RF-MEMS switches for reconfigurable antennas A thesis submitted for the degree of Doctor of Philosophy by Michail N. Spasos School of Engineering & Design Brunel University July 2011 ABSTRACT: Reconfigurable antennas are attractive for many military and commercial applications where it is required to have a single antenna that can be dynamically reconfigured to transmit or receive on multiple frequency bands and patterns. RF-MEMS is a promising technology that has the potential to revolutionize RF and microwave system implementation for next generation telecommunication applications. Despite the efforts of top industrial and academic labs, commercialization of RF- MEMS switches has lagged expectations. These problems are connected with switch design (high actuation voltage, low restoring force, low power handling), packaging (contamination layers) and actuation control (high impact force, wear, fatique). This Thesis focuses on the design and control of a novel ohmic RF-MEMS switch specified for reconfigurable antennas applications. This new switch design focuses on the failure mechanisms restriction, the simplicity in fabrication, the power handling and consumption, as well as controllability. Finally, significant attention has been paid in the switch’s electromagnetic characteristics. Efficient switch control implies increased reliability. Towards this target three novel control modes are presented. 1) Optimization of a tailored pulse under Taguchi’s statistical method, which produces promising results but is also sensitive to fabrication tolerances. 2) Quantification of resistive damping control mode, which produces better results only during the pull-down phase of the switch while it is possible to be implemented successfully in very stiff devices. 3) The “Hybrid” control mode, which includes both aforementioned techniques, offering outstanding switching control, as well as immunity to fabrication tolerances, allowing an ensemble of switches rendering an antenna reconfigurable, to be used. Another issue that has been addressed throughout this work is the design and optimization of a reconfigurable, in pattern and frequency, three element Yagi-Uda antenna. The optimization of the antenna’s dimensions has been accomplished through the implementation of a novel technique based on Taguchi’s method, capable of systematically searching wider areas, named as “Grid-Taguchi” method. i This work is dedicated to my wife Karin for her comprehension, patience and unconditional support all these three years. ii Contents 1. Introduction ........................................................................................................ A 1.1. Switches .......................................................................................................... 1 1.2. RF switches ..................................................................................................... 1 1.2.1. Specifications of RF Switches......................................................................... 2 1.2.2. Types of RF switches ...................................................................................... 5 1.3. Applications of RF Switches ........................................................................... 8 1.3.1. Transmit/Receive (T/R) RF switches .............................................................. 8 1.3.2. Programmable RF attenuators ......................................................................... 9 1.3.3. Phase shifters ................................................................................................... 9 1.3.4. Switched RF filters ........................................................................................ 10 1.3.5. Switched diversity antennas .......................................................................... 11 1.3.6. Reconfigurable matching networks ............................................................... 12 1.3.7. Reconfigurable antennas ............................................................................... 12 1.4. Motivation for this Thesis ............................................................................. 14 1.5. Scope of the Thesis ....................................................................................... 15 1.6. The original contribution of this work .......................................................... 16 1.7. Thesis structure ............................................................................................. 17 2. RF-MEMS switches .......................................................................................... 18 2.1. Introduction ................................................................................................... 18 2.2. RF MEMS switches ...................................................................................... 18 2.3. RF-MEMS switch types ................................................................................ 20 2.3.1. Capacitive RF-MEMS switches .................................................................... 22 2.3.2. Ohmic RF MEMS switches........................................................................... 23 iii 2.4. Ohmic RF-MEMS switches reliability issues ............................................... 25 2.5. Design considerations on an ohmic in-line-series RF-MEMS switch .......... 28 2.5.1. Mechanical modelling ................................................................................... 29 2.5.2. Electrostatic modelling .................................................................................. 31 2.5.3. Contact area modelling.................................................................................. 32 2.5.4. Effect of the Fringing Capacitance................................................................ 33 2.5.5. Perforation ..................................................................................................... 34 2.5.6. Skin depth ...................................................................................................... 35 2.5.7. Gas damping .................................................................................................. 36 2.5.8. Quality factor................................................................................................. 39 2.5.9. Switching speed............................................................................................. 40 2.5.10. Self actuation ............................................................................................. 40 2.5.11. Electromagnetic characteristics ................................................................. 41 2.6. Modeling of RF-MEMS (Numerical-CAD Methods) ................................... 45 2.7. Commercial software packages for RF-MEMS modelling ........................... 47 2.7.1. COMSOL Multi-physics® ............................................................................. 48 2.7.2. ANSYS Microsystems (MEMS) Industry..................................................... 49 2.7.3. Intellisense Software® ................................................................................... 49 2.7.4. CoventorWare® ............................................................................................ 49 2.8. Summary ....................................................................................................... 50 3. Investigation of ohmic in-line series RF MEMS switches: designs and simulations ................................................................................................................... 51 3.1. Introduction ................................................................................................... 51 3.2. Analysis and design of an Ohmic RF-MEMS switch with “Hammerhead” cantilever shape ........................................................................................................ 51 3.2.1. Material choice .............................................................................................. 53 3.2.2. Contact area considerations ........................................................................... 54 3.2.3. Power handling capability and linearity issues ............................................. 55 iv 3.2.4. Restoring force, Actuation voltage and reliability issues .............................. 55 3.2.5. Actuating the switch ...................................................................................... 59 3.3. Simulations results ........................................................................................ 59 3.3.1. DC transfer analysis ...................................................................................... 61 3.3.2. Squeeze Gas damping ................................................................................... 65 3.3.3. Transient analysis .......................................................................................... 68 3.3.4. Current and power consumption ................................................................... 70 3.3.5. Control under tailored pulse .......................................................................... 71 3.3.6. Small signal frequensy analysis .................................................................... 73 3.3.7. Hot cycling mode of operation ...................................................................... 74 3.3.8. Electromagnetic analysis ............................................................................... 79 3.4. Analysis and design of an Ohmic RF-MEMS switch with “Uniform” cantilever shape ........................................................................................................ 86 3.4.1. DC transfer analysis ...................................................................................... 87 3.4.2. Transient analysis .......................................................................................... 88 3.4.3. Control under tailored pulse .......................................................................... 89 3.4.4. Hot cycling mode of operation ...................................................................... 91 3.4.5. Electromagnetic analysis ............................................................................... 92 3.5. Modelling of the NEU in-line series ohmic RF-MEMS switch .................... 94 3.5.1. Simulations results ........................................................................................ 95 3.5.2. DC transfer analysis ...................................................................................... 97 3.5.3. Transient analysis .......................................................................................... 97 3.5.4. Control under resistive damping ................................................................... 99 3.5.5. Hot cycling mode of operation .................................................................... 100 3.5.6. Electromagnetic analysis ............................................................................. 102 3.6. Comparison of the switches ........................................................................ 104 3.7. Summary ..................................................................................................... 107 v 4. RF-MEMS control .......................................................................................... 108 4.1. Introduction ................................................................................................. 108 4.2. Voltage drive control ................................................................................... 109 4.3. Voltage drive control under tailored pulse .................................................. 111 4.4. Taguchi optimization method...................................................................... 116 4.5. Optimization of the tailored pulse ............................................................... 119 4.6. Resistive damping (Charge drive control) .................................................. 127 4.7. Hybrid control mode ................................................................................... 132 4.8. Comparison between different actuation modes ......................................... 135 4.9. Comparison of the actuation modes under manufacturing uncertainties .... 138 4.10. NEU Control under resistive damping .................................................... 141 4.11. Control under high pressure gas damping ............................................... 146 4.1. Summary ..................................................................................................... 147 5. Application of RF-MEMS in reconfigurable antennas ................................... 148 5.1. Introduction ................................................................................................. 148 5.2. Design and optimization of a Pattern and Frequency reconfigurable Yagi- Uda antenna ........................................................................................................... 149 5.3. Grid-Taguchi optimization technique ......................................................... 153 5.3.1. Grid-Taguchi optimization solution ............................................................ 154 5.4. Single Taguchi optimization applying 3 levels and 5 levels solutions ....... 156 5.5. Comparison between Taguchi optimization modes .................................... 158 5.6. PSO optimization technique ........................................................................ 160 5.6.1. PSO solution ................................................................................................ 162 5.7. Comparison between Grid-Taguchi and PSO ............................................. 165 5.8. Taguchi optimization solution for 2.7GHz ................................................. 167 5.9. Pattern and frequency reconfigurable Yagi-Uda antenna implementation . 169 5.10. Summary .................................................................................................. 178 vi 6. Chapter 7: Conclusions and Future work........................................................ 180 6.1. Overview ..................................................................................................... 180 6.2. Future work ................................................................................................. 184 References .................................................................................................................. 186 Appendix .................................................................................................................... 199 A.1 Modelling the “Hammerhead” ohmic RF-MEMS switch in CoventorWare ...... 199 A.2 Charge drive control........................................................................................ 201 A.3 Grid Taguchi optimization technique ............................................................. 203 vii Acknowledgements I gratefully acknowledge Dr Rajagopal Nilavalan for giving me the opportunity to pursue my Ph.D. under his guidance. I sincerely appreciate his time and support for my research on RF-MEMS switches and reconfigurable antennas, as well as his help in improving this dissertation. I would like also to thank the Council of Alexander Technological Educational Institute of Thessaloniki for their support. viii List of Tables Table 1. Performance comparison of switches………………………………………19 Table 2. 1st & 2nd mode of resonance frequencies and generalized masses…………66 Table 3. Design parameters of the “Hammerhead” switch………………………….69 Table 4. Performance results of the switch under tailored pulse actuation………....86 Table 5. Comparison between simulations and calculations…………………..........86 Table 6. Design parameters of the “Uniform” switch……………………………….88 Table 7. Performance results of the switch under tailored pulse actuation………....95 Table 8. Design parameters of the “NEU” switch……………………………………98 Table 9. Performance results of the switch under resistive damping actuation……104 Table 10. Comparison of Electromechanical characteristics....................................107 Table 11. Comparison of Electromagnetic characteristics (5GHz)..........................107 Table 12. Pull-down phase (t ) levels………………………………………………122 p Table 13. Release phase (t) levels………………………………………………….122 r Table 14. OA (35)………………………………………………………………….124 18 Table 15. Voltage and time intervals of the optimized tailored pulse……………..126 Table 16. Step pulse voltage and time values………………………………………126 Table 17. Tailored pulse voltage and time values………………………………….126 Table 18. Optimized tailored pulse voltage and time values……………………….126 Table 19. Comparison of switching characteristics………………………………..128 Table 20. Pull-down phase (t ) levels (Hybrid mode)………………………………133 p Table 21. Release phase (t) levels (Hybrid mode)………………………………....133 f Table 22. Voltage and time intervals (Hybrid mode)………………………………135 Table 23. Optimized tailored pulse voltage and time values (Hybrid mode)………135 Table 24. Comparison of switching characteristics ………………………………..138 Table 25. The four parameters in three levels assigned in a OA 34 (Hammerhead).139 9 Table 26. Results under optimized tailored pulse actuation mode implementation.140 Table 27. Results under “Hybrid” actuation mode implementation……………….140 Table 28. The four parameters in three levels assigned in a OA 34 (NEU)………..145 9 Table 29. Results under resistive damping actuation mode implementation………146 ix
Description: