniAG1-IB(+Rhizoctonia).Means±standarderrorsoffourindependentreplicates. Thedottedlinesindicatethethresholdlevelsformicronutrientdeficiency.Differentcharactersindicate significantdifferences(one-wayANOVA,Holm-Sidaktest,p=0.05). Agronomy2017,7,44 7of17 For lettuce plants grown on LL soil, no significant treatment effects in shoot micronutrient concentrations were recorded. Shoot concentrations of Mn ranged between 29.4 mg kg−1 DM and53.4mgkg−1 DM,andZnbetween20.4mgkg−1 DMand29.5mgkg−1 DM(Supplementary FigureS3). NonutrientanalysiswasconductedfortheplantsonDSsoilduetotherapiddecayalready duringthefirstweekafterR.solaniinoculation. 2.2.4. AntifungalCompoundsintheRhizosphereSoilSolution The antifungal compounds benzoic acid and lauric acid [24,25], previously identified in root exudatesoflettuce[26],weredetectedbyGC-MSanalysis(Table2)aftercollectionbymicro-sampling withsorptionfilters[16]fromlettuceplantsin1–2cmsubapicallateralrootzonesandinmorebasal partsoftherootzones(8–9cmbehindtheroottip). OntheALsoil,R.solaniinoculationsignificantly increasedtheconcentrationsofbenzoicacid(Figure5a)collectedfromsubapicalrootzonesby234% andinthebasalrootzonesby296%. Lauricacidconcentrations(Figure5b)tendedtobeincreased only in the basal parts of the root zones, as compared to the control treatment without R. solani inoculation(Table2). Incontrast,ontheLLsoil,onlytrendsforincreasedrootexudationofbenzoic acid(11%subapical,29%basal)andlauricacids(+22%subapical)wereinducedbyR.solaniinoculation butnosignificanteffectsincomparisontothecontroltreatmentwithoutR.solaniinoculationwere observed. Ingeneral,lauricacidconcentrationsinsamplescollectedontheLLsoilwerehigherthan onALsoil. Table 2. Benzoic and lauric acid concentrations in rhizosphere soil solutions collected by micro-sampling with sorption filters in 1–2 cm subapical regions of young roots and from older basalrootzones(8–9cm)ofLactucasativaL.cv.Tizian.Theplantsweregrownonalluvialloamtreated without(control),withRhizoctoniasolani(+R.solani),withPseudomonasjessenii(+P.jess.)andSerratia plymuthica(+S.ply.),withRhizoctoniasolaniandonebacterialinoculant(+R.solani+P.jess;+R.solani +S.ply.),withacombinationofbothbacterialinoculants(+P.jess/S.ply.)andwithRhizoctoniasolani andbothbacterialinoculants(+R.solani+P.jess./S.ply.). Relativevaluesbasedonpeakareas(gas chromatography-massspectrometry(GC-MS)analysis)aftersubtractionofbackgroundlevelsinbulk soilsamples. BenzoicAcid LauricAcid Treatment Subapical(Young) Basal(Old) Subapical(Young) Basal(Old) AL LL AL LL AL LL AL LL Control 3.92a 5.00a 2.77a 6.30a 1.76a 4.29a 0.14a 14.00a +R.solani 13.07b 5.53a 10.97b 8.12a 0.85a 5.25a 1.36ab 9.56a +P.jess. 12.84b 10.54b 12.98b 13.58ab 1.00a 10.55b 1.52b 21.80a +S.ply. 13.08b 10.49b 12.75b 9.58ab 0.51a 10.66b 1.01ab 9.40a +R.solani 10.75b 9.62b 13.65b 15.53b 0.92a 9.29b 1.34ab 25.03a +P.jess. +R.solani 11.71b 8.63b 12.68b 15.79b 1.00a 7.82ab 0.94ab 29.87a +S.ply. +P. jess./S. 12.84b N.d. 12.63b N.d. 0.85a N.d. 0.93ab N.d. ply. +R.solani +P.jess./S. 12.14b N.d. 11.31b N.d. 0.43a N.d. 1.09ab N.d. ply. Meansofthreeindependentreplicates.Ineachcolumndifferentcharactersindicatesignificantdifferences(one-way ANOVA,Holm-Sidaktest,p=0.05).N.d.=notdetermined.DS:Diluvialsand,AL:alluvialloam,LL:loessloam. Agronomy2017,7,44 8of17 Agronomy 2017, 7, 44 8 of 16 Figure 5. Concentrations and relative changes (% compared to the untreated controls) of benzoic acid (a) anFdi glauureric5 .aCciodn c(ben) tirna trihoinzsoasnpdherreel astoivile scohlauntigoenss( %colcloemctepda rferdomto 1th–e2 ucmnt rseuabteadpiccoanl trreoglsi)oonfs boefn yzoouicnagc irdoots an(da )fraonmd loaludreirc baacsidal( rbo)oitn zrohnizeos s(p8h–9e rcemso bialssaoll urotiootnss) ocof lLleaccttuedcaf sraotmiva1 –L2. ccvm. Tsuizbiaanp.i cTahler epgliaonntss owfeyroeu gnrgown onr oalolutsvaianld lofaromm (AolLd)e arnbda lsoaelsrso lootazmo n(LeLs)( 8tr–e9actemd bwaistahloruoto btas)ctoefriLaal citnuoccauslaattiivoanL (w.c/vo. BTaizci.a),n w.iTthh eRphilzaoncttsonia solwaneir eAgGro1w-IBn o(+nRa. llsuovlainail)l,o wamith( AbLa)ctaenrdiallo iensoscluolaamnt(sL (L+)Btarce.a tinedocwuliatnhtosu =t bPascetuedrioamloinnoacs ujleastsieonnii (wRU/o47B aacn.d),/or Sewrraitthia Rphlyizmoucttohniciaa 3soRlean-4i-A18G) 1a-nIBd (w+iRth. sao lcaonmi),bwiniathtiobna cotef rbiaalctienroiacul ilnanotcsu(la+nBtasc .anindo cRuhlaiznotcsto=nPias esuoldaonmi AonGas1-IB (+Bjeascs.e niniioRcuUla4n7tsa n+dR/. osrolSaenrir)a. tRiaeplalytmivuet hviacalu3eRs eb-4a-s1e8d) aonnd pweiatkh aarceoam (bGinCa-tMioSn aonfablaycstiesr)i aalftinero csuulbatnrtascatinodn of baRckhgizroocutonndi alesvolealns iinA Gbu1l-kIB so(+ilB saacm. ipnloecsu. lManetasn+sR ±. ssotalanndia).rdR eelrartoirvse ovfa 3lu–9e sinbdaesepdenodnenpte arekpalirceaate(sG. CFo-Mr eSach soailn taylypsei,s )daifffteerresnutb ctrhaacrtaioctnerosf binadckicgartoeu snidgnleifvicealsnti ndbifuflekresnociless a(monpele-ws.aMy eAanNsO±VsAta, nHdoarlmd-eSrirdoarsk otfe3st–,9 p = 0.05). independentreplicates.Foreachsoiltype,differentcharactersindicatesignificantdifferences(one-way ANOVA,Holm-Sidaktest,p=0.05). 3. Discussion 3.1. Plant Pathogen Interactions Agronomy2017,7,44 9of17 Comparedtothenon-inoculatedcontroltreatment,pre-inoculationwithP.jessenii,S.plymuthica andacombinationofboth(+P.jess/S.ply.) increasedrootexudationofbenzoicacid(Figure5a)inthe subapicalandbasalrootzonesontheALsoilbetween197%and361%andontheLLsoilbetween83% and149%. Sincenosignificantdifferencesbetweenthebacterialinoculantswererecorded(Table2), Figure 5 summarizes the effects of all bacterial inoculants. An increased exudation of lauric acid wasobservedinthebasalrootzonesonALsoil(730%and743%)andadditionallyonLLsoilinthe subapicalrootzones(97%and147%). Thehighestlauricacidconcentrationsandthehighestlevelsof antifungalrootexudatesingeneralwererecordedonLLsoil(Figure5). 3. Discussion 3.1. PlantPathogenInteractions Similartopreviouslyreportedfieldobservations[3],soiltype-dependentdifferencesinseverityof bottomrotdiseaseinlettuce,inducedbyinoculationwithR.solaniAG1-IB(predominantinfield-grown lettuceinGermany[28]),wereconfirmedinthepresentminirhizotronstudy. Theexperimentwas conductedundercontrolledconditionsonthreedifferentsoils(DS:diluvialsand,pH6.1;AL:alluvial loam,pH6.7;LL:loessloam,pH7.1)withthesamecroppinghistoryduringthelast10years. Shoot biomass production of R. solani-inoculated lettuce plants declined in the order LL > AL > DS soil (Table1),reflectingthenegativeimpactofthepathogenonlettucegrowthaspreviouslyreportedon thesamesoilsunderfieldconditions[23]. However,inminirhizotronculture,diseasesymptomson lettucegrownonDSsoilappearedmuchfaster,andincontrasttothefieldexperimentsallplantsdied alreadyduringthefirstweekafterpathogeninoculation. Thehigherconducivenessforbottomrot diseaseoftheDSsoilobservedinallexperimentsmaybecausedbythebiggerporesizesandbetter oxygenavailabilityinsandysoils,whichenablesmorerapidhyphalgrowthofR.solanitowardsthe hostplant[3,29]. Themoreseverediseasesymptomsintheminirhizotronstudymaybeattributedto higherrootingdensitiesinthelimitedsoilvolumeoftheminirhizotronsandduetoshorterspatial distances between the pathogen and the host plant in comparison to field conditions with larger soil volume. Moreover, the constant temperature conditions in the growth chamber (23–25 ◦C) in theoptimumrangeforhyphalgrowthofR.solaniAG1-IB[28]couldfurtherpromotetheinfection process,particularlyontheDSsoilwiththeweakestplantdevelopmenteveninthenon-inoculated control(Table1). Accordingly,Schreiteretal.[3]reportedacertainbackgroundinfectionpotentialfor bottomrotdiseaseinallinvestigatedsoils,evenwithoutartificialinoculationwithR.solaniAG1-IB, withthelowestdiseaseseverityonLLsoil,incomparisontodiseaseseverityforplantsgrownonDS andALsoil. OntheALsoil,R.solaniinoculationresultedina60%reductioninshootbiomass(Table1)and40% oftheplantsfinallysurvived(Figure2). Incontrast,noapparentbottomrotsymptomsweredetected ontheLLsoil(Table1)andsupportedtheobservedresultsofhighersoilsuppressivenessinthefield experiment[3],reflectedalsobythelowestinfectionpotentialonthenon-inoculatedcontrolsoils[3]. Accordingly,ontheALsoil,pathogeninoculationsignificantlyincreasedtheconcentrationsofbenzoic andlauricacids(Table2,Figure5)intherhizospheresoilsolutions(234%toca. 900%),previously identifiedasrootexudatesoflettucewithdocumentedantifungalactivityagainstRhizoctonia,Fusarium, andotherpathogenicfungi[24,25].Incontrast,onlyanon-significanttrendforincreasedrootexudation oftheantifungalcompoundsbyamaximumof30%wasdetectedintherhizosphereontheLLsoil with antifungal suppressive potential (Table 2; Figure 5). These findings suggest that the release of the antifungal root exudates is part of the pathogen defense response in lettuce, as previously reported also for Fusarium-resistant peanut cultivars [30]. Rhizoctoniasolani-affected plants on the ALsoilobviouslyrespondedwithincreasedexudationofantibioticcompounds,whileonlyaweak response was triggered in the R. solani inoculated plants grown on the LL soil with low R. solani infectionpotential. Agronomy2017,7,44 10of17 BesidesanincreasedreleaseofantifungalrootexudatesinresponsetoR.solaniinfectiononAL soilinbasalpartsoftherootsystemclosetotheinoculationsites,benzoicacidwasalsodetectedinthe youngestrootzones(1–2cmbehindtheroottip),upto30cmbelowtheR.solaniinfectionsites(Table2, Figure5). Rhizoctoniasolaniinfectionsitesareusuallylocatedattheroot-shootjunctionandatthe lowerleaveswithdirectsoilcontact[28,29]. Thus,releaseofantifungalrootexudates,evenfiveweeks afterinoculationwiththepathogen,mayindicateasystemicresponseoflettucetoR.solaniinfection. Accordingly,previousstudieshavealsoreportedthesystemicinductionofbiosyntheticpathwaysfor aromaticcompoundsinresponsetoR.solaniinfectionandtheirpotentialroleinpathogendefensein differentcrops,suchaspotatoandrice[29,31]. 3.2. DiseaseSuppressionbyBacterialInoculants Twobacterialstrains,PseudomonasjesseniiRU47andSerratiaplymuthica3Re-4-18[32],characterized forgoodbiocontroleffectsagainstbottomrotdiseaseinpreviousexperiments[6,21],wereselected asbiocontrolstrainsusedforpre-inoculationofthelettuceplants. OntheDSsoilwiththeweakest plantdevelopmenteveninthecontrolswithoutpathogeninoculation(Table1),andwiththemost severebottomrotsymptoms,noprotectiveeffectsofthebacterialinoculantsagainstR.solaniwere recorded. In contrast, on the AL soil, particularly pre-inoculation with P. jessenii RU47 tended to increasebiomassproductionofR.solani-affectedplants(Figure1). However,themostpronounced biocontroleffectwasevaluatedbyadouble-inoculationwithbothbacterialstrainswhere,incontrast totheothertreatments,allplantssurvived(Figure2). Theincreasedexpressionofantagonisticeffects after double inoculation with different biocontrol strains has been similarly reported in previous studies [33] and may be attributed to additive effects of different antibiotics, cellulolytic enzymes, and induction of plant defense responses, but also to a broader activity spectrum under different environmentalconditions[34]. Bycontrast,noadditionalbeneficialeffectsofpre-inoculationwiththe bacterialinoculantswereobservedontheleastconductiveLLsoil(SupplementaryFigureS1)where thelettuceplantsdidnotshowanyvisiblesymptomsofbottomrotdisease. Interestingly,similartoR.solaniinfection,inoculationwiththebacterialinoculantsalsoincreased theexudationofbenzoicandlauricacidsontheALsoil. Moreover,thesameresponsewasrecorded onthemoresuppressiveLLsoilwhereR.solaniinoculationhadonlymarginaleffectsonthereleaseof theantifungalrootexudates(Table2,Figure5). Inaccordancewiththeabsenceofdiseasesymptoms, thehighesttotallevelsoftheantifungalcompounds(sumofbenzoicandlauricacids)weredetectedin rootexudatesoflettuceplantsgrownontheLLsoil(Table2,Figure5),whichmayreflectaparticularly intenseexpressionofpathogendefensemechanisms.Eveninthevariantwithoutpathogeninoculation, highbackgroundlevelsoflauricandbenzoicacidsweredetectableontheLLsoil(Table2,Figure5). This raises the question of whether generally high levels of antifungal root exudates contributed to the particularly low conductivity for Rhizoctonia bottom rot disease on this soil. Interestingly, Schreiter et al. [3] observed a soil type-dependent rhizosphere effect of the lettuce plants on the abundanceofbacteriawiththecapacitytodegradearomatichydrocarbons(particularlySphingomonas), declining in the order DS > AL > LL soil, which follows the soil type-dependent expression in severityofRhizoctonia-induceddiseasesymptoms(Table1). Thismayreflectadecliningcapacityfor degradationoftheantifungalrootexudatesassecondarymetabolitesbymembersoftheindigenous microflora,resultinginthehighestaccumulationonLLsoil,whichmaybealsoresponsibleforthe lowbackgroundinfectionpotentialforbottomrotdiseaseonthissoil[3]. Apartfrombenzoicand lauricacids,Neumannetal.[16]alsoreportedparticularlyhighlevelsofsugars,aminoacids,and organic acids in the rhizosphere soil solutions collected from lettuce plants grown on the LL soil, associatedwiththehighestshootbiomassproduction(Table1). Thismayindicateagenerallyhigher capacityforrootexudationduetostrongerplantdevelopmentontheLLsoil,associatedwithahigher photosyntheticcapacityasamajordrivingforceforrhizodeposition[17]. The exudation of benzoic acid was more strongly induced by bacterial inoculants or by pathogen–inoculantcombinationsthanbysoleinoculationwithR.solani(Figure5). Thesefindings
Description: