Durham Research Online Deposited in DRO: 26 July 2017 Version of attached (cid:28)le: Published Version Peer-review status of attached (cid:28)le: Peer-reviewed Citation for published item: Hagino, K. and Done, C. and Odaka, H. and Watanabe, S. and Takahashi, T. (2017) ’Revisiting the extremely fast disc wind in a gravitationally lensed quasar APM 08279+5255.’, Monthly notices of the Royal Astronomical Society., 468 (2). pp. 1442-1452. Further information on publisher’s website: https://doi.org/10.1093/mnras/stx559 Publisher’s copyright statement: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society (cid:13)c 2017. The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. Additional information: Use policy Thefull-textmaybeusedand/orreproduced,andgiventothirdpartiesinanyformatormedium,withoutpriorpermissionorcharge,for personalresearchorstudy,educational,ornot-for-pro(cid:28)tpurposesprovidedthat: • afullbibliographicreferenceismadetotheoriginalsource • alinkismadetothemetadatarecordinDRO • thefull-textisnotchangedinanyway Thefull-textmustnotbesoldinanyformatormediumwithouttheformalpermissionofthecopyrightholders. PleaseconsultthefullDROpolicyforfurtherdetails. DurhamUniversityLibrary,StocktonRoad,DurhamDH13LY,UnitedKingdom Tel:+44(0)1913343042|Fax:+44(0)1913342971 https://dro.dur.ac.uk MNRAS468,1442–1452(2017) doi:10.1093/mnras/stx559 AdvanceAccesspublication2017March7 Revisiting the extremely fast disc wind in a gravitationally lensed quasar + APM 08279 5255 Kouichi Hagino,1‹ Chris Done,1,2 Hirokazu Odaka,3 Shin Watanabe1,4 and Tadayuki Takahashi1,4 1InstituteofSpaceandAstronauticalScience(ISAS),JapanAerospaceExplorationAgency(JAXA),3-1-1Yoshinodai,Chuo,Sagamihara,Kanagawa 252-5210,Japan 2DepartmentofPhysics,UniversityofDurham,SouthRoad,DurhamDH13LE,UK 3KIPAC,StanfordUniversity,452LomitaMall,Stanford,CA94305,USA 4DepartmentofPhysics,UniversityofTokyo,7-3-1Hongo,Bunkyo,Tokyo113-0033,Japan Accepted2017March2.Received2017March1;inoriginalform2016November2 ABSTRACT ThegravitationallylensedquasarAPM08279+5255 hasthefastestclaimedwindfromany activegalacticnucleus,withvelocitiesof0.6–0.7c,requiringmagneticaccelerationasspecial relativistic effects limit all radiatively driven winds to v < 0.3–0.5c. However, this extreme velocityderivesfrominterpretingboththenarrowandbroadabsorptionfeaturesintheX-ray spectrum as iron absorption lines. The classic ultrafast outflow source PDS 456 also shows similarabsorptionsystems,butherethehigherenergy,broaderfeatureisgenerallyinterpreted asanabsorptionedge.WereanalyseallthespectrafromAPM08279+5255usingafull3D MonteCarloradiativetransferdiscwindmodelfortheionizedwindat0.1–0.2c,togetherwith complexabsorptionfromlowerionizationmaterial,andfindthatthisisabetterdescriptionof thedata.Thus,thereisnostrongrequirementforoutflowvelocitiesbeyond0.2c,whichcan bepoweredbyradiationdriving.WeshowthatUVlinedrivingisespeciallylikelygiventhe spectral energy distribution of this source which is intrinsically UV bright and X-ray weak. While the peak of this emission is unobservable, it must be luminous enough to power the observedhotdust,favouringatleastmoderateblackholespin. Key words: black hole physics–radiative transfer–galaxies: active–galaxies: individual: APM08279+5255–X-rays:galaxies. AGN(Tombesietal.2010butseeLahaetal.2014andTombesi& 1 INTRODUCTION Cappi 2014). The most convincing have large column density of Accretiondiscwindsfromactivegalacticnuclei(AGN)arethought ∼1023 cm−2 and fast velocity of ∼0.1c, where the associated ki- toplayanimportantroleintheevolutionofthesupermassiveblack neticpowerisestimatedtobehighenoughtoplayakeyroleinthe holes and their host galaxies. Winds with a kinetic power which co-evolutionoftheblackholesandgalaxies. is only 5 per cent of the Eddington luminosity, L , can quench In spite of its importance, the physical properties of UFOs are Edd starformationinthebulgebysweepingawaythegasreservoir,and not fully understood. One of the major uncertainties is how the quantitativelyreproducetheobservedrelationbetweentheproper- outflows are launched and accelerated. Continuum-driven winds tiesoftheblackholeandthegalaxies(e.g.King2010). requireL(cid:2)L ,whilemanyofthesourceswithdetected(though Edd The most powerful winds in AGN have recently been re- sometimescontroversial)UFOshaveL∼0.1L (e.g.IC4329A, Edd vealed by X-ray observations showing ultrafast outflows (UFOs; Mkn509,Akn120:Lahaetal.2014;Tombesi&Cappi2014).UV e.g. Chartas et al. 2002; Reeves, O’Brien & Ward 2003; Pounds linedrivingonlyworksifthematerialhassubstantialUVopacity etal.2003b,a;Tombesietal.2010;Goffordetal.2013).Theseare i.e.isnothighlyionized.StrongX-rayilluminationwilloverionize seenasabsorptionlinesofFeXXVand/orFeXXVIionsintheX-ray the material, and shielding the gas (e.g. Murray & Chiang 1998; band,blueshiftedbymorethan10000kms−1 i.e.0.03c(Tombesi Proga & Kallman 2004) is not easy as X-rays can scatter around etal.2010).Suchfeatureswereseeninupto35percentoflocal theshield(Higginbottometal.2014).Thermalwinds,drivenbythe pressuregradientofX-ray-heatedgas,havemuchsmallervelocities astheyarelaunchedatfairlylargedistancesfromthesource,where (cid:2)E-mail:[email protected] materialheatedtotheComptontemperatureisunbound(Begelman, (cid:3)C 2017TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety AdiscwindofAPM08279+5255 1443 McKee&Shields1983).Thisonlyleavesmagneticdriving,which signaturestobedetectedeventhoughtheX-rayfluxisroughlyone depends on the (unknown) field geometry, so no predictions are orderofmagnitudelowerthanPDS456. possible(Progaetal.2000). Inthispaper,weuseourMonteCarlowindcodetofitthemulti- Without a physical mechanism, most current studies of UFOs epoch X-ray data from APM 08279+5255, to critically reassess have concentrated on constraining the physical properties of out- whethertheextremelyfastvelocitiesarerequired.Wefindweget flow.However,itisdifficulttoself-consistentlymodeltheemission goodfitswithawindat0.1–0.2c.Wereassessthelaunchmecha- andabsorptionfromtheUFOssincethewindgeometryisproba- nismforthewindfromthebroad-bandspectraenergydistribution. blynotspherical(Elvis2000;Proga&Kallman 2004;Risaliti& WhiletheoverallEddingtonfractionoftheaccretionflowispoorly Elvis2010).SuchasymmetricgeometriesrequireMonteCarlora- constrainedduetouncertaintiesinthemagnificationfromlensing, diativetransfercalculationstoderivetheemissionandabsorption the shape is UV bright and X-ray weak, favouring UV line driv- self-consistently. Such simulations were performed by Sim et al. ing.WeassumeastandardcosmologywithH =71kms−1Mpc−1, 0 (2008,2010a,b),butwereusedindetailedmodellingofonlytwo (cid:3)m=0.27and(cid:3)(cid:4)=0.73,sothattheredshiftofthetargetz=3.91 individualsources,PDS456(Reevesetal.2014)andPG1211+143 correspondstotheluminositydistanceofd =35.5Gpcandco- L (Simetal.2010a). movingdistanceof7.2Gpc. Inourpreviouswork(Haginoetal.2015),wedevelopedanew 3DMonteCarlosimulationcodeforaccretiondiscwindsinorder 2 OBSERVATIONAL DATA AND COMPARISON tomatchtoobservationaldatafromUFOs.Ourcodecancalculate WITH THE OTHER STRONG WIND SOURCES radiativetransferinH-andHe-likeionsinarealisticaccretiondisc windgeometry.WeappliedthissimulationtoalltheSuzakuspec- APM08279+5255hasbeenobservedbyChandra,XMM–Newton tra of PDS 456, and successfully reproduced the changing UFO andSuzakuaslistedinTable1.Weusethesamenamingconvention properties seen in this source by moderate changes in the veloc- ofChartasetal.(2009)andSaez&Chartas(2011)exceptforthe ity (0.2–0.3c) and the angle to the line of sight of a disc wind. first XMM–Newton observation, which was not included in their However,themainnewaspectofthispaperwasthatitre-assessed analysis due to its short exposure time. We refer to this data as thepossibilitythattheoutflowwasaUVlinedrivendiscwindas Epoch0. thisobjecthasL∼LEdd,withaspectralenergydistribution(SED) WeprocessedEPIC-pnand-MOSdataandremoveddeadandhot whichpeaksintheUVandisX-rayweak.Amorefavourablesetof pixelsbyusingSAStasksEPPROCandEMPROC(SASv.13.5.0),re- circumstancesforUVlinedriving(helpedbyradiationpressureas spectively.TimeintervalswhenbackgroundratesofPATTERN=0 L∼LEdd)ishardtoimagine.Theoutflowvelocityisalsocharacteris- eventsatenergy>10keVarehigherthan0.35countss−1forMOS ticofUVlinedrivendiscwinds(Proga&Kallman2004;Risaliti& and0.4countss−1forpncamerawereremoved.Onlyeventswith Elvis 2010; Nomura et al. 2013, 2016), as is the fluctuation be- PATTERN ≤ 12 for MOS and PATTERN ≤ 4 for pn were con- haviouraboutasteadystatestructure(Proga&Kallman2004).The sidered in the spectral analysis. The total net exposure times are observed ionization state is far too high for UV line driving, but listed in Table 1. Spectra were extracted from circular regions of theaccelerationcouldtakeplaceinmuchlowerionizationmaterial 64arcsecdiameter,whilebackgroundspectrawereextractedfrom closetothedisc,whichbecomesionizedandentersthelineofsight circular regions of the same diameter for pn and annular regions onlywhenithasliftedhighenoughtobeionizedbyillumination from100to300arcsecdiameterforMOSinthesamechipasthe fromthehotterinnerdiscandX-raysource(Haginoetal.2015). source regions. We generated the corresponding response matrix Our wind model was also applied to a putative broad iron line andauxiliaryresponsefilesbyutilizingRMFGENandARFGEN. feature in 1H 0707-495 (Hagino et al. 2016). The characteristic Chandra data were reprocessed and extracted using the CIAO sharpdropat∼7keVintheX-rayspectraofthissourcehadbeen toolsCHANDRA_REPROandSPECEXTRACT.Spectrawereextractedfrom interpretedastheblueendofanextremelysmeareddiscreflection circular regions of 4 arcmin diameter, while background spectra spectrum,requiringmaximalblackholespinandaverylowheight wereextractedfromannularregionsfrom6to30arcmindiameter. ofthepoint-likecorona.Instead,ourwindmodelsuccessfullyrepro- Thespectrawerethengroupedtoobtainaminimum40countsin ducedalltheXMM–Newtonobservationsof1H0707-495(andthe eachbin. NuSTARdata)withoutanyconstrainsonblackholespin,forawind WereducedtheSuzakuXISdatawithstandardscreeningcondi- velocityofv=0.2candamassoutflowrateofM˙wind/M˙Edd=0.2. tions:grade0,2,3,4and6eventswereused.Datawithin436sof Interestingly, a closer look at the fit residuals suggest that the P passagethroughtheSouthAtlanticAnomaly,andwithinanEarth Cygniironemissionlinefromthewindunderpredictstheobserved iron-Klineemission.Thiscouldindicatethatthewindhasalarger Table 1. XMM–Newton, Chandra and Suzaku observations of APM openinganglethanthemodelassumptionof(cid:3)/2π=0.15,asex- 08279+5255. pectedfromahighlysuper-Eddingtonsource(Done&Jin2016). However,neitherUVlinedrivingnorcontinuumradiationdriv- Name Observatory ObsID StartDate Netexposure(ks)a ingcanlaunchawindwithanoutflowofvelocityv∼0.7cfound Epoch0 XMM–Newton 0092800101 2001-10-30 16.7/16.7/12.3 in a gravitationally lensed quasar APM 08279+5255 (Chartas Epoch1 Chandra 2979 2002-02-24 88.8 et al. 2002; Saez, Chartas & Brandt 2009; Chartas et al. 2009; Epoch2 XMM–Newton 0092800201 2002-04-28 76.4/77.2/63.2 Saez & Chartas 2011) since radiative driving can accelerate only OBS1 Suzaku 701057010 2006-10-12 102.3/102.3 up to ∼0.3–0.4c due to radiation drag effects (Takahashi & OBS2 Suzaku 701057020 2006-11-01 102.3/102.3 Ohsuga 2015). Thus, this fast wind is evidence for a magnetic OBS3 Suzaku 701057030 2007-03-24 117.1/117.2 drivingmechanism(Fukumuraetal.2010).Thissourceisahigh- Epoch3 XMM–Newton 0502220201 2007-10-06 68.0/68.6/39.3 redshift (z = 3.91) quasar, so that blueshifted H/He-like Fe lines Epoch4 XMM–Newton 0502220301 2007-10-22 75.8/75.8/57.9 areseenat∼2keV.Atsuchanenergy,thesensitivitiesofcurrent Epoch5 Chandra 7684 2008-01-14 88.1 instrumentsaremuchbetterthanat7–8keV,wheretheabsorption Note.aNetexposuretimeofMOS1/MOS2/PNforXMM–Newton,ACISfor linesofUFOsatlowredshiftareobserved.ThisenablestheUFO ChandraandFI/BIforSuzaku,respectively. MNRAS468,1442–1452(2017) 1444 K.Haginoetal. 08279+5255 is similarly hard. It is clear that the narrow absorp- tion lines in APM 08279+5255 are less blueshifted than in PDS 456(v∼0.3c),makingitunlikelythatthewindisfasterinAPM 08279+5255thaninPDS456. The requirement for extreme velocity in APM 08279+5255 (0.40c for the grey spectra shown in Fig. 1) comes instead from the broad component of the absorption. Interpreting this as due to the Fe Kα line requires material with a large velocity spread, aswellasmaterialwithasmallerspreadtoproducethenarrower components of the line absorption (Chartas et al. 2009; Saez & Chartas2011).However,asdiscussedbytheseauthors,thereisan alternativemodel,wherethebroadabsorptionisfrombound-free edges. They showed that the edges predicted by the same highly ionized material as gives rise to the line is not completely suf- ficient to explain the data. However, in PDS 456, the broad ab- sorption feature is generally interpreted as a complex absorption edge, with some contribution from the highly ionized wind ma- terialbutwiththemajorityproducedinlowerionizationmaterial whichisrequiredtoexplainthecontinuumabsorptionatloweren- ergies(Haginoetal.2015;Matzeuetal.2016).ItisclearthatAPM 08279+5255ismoreabsorbedatlowenergiesthaneventhemost absorbedspectrumofPDS456,soitisfeasiblethatithasstronger edges, producing broad absorption up to ∼12 keV in these data. Figure 1. Comparison between the spectra of PDS 456 (blue/dark Thenarrowlinecomponentisblueshiftedto∼7.8keV,sorequires blue/cyan), 1H 0707-495 (red/magenta) and APM 08279+5255 (grey: velocitiesof∼0.15c,buthereweexplorewhetherthebroaderab- Epoch 1). We show two spectra of PDS 456, one from 2013-09 where sorption structure at higher energies requires an additional faster thereissimultaneousXMM–Newton-NuSTARdata,andonefromSuzakuin windorwhethertheycanbeproducedinthesameabsorptionstruc- 2013-03wheretheabsorptionlineisstrongest.TheXMM–Newton-NuSTAR turewhichgivesthehardspectrumbelow5keV. dataof1H0707-495arenotsimultaneous,buttheyarewellmatched.All spectraareshownintherestframe,and1H0707-495isscaleddownby afactorof10forplottingpurposes.Allspectrashowanarrowabsorption 3 MONTE CARLO SIMULATIONS OF THE line,andtheoneinAPM08279+5255islessblueshiftedthanthatinPDS WIND 456. All spectra also show evidence for a broader absorption feature at higherenergies,∼10keV.ItisthisfeatureinAPM08279+5255whichis 3.1 Codeoverview theevidencefora0.6cwind,yetinPDS456and1H0707-495thisfeature isinsteadinterpretedasmainlyaphotoelectricabsorptionedgefromcool Oursimulationcodeperformsaradiativetransfercalculationina clumpsembeddedinthewindwhich alsogiverisetothehard2–6keV realisticwindgeometrywithaMonteCarlomethodusingMONACO spectrum. (Odakaetal.2011).MONACOisageneral-purposecodeforcalculat- ingtheX-rayspectrafrommanyastrophysicalobjectsbytracking elevationangle<5◦andEarthdaytimeelevationangles<20◦were photon propagation and interaction with matter. The interaction excluded.Spectrawereextractedfromcircularregionsof2.9arcmin positionisdeterminedbyrandomlydrawingfromanexponential diameter,whilebackgroundspectrawereextractedfromannularre- distributionwithameanfreepathoftheinteractions,thenthepho- gionfrom7.0to14.0arcmindiameter. tonisabsorbedorre-emittedaccordingtothecross-sectionsofthe Fig. 1 shows the strongest absorption line spectrum of APM interactions. 08279+5255 (grey, 2002 Chandra data), compared with the Thephysicalprocessesinhighlyphotoionizedplasmaarealready strongestabsorptionlinestatesofPDS456(cyan,Suzaku2013-03, implementedintheMONACO(seeWatanabeetal.2006).Photoion- ObsID: 707035030) and 1H 0707-495 (red, XMM–Newton 2011, ization,photoexcitation,radiativerecombination,de-excitationand ObsID:0554710801).Allthespectraareplottedintherestframe Comptonscatteringbyfreeelectronsaretakenintoaccount.Aswith sotheAPM08279+5255dataextendupto30keV.Hence,wealso thepreviouswork(Haginoetal.2015,2016),onlyH-andHe-like extendthe1H0707-495andPDS456datatohigherenergiesbyin- ionsofFeandNiareconsideredinthiswork,whichisreasonable cludingNuSTARdata.ForPDS456,weadditionallyplotthesimul- assumptionforthehighlyionizedwindslikeUFOs. taneous XMM–Newton (blue, ObsID: 0721010401) and NuSTAR Theionizationstructureintheaccretiondiscwindiscalculated (dark blue, ObsID: 60002032006) spectra in 2013-09 (Nardini bysequentiallyrunningXSTAR(Kallmanetal.2004),andthenfixed etal.2015;Matzeuetal.2016).However,for1H0707-495,thereis duringtheradiativetransfercalculationwithMONACO.Ideally,the nosimultaneousobservationsofXMM–NewtonandNuSTAR.None radiativetransfersimulationandtheionizationstructurecalculation the less, we plot the NuSTAR data (magenta, 60001102004) as it shouldbecalculatediteratively.However,itisnotrealistictorepeat matches well to the XMM–Newton data in both flux and spectral thetime-consumingMonteCarlosimulationsmanytimes,sothat shape(Karaetal.2015). thissimplifiedprocedureisadopted. Thespectraofthesesourcesshowverysimilarfeaturesinboth We use a biconical geometry, which is often used for study- continuumandlines.Thereisafairlyclear,relativelynarrowabsorp- ingtheradiativetransferintheaccretiondiscwind(Shlosman& tionline,andthenabroaderabsorptionfeatureathigherenergiesin Vitello1993;Knigge,Woods&Drew1995;Simetal.2008,2010a). allthespectra.InPDS456and1H0707-495,theseabsorptionfea- Thisgeometryisdescribedbythreeparameters:thesolidangle(cid:3) turesarestrongestwhenthe2–5keVcontinuumishardest(Hagino (or the covering factor (cid:3)/4π), the minimum radius R and the min etal.2015,2016;Matzeuetal.2016),andthespectrumofAPM inner angle θ . The radial velocity follows an extension of the min MNRAS468,1442–1452(2017) AdiscwindofAPM08279+5255 1445 Table2. Assumedparametersforthesimulations. Parameter Value Accelerationindexβ 1.0 Turbulentvelocityvt 1000kms−1 Initialvelocityv0(=vt) 1000kms−1 Coveringfraction(cid:3)/4π 0.15 MinimumradiusRmin (cid:6)2/(v∞/c)2Rg Innerangleθmin 45◦ CAKvelocitylaw(Castor,Abbott&Klein1975),parametrizedby the initial velocity v0, the terminal velocity v∞ and the accelera- tionindexβ.Therotationalvelocityandthedensityaredetermined byconservationofangularmomentumandmass,respectively.As- sumedparametervaluesarelistedinTable2. Thiswindmodelconsistsofonlyhighlyionizedmaterial,whose typicalionizationstateislogξ ∼5,consistentwithourimplemen- tation,whereonlyH-andHe-likeionsofFeandNiareconsidered. However,theobservedspectraoftenshowstrongcontinuumabsorp- tionatlowerenergiesasshowninFig.1.Suchstrongabsorption requiresmuchlowerionizationmaterial,whicharenotincludedin ourwindmodel.Forthese,weadditionallyuseapartiallyionized absorber,whichpartiallycoversthesource. 3.2 ParametersforAPM08279+5255 Ourwindmodelisself-similarinionizationstructureandcolumn density for systems at different mass but the same Eddington ra- tio, so L /L is the most important parameters for our wind bol Edd model(Haginoetal.2016).However,theintrinsicEddingtonratio of APM 08279+5255 is not clear as there is a large uncertainty inthemagnificationfactorμfromgravitationallensing.Somepa- persreportstrongmagnificationwithμ∼100(Egamietal.2000; Kripsetal.2007;Weißetal.2007),butothersclaimmuchsmaller values of μ ∼ 2–10 (Lewis et al. 2002; Solomon & Vanden Bout2005;Riechersetal.2009).Saezetal.(2009)circumvented thisuncertaintybyusinginsteadtherelationbetweentheEdding- tonratio,L /L andX-rayphotonindex,(cid:9) (Wang,Watarai& Figure2. Equivalentwidth(toppanel),intrinsicwidth(middlepanel)and bol Edd Mineshige2004;Shemmeretal.2006,2008).Accordingtothisre- mean outflow velocity (bottom panel) of the blueshifted FeXXV/FeXXVI lation,theyestimatedtheEddingtonratiotobeL /L (cid:6)0.2–0.3 absorptionlinesasafunctionofviewingangleofthewind.Theintrinsic bol Edd widthisdefinedasthefullwidthatzerointensity,whichcorrespondstothe fromtheX-rayphotonindexofthissource(cid:9)∼2.0. energydifferencebetweenthefastestandslowestcomponentsofmaterial However,Fig.1showsthatitisatleastfeasiblethatthespectrum along the line of sight. The equivalent widths of FeXXV and FeXXVI are ofAPM08279+5255isaffectedbyabsorptionupto∼20–30keV co-addedinthisplot. so that (cid:9) and hence L /L are underestimated. We evaluate bol Edd the intrinsic photon index by fitting the 5–8 keV spectra of all the observations. This energy range corresponds to ∼25–40 keV intherestframe,wherethecontinuumspectrumshouldbemostly detail in Hagino et al. (2016), the energy of the absorption line free from absorption. The photon index is tied across all the ob- depends on both the terminal wind speed and the viewing angle, servations, but the normalization is allowed to be free. All the whereasthewidthoftheabsorptionlinedependsonthespreadof normalizations are consistent with each other except for Epoch velocitiesalongthelineofsight.Alongthetopedgeofthebicone, 4, where the flux is significantly higher than the other observa- thelinewidthisfairlysmallandtheblueshiftindicatesthetruewind tions.Thisfitgivesaphotonindex(cid:9)=2.26+0.28,correspondingto velocitysincemostofthewindisatitsterminalvelocity.Onthe −0.27 L /L ∼0.5basedontherelationinGrupeetal.(2010).This otherhand,athigherviewingangles,theabsorptionlineiswiderand bol Edd isalowerlimitasanyresidualabsorptionmeansthattheintrinsic thetotalblueshiftisnotsolargesincethelineofsightcutsacross X-rayphotonindexislarger.Therefore,theEddingtonratiointhis the acceleration region, where the velocity is much lower. Thus, sourceisL /L (cid:2)0.5,similartothatofPDS456,soweusethe changingonlytheviewinganglegivesverydifferentobservational bol Edd samewindmodelforAPM08279+5255asforPDS456(Hagino propertiesoftheabsorptionlineforthesamewindmodel.Fig.2 etal.2015).ThishasparametersdetailedinTable2. shows quantitative results for the wind model used here in terms The change in depth of the absorption lines in PDS 456 and oftheironKα lineequivalentwidth,intrinsicwidthandvelocity 1H0707-495fromthehotwindcanbereproducedbyachanging shift as a function of inclination angle. The equivalent width is viewing angle θ (Hagino et al. 2015, 2016). As described in thesumofbothHandHe-likeKα lines,asthesemergetogether incl MNRAS468,1442–1452(2017) 1446 K.Haginoetal. Table3. FittingparametersforEpoch1. ZXIPCF*WIND*POWERLAW ZPHABS*WIND*POWERLAW ZPHABS*ZXIPCF*WIND*POWERLAW Coldabsorbera NH(1022cm−2) – 6.2+−00..87 6.5+−13..40 Coolclump voutb(c) −0.09+−00..3125 – 0.19+−00..0176 NH(1022cm−2) 2.9+−80..18 – 42+−6471 logξ <0.1 – 1.6+−21..83 fcov >0.91 – 0.51+−00..2126 Hotwind vout(c) 0.17+−00..0011 0.17+−00..0022 0.17+−00..0012 θincl(◦) 48.6+−11..30 47.8+−11..10 48.2+−11..38 Powerlaw (cid:9) 1.64+−00..0076 1.63+−00..0066 1.92+−00..2229 Norm.(10−4) 1.0+−00..11 0.95+−00..0087 1.8+−10..78 Fitstatistics χν2 79.73/101 79.42/104 76.00/100 NullProb. 0.94 0.97 0.96 Notes.aModelforthecoolclumpsconsistsofZXIPCFandCABS. bMinussignmeanstheinflow/redshift. for inclinations greater than 48◦, whereas the intrinsic width and velocityshiftarecalculatedforasingleline. Inthiswork,weusethespectralmodelcreatedforPDS456be- causeitsEddingtonratioissimilartoAPM08279+5255.Itissim- ulatedforawindwithamassoutflowrateofM˙ /M˙ =0.13, wind Edd awindterminalvelocityof0.3c,anionizingphotonspectrumwith L /L =1.6×10−3 and(cid:9) =2.5.Thisisimplementedas 2–10keV Edd a multiplicative model in XSPEC so it can approximately describe the effect of disc wind on any similar continuum, and we simi- larlyincorporateanysmallchangeinvelocitywithafreeredshift factor. 4 COMPARISON OF THE MONTE CARLO SIMULATIONS AND THE OBSERVED SPECTRA Figure 3. Observed spectrum and best-fitting model for Epoch 1. The 4.1 ComparisonwiththeEpoch1spectrum absorbedcomponent,unabsorbedcomponentandsumofthesecomponents areplottedingreen,blueandred,respectively. We first do a detailed fit to the spectrum of Epoch 1 as this has the highest signal-to-noise absorption line detection. Similarly to PDS456and1H0707-495,thecontinuumabsorptionismodelled 1H0707-495,seeFig.1)couldbefromanadditionalneutralscreen withabsorptionfrompartiallyionizedmaterialthatpartiallycov- ofmaterial.Hence,weaddagainapartiallyionizedabsorberinor- ersthesource(ZXIPCF).Thispartiallyionizedabsorberisrequiredto dertoinvestigatetheeffectofcoolclumpsinthewind.Thesewere reproducethestrongcontinuumabsorptionatlowenergiesintheob- requiredinourpreviousstudiesandarealsonaturallyexpectedto servedspectrawhichcannotbereproducedbyourhotwindmodel. existinhotwindsduetotheionizationinstability(Krolik,McKee& We additionally include the CABS model because the high-energy Tarter 1981) or/and the Rayleigh–Taylor instability (Takeuchi, continuumshouldbesuppressedbyComptonscatteringwhichis Ohsuga&Mineshige2014).Thebest-fittingparametersarelisted not included in ZXIPCF. We assume that CABS also partially covers inthelastcolumnofTable3,andtheobservedspectrumandmodel thesourcewithasamecoveringfactorasZXIPCF. areshowninFig.3.Althoughaddingcoolclumpsdoesnotimprove Thepartiallyionizedabsorberislessionized(logξ <0.1)and thefitsignificantly(F-testprobability∼30percent),thisgivesan coversmoreofthesource(f>0.91)thaninPDS456and1H0707- interestingresult.Theoutflowingvelocityofthepartiallyionized 495.FullparametersarelistedintheleftcolumnofTable3.The absorberisconsistentwiththehotwindvelocity.Asimilarresult outflowvelocity oftheabsorberispoorlyconstrained butiscon- isfoundinPDS456(Matzeuetal.2016),anditisconsistentwith sistentwithzero(v=−0.24c–0.23c).Weassumeitisatrest,and ourinterpretationthatthepartiallyionizedabsorberisduetocool usethefullcoveringneutralabsorberZPHABSinsteadofZXIPCF.This clumpsembeddedinthehotphaseofthewind.Inthismodel,the modelprovidesasimilarχ2buthasthreefewerparametersaslisted absorptionlineat∼8keVismainlysetbythehotwind,thefeature inthecentrecolumnofTable3.Inbothmodels,theoutflowvelocity at∼9keVandthe4–6keVcontinuumshapearemainlysetbythe ofthehotwindissimilartothelocalfastwindsources(Tombesi partiallyionizedabsorption,whilethecontinuumbelow4keVis etal.2010;Goffordetal.2013),0.18±0.02c,andphotonindex setbytheneutralabsorption.Addingthepartiallyionizedabsorber of the intrinsic power law is very hard value of ∼1.6. Thus, the doesnotchangetheparametersoftheneutralabsorberorthehot sharpdownturnbelow4keV(whichisnotpresentinPDS456or wind,butthepower-lawcontinuumbecomessteeper. MNRAS468,1442–1452(2017) AdiscwindofAPM08279+5255 1447 Table4. FittingparametersforalltheXMM–NewtonandChandraobservations. Epoch0 Epoch1 Epoch2 Epoch3 Epoch4 Epoch5 Coldabsorber NH(1022cm−2) 5.9+−01..85 6.4+−14..46 5.4+−00..99 5.5+−00..77 5.2+−00..55 5.6+−11..21 Coolclump vout(c) Tiedtohotwind NH(1022cm−2) 87+−26078 44+−6402 87+−4338 >254 138+−14623 76+−14579 logξ <2.9 1.9+−22..00 2.3+−00..73 2.8+−01..24 2.9+−00..36 <2.2 fcov 0.52+−00..2246 0.46+−00..2253 0.58+−00..1242 0.93+−00..0048 0.61+−00..2106 0.44+−00..2344 Hotwind vout(c) 0.22+−00..0033 0.17+−00..0022 0.17+−00..0011 0.11+−00..0022 0.11+−00..0011 0.10+−00..0055 θincl(◦) 47.8+−11..84 48.1+−11..33 47.5+−00..87 <46.4 46.8+−00..55 <46.9 Powerlaw (cid:9) 2.11+−00..3233 1.87+−00..3236 2.11+−00..1186 2.24+−00..0099 2.22+−00..0098 2.06+−00..2232 Norm.(10−4) 3.0+−21..73 1.6+−10..67 2.3+−10..28 19+−3111 4.5+−51..32 2.2+−10..79 Fitstatistics χν2 79.99/58 76.06/101 133.33/148 124.24/141 172.42/177 101.09/112 NullProb. 0.029 0.97 0.80 0.84 0.58 0.76 χ2/ν 1.38 0.75 0.90 0.88 0.97 0.90 Saez&Chartas(2011) χ2/ν(extremewind) – 1.15 0.95 1.03 1.08 0.97 Table5. FittingparametersforalltheSuzakuobservations. underestimates effects of the contamination (G. Chartas, private communication).Theintrinsiccontinuumisalsomainlyconsistent OBS1 OBS2a OBS3 withbeingconstantexceptforEpoch3,whichhasamuchhigher Coldabsorber NH(1022cm−2) 7.4+−11..94 5.6+−11..69 5.3+−11..57 ionbtsrienrvsiecdphoiwghe-re-nlaewrgyfluflxu.xWdeoetshinnoktsthhaotwthsiuschislaarngearvteafraiacbtilaistythaes Coolclump vout(c) Tiedtohotwind discussedinSection3.2.Instead,thisisprobablyanartefactofour NH(1022cm−2) 191+−8799 92+−5440 102+−25568 approximate model for the cool clump absorption as the column logξ <3.0 <2.4 1.9+−22..43 densityofthepartialcovererhasalsoincreaseddramatically.Elec- fcov 0.81+−00..1113 0.59+−00..1386 0.57+−00..0389 tron scattering from the clumps, which is currently modelled by Hotwind vout(c) 0.12+−00..0076 0.18+−00..0054 0.14+−00..0033 CABS,stronglydependsonthegeometry.CABSonlyconsiderspho- θincl(◦) <46.5 <47.2 <46.7 tonsscatteringoutofourlineofsight,butphotonsscatteringinto Powerlaw (cid:9) 2.28+−00..2106 2.17+−00..2256 2.17+−00..2311 ourlineofsightcouldbeimportantifthesolidangleofthewind Norm.(10−4) 6.8+−84..90 2.8+−21..55 2.7+−11..74 iEspnoocthn3egwliigthiboluet.tWheeCdAeBmSocnosmtrpaotenethnits.Tbyhisregfiitvtiensgatshmeaslpleecrtpruomweirn- Fitstatistics χν2 125.02/130 130.60/124 161.75/142 lawnormalizationof2.4+0.5×10−4 andasmallercoveringfactor NullProb. 0.61 0.32 0.12 of 0.44+0.07, both of whi−c0h.4are similar to the other observations. χ2/ν 0.96 1.05 1.14 −0.08 Theotherparametersareconsistentwithin90percentuncertainties Note.aDatapointsofFIbetween1.75and1.95keVareignoredasinSaez withcomparablefitstatisticsofχ2=124.0/141. ν etal.(2009). Thepartiallyionizedabsorberismoderatelyionized(logξ ∼2) inalltheobservations.Itislessionizedthanthehotwind,whose ionizationparameteristypicallylogξ ∼5.Itproducesabsorption 4.2 ApplicationtoallXMM–Newton,ChandraandSuzaku edgesatenergieslowerthanthoseoftheH-andHe-likeironinthe data hotwind,anddistortsthecontinuumspectralshape.Thecontinuum We use the model derived above for Epoch 1 to fit all the data shape is strongly affected by covering factor and column density observedbyXMM–Newton,ChandraandSuzaku.Thevelocityof aswellastheionizationparameter.Duetothismodelcomponent, thepartiallyionizedabsorberistiedtothatofthehotwindsince theintrinsicpower-lawcontinuumissteeperthaninChartasetal. theyareconsistentinEpoch1spectrum.Thebest-fittingparameters (2009). On average, the photon index is (cid:9) ∼ 2.2, similar to that foralltheEpochsarelistedinTables4and5,andthespectraand measureddirectlyinthehigh-energyspectra(Section3.2).Thisis modelsareshowninFig.4.Magentadashedlinesindicatethebest- slightlysmallerthanthe(cid:9)=2.5assumedtoderivetheionization fittingenergiesofthehotwindabsorptionlinesforEpoch1,where stateinourdiscwindmodel,butthisonlymakesa10–20percent theabsorptionlinesaremostclearlydetected.Itisobviousthatthe differenceinionizationparameterlogξ.Thiseffectismuchsmaller lineenergiesofthehotwinddecreaseovertime.Intheobservations than the factor 10 uncertainty on ionization parameter which in2001and2002(Epoch0–2),theabsorptionlinesarethesame comesfromtheuncertaintyinintrinsicluminosityduetothelens orhigherenergiesthanthoseofEpoch1,whileintheobservations magnification. after2006(OBS1–3,Epoch3–5)thelineenergiesarelowerthan The hot wind velocity clearly decreases from ∼0.2c to ∼0.1c thoseofEpoch1.Alsoobviously,thedepthsoftheabsorptionlines duringalltheobservationEpochs,asshowninthetoppanelofFig.5. decreaseinthelaterobservations. Thisisnotanartefactofthecorrelatedchangeininclinationangle The column density of the cold absorber is fully consistent from∼48◦ to∼46◦ (lowerpanelofFig.5)asthiscorrespondsto with constant. This is different from the previous study (Chartas (cid:12)v(cid:6)0.004c,whichismuchsmallerthanthedecreaseintheoutflow et al. 2009) due to a significant improvement of the contamina- velocity(Fig.2).Thedecreasingangleisinsteadaconsequenceof tion models of Chandra. The old CALDB they used for Epoch 5 adecreasingcolumndensityofthehotwind. MNRAS468,1442–1452(2017) 1448 K.Haginoetal. Figure4. Observedspectraandbest-fittingmodelsforallEpochs.Theabsorbedcomponent,unabsorbedcomponentandsumofthesecomponentsareplotted ingreen,blueandred,respectively.Magentadashedlinesindicatethebest-fittingenergiesoftheblueshiftedFeXXV/FeXXVIabsorptionlinesseeninEpoch1. Itisclearthatthevelocityofthesesystemsisdecreasingovertime,asistheirequivalentwidth. 5 DISCUSSION describesthedatabetter.Ourdatahavedifferentnumbersofpoints due to differences in extraction and grouping, so we include the 5.1 Velocityofthewind reducedχ2/ν fortheSaez&Chartas(2011)modelfitsforEpoch 1–5 at the bottom of Table 4. Our fits all have lower χ2, despite ThesedatawerepreviouslyfitbyChartasetal.(2009)andSaez& ν thereonlybeingfivefreeparameterstodescribeourcomplexwind Chartas(2011).Ourresultsagreefairlywellintermsofthevelocity (velocity,anglethatcontrolsthecolumndensityandvelocitywidth of what we call the hot wind component and they call the slow ofthehotwind,andthenthecoolerwindcolumn,ionizationstate wind(thecomponentthatproducestheobviousabsorptionlinein andcoveringfraction),comparedtosevenintheirmodel(eachwind mostofthespectra).However,theydifferdramaticallyonhowto hascolumndensity,andminimumandmaximumoutflowvelocity, interprettherestofthecomplexabsorptionathigherenergies.In andthenbothwindsareassumedtohavethesameionizationstate). our model, there is additional curvature from the edge structure Thedataclearlyshowthattherearetwoabsorptionfeatures.All fromapartialcovering,lessionizedcomponent,whichweassume modelsagreethatthelowerenergyfeatureismainlyaresonance is outflowing at the same velocity as our hot wind as seen in the absorptionironlinefrommaterialoutflowingat0.1–0.2c.Thishas classicwindsourcePDS456(Matzeuetal.2016).Instead,inSaez& enoughenergytoimpactthehostgalaxyandisclearevidencefor Chartas(2011),thisbroadabsorptionfeatureisagainfitbyaniron AGN feedback. The higher energy feature is more controversial. resonanceabsorptionline,sotheobservedwidthoftheabsorption In our model, it is produced by the complex edge feature from requiresalargerangeofvelocitiesinthelineofsightinthissecond the less ionized, partial covering material outflowing at the same windcomponent.Thefastestmaterialtypicallyreachesspeedsof velocity. These velocities are high but can be produced by radia- 0.65–0.7c except in Epoch 1, where they only require 0.4c (their tion driving on a wind launched from inner disc. In the Saez & fast wind component). Thus, in their model there is material that Chartas(2011)model,itisinsteadproducedbyahighlybroadened is typically much faster than can be explained by any radiatively absorptionlinethatrequiresextremevelocities.Notonlydoesour drivenwind,whereasinoursthisisnotrequired. modelgivesbetterfit,butwenotethattheclassicwindsource,PDS Thekeyquestionisthenwhichwindmodelbettermatchesthe 456 requires such partially ionized material that partially covers physicalsituationinthissource.Allmodelsareonlyapproximations the source (Reeves et al. 2009; Hagino et al. 2015) and which is toamorecomplexreality,butitisclearlyusefultoaskwhichone outflowing along with the material producing the resonance line MNRAS468,1442–1452(2017) AdiscwindofAPM08279+5255 1449 Figure6. BroadbandSEDofAPM08279+5255fromSpitzer(blackcir- cles:Soiferetal.2004),AKARI(diamonds:Oyabuetal.2009),INT(squares: Bennetal.2002)andChandra(triangles:Chartasetal.2002).Theredline Figure5. Outflowvelocityandviewingangleofeachobservation(XMM– ismodelfortheaccretionflowwithnominalparameters(MBH=1010M(cid:8), Newton:blackcircles,Chandra:redsquares,Suzaku:greentriangles)plotted Lbol/LEdd=1,μ=6),whilethemagentalineshowsreddening/absorption asafunctionofMJD.Errorbarscorrespondto90percentconfidencelevel. fromourGalaxyandabsorptionbytheconstantgascolumnof5×1022cm−2 seenintheX-raydata.WealsoincludetemplatemodeltofittheIRtorus emission in order to determine its luminosity. The green line shows the (Matzeuetal.2016).Thissupportsourinterpretation,butweneed datafromAPM08279+5255whichisofsimilarqualitytothatof upper limit to black hole mass for zero spin of MBH = 2 × 1010M(cid:8) PDS456inordertounambiguouslydistinguishbetweenourmodel (Lbol/LEdd =0.5,μ=4),astheoptical/UVcontinuumhastobeatleast asstrongastheobservedINTflux(itcanbehigherasthereissubstantial andtheextremewind. Lymanαforestabsorption).BothNominalandhigh-massmodelsunderpre- dicttheobservedIRflux,requiringthattheSEDpeaksathigherenergies. Thedarkbluelineshowsasolutionwithmoderateblackholespina∗=0.7 5.2 BroadbandSEDandquasarparameters (MBH =1010 M(cid:8),Lbol/LEdd =1andμ=8),whilethebluelineshows Thebroad-bandSEDofthequasarisveryimportanttounderstand maximumblackholespina∗=0.998(MBH=1010M(cid:8),Lbol/LEdd=1and μ=15).Theorangelineshowsinsteadthelowerlimitofblackholemass tlhauenacchceeslearawtiionndmbyecrhaadniaistimonsopfrtehsesuwreinodn.SUtrVonlignUeVtrarnasdiitaiotinosn,ewahsiillye ManBdHμ==42×).F1u0l9lMpa(cid:8)ramaentderhsigfohrEthdedsiengatroenlirsatetidoionfTLabbolle/L6E.dd=25(a∗=0 strong X-rays suppress it. Hence, an SED that is UV bright and X-rayweakisclearlyconsistentwithUVlinedriving,whileone thathasstrongX-rayfluxislessfavourable. We plot the broad-band SED from Spitzer (Soifer et al. 2004), L /L = 1 and r = 25r . This coronal radius is a typi- bol Edd corona g AKARI(Oyabuetal.2009),2.5-mIsaacNewtonTelescope(INT; cal value forAGN with an accretion rate close toEddington (Jin Benn et al. 2002) and Chandra (Epoch1) data. The optical con- etal.2012).Thisintrinsicspectrumisshownbytheredlinemarked tinuum underneath the Hα line shows a clear disc spectrum, so ‘Nominal’ in Fig. 6, whereas the magenta line in this figure in- weusethistoconstrainthemassaccretionratethroughtheouter cludestheeffectofabsorptioninourGalacticcoldabsorberwith accretiondiscviatheOPTXAGNFmodel(Doneetal.2012).Thisin- NH=5×1022cm−2introducedtoexplainthestrongX-raycontin- cludes phenomenological modelling of the soft X-ray excess and uumabsorption.WeonlyincludedustreddeningfromourGalaxy high-energycoronaemission,assumingthattheseareenergetically becausetheveryhighcolumndensityinthecoldabsorberwould poweredbythesamemassaccretionrateasrequiredfortheouter strongly suppress the optical flux down to much lower level than disc. This implies a transition radius, R , within which the en- theobservedflux.Thismeansthatthecoldabsorberisnotdustyso cor ergy released by gravity is dissipated in these X-ray components itcannotbeassociatedwiththetorusorothermaterialfurtherout rather than the standard disc. We first fix the black hole mass to inthehostgalaxy. M =1.00+0.17×1010 M(cid:8) andamagnificationfactorofμ(cid:3)8 The magenta line also includes a torus template by Silva, BH −0.13 asobtainedbyreverberationmappingoftheSiIVandCIVemission Maiolino&Granato(2004)toreproducethemid-IRdataobserved lines(Saturnietal.2016).WesetthenormalizationofOPTXAGNFas by Spitzer. We use this torus template to estimate the power of equaltothemagnificationfactor,fixthesoftX-rayexcesstotypical dustemission,anditsratiototheaccretionpower.Thisratiomust valuesofkT =0.2keVandanopticaldepthofτ=15,fixthefrac- be less than unity as the torus is powered by reprocessing of the e tionofcoronalemissiontoatypicalvalueoff =0.3,withspectral illuminating AGN flux. However, Table 6 shows that the torus is pl index (cid:9) = 2.2 as observed. We find that the broad-band SED is moreluminousthanthetotalaccretionpowerintheNominalSED well reproduced by a model with μ = 6, M = 1 × 1010 M(cid:8), model.Thisdiscrepancyisonlymadeworseifthemagnificationis BH MNRAS468,1442–1452(2017) 1450 K.Haginoetal. Table6. Parametersforthesolutionstoexplainthebroad-bandSED. radio-quiet,ashighspinmayalwaysresultinapowerfulradiojet (Maraschietal.2012;Done&Jin2016). MBH(M(cid:8)) a∗ m˙ μ LLdust Asolutionwithamoderateblackholespinofa∗=0.7atEdding- AGN tonisplottedindarkblueinFig.6.Higherspingiveshighereffi- Nominal(red) 1010 0 1 6 1.35 ciencysohigherluminosityforagivenmassaccretionratethrough Highmass(green) 2×1010 0 0.5 4 2.03 theouterdisc.Themagnificationfactormustbelargertocompen- Moderatespin(darkblue) 1010 0.7 1 8 0.99 Maximumspin(blue) 1010 0.998 1 15 0.48 satetheincreaseofη followingequation(2).Wefindthatsetting Super-Eddington(orange) 4×109 0 25 2 0.40 themagnificationfactoratitsupperlimit(μ=8)canreproducethe observedspectra.Inthiscase,theratioofreprocessedIRtototal accretionpoweris∼99percent,whichjustbarelyavoidsviolating energyconservation. differentbetweentheIRandthenuclearregion,asmoreextended Wealsoconsideramaximallyspinningblackhole(spinparame- IRwillhavesmallermagnification. terofa∗=0.998).Thisrequiresalargemagnificationfactorμ=15 Weinvestigatetheeffectofchangingthemodelparameters.First, forL /L =1butthetorusluminosityfractionisnowamore we investigate what happens with a larger black hole mass, as bol Edd acceptable value of 48 per cent. While highly relativistic jets are reverberationmappingisclearlyverydifficultwiththeUVlines. not well understood, it is clear that spin plays at least some role. A higher black hole mass would give a lower temperature of the APM 08279+5255 does have radio emission and its luminosity accretiondisc,butthereisalimittohowlowthiscangowhilestill does put it into the FRII category so it could indeed have a mis- fittingtheINTopticaldata.Themodelfluxcannotbelowerthan thisdata,butcanbehigherasthereissubstantialLymanα forest aligned, highly powerful radio jet, but some (perhaps all) of this radio emission is powered by the strong star formation (Riechers absorption that additionally suppresses the optical/UV spectrum. et al. 2009). The high-resolution radio images show no sign of a Wefindthatthisrequirementmeansthatthereisanupperlimitof theblackholemassforzerospinofM ∼2×1010M(cid:8),which double radio structure (Riechers et al. 2009), but these could be BH suppressedbybeingonscalesthatareoutsideofthelensingmag- isplottedingreeninFig.6,called‘highmass’.Inthisparameter set,weusealowerlimitoftheEddingtonratio(L /L =0.5) nificationand/orthesourcecouldbeyoung,liketheGHz-peaked bol Edd AGN(Brunietal.2015). determinedbythecorrelationofphotonindexandEddingtonratio The other possible solutions are higher accretion rate or/and (seeSection3.2)sincetheloweraccretionratedecreasesthedisc temperature. The magnification factor is μ = 4, and the corona lower black hole mass. A lower limit of black hole mass radius is r = 40r , which is reasonable for a half Eddington MBH = 4 × 109 M(cid:8) corresponds to m˙ =6.25 by equation (2) corona g if the magnification factor and the spin are unchanged. By using accretion,butnowthemismatchwiththeIRemissionisevenworse a lower limit of magnification factor μ = 2, the Eddington ratio (seeTable6). becomes as high as m˙ =25. This magnification factor is slightly Apossiblesolutiontoreproduceboththeaccretionflowemission lower than that calculated from equation (2) because the relation andthetorusreprocessingistoshiftthepeakofthequasarradiation F ∝μ(M M˙ )2/3isonlyvalidatenergiesbelowthediscpeak. tohigherenergies,intotheunobservablefar-UV.Themaximumdisc opt BH acc Themodelspectrawiththeseparametersareplottedinorangein temperatureT followsaproportionalrelation max Fig. 6, again giving a more acceptable luminosity fraction of the T ∝m˙1/4M −1/4r −3/4 (1) toruscomparedtotheaccretionpowerof40percent. max BH ISCO Exactly where the SED peaks is also important for the launch soishigherforalargerEddingtonratiom˙(≡L /L ),asmaller bol Edd mechanism of the wind. According to the discussion in Laor & black hole mass M or a smaller disc inner radius r (which BH ISCO Davis(2014),theUV-line-drivendiscwindisefficientlyaccelerated depends on the black hole spin a∗). We have to simultaneously by radiation with an effective temperature of ∼30000–50000 K. reproducetheobservedopticalfluxFopt∝μ(MBHM˙acc)2/3 (Davis Thiscorrespondstoapeakinνfν at∼0.01keV.Bothnominaland & Laor 2011), with the additional relation from the bolometric high-massmodelspeakatenergiesthataresomewhatbelowthis,so luminosityL ∝m˙M ∝ηM˙ ,whereηisthespin-dependent bol BH acc maynothaveenoughUVforefficientlinedriving.However,these efficiencyoftheenergyconversion.Thisrequires arethetwomodelsthatwereruledoutbyenergyconservationas m˙ ∝ημ−3/2M −2. (2) they cannot power the observed IR radiation. Instead, the higher BH spinandsuper-EddingtonmodelsallhavecopiousUVphotonsat Thesolutionsarelimitedbyrangesoftheparameters.Thelower ∼0.01keV,yetarealsoX-rayweak.Thus,thebroad-bandSEDof limitoftheblackholemasscanbeestimatedbyacomparisonof APM08279+5255islikethatofPDS456,inbeingUVbrightand the width of the broad line with PDS 456. PDS 456 (M = 1– X-rayweak,asrequiredforefficientUVlinedriving. BH 2×109M(cid:8))hasanHβ linewidthof3974±764kms−1(Torres etal.1997),afactor2smallerthananHαlinewidthof7721kms−1 5.3 RelationwiththebroadUVabsorption in APM 08279+5255 (Oyabu et al. 2009). The black hole mass depends onthevelocityand radiusofthebroadlineregion,with Spectralfittingwithourhotwindwithcoolclumpsmodelrevealed M ∝ Rv2. Hence, the black hole mass of APM 08279+5255 thattheoutflowvelocitydecreasesfrom∼0.2cto∼0.1cwhilethe BH mustbelargerthan4×109 M(cid:8) evenintheunlikelycasethatR viewingangle(whichtracesthecolumndensity)ofthewindalso is the same. While the upper limit of the magnification factor is decreasesfrom∼48◦to∼46◦during6yrbetween2001October30 estimated by the reverberation mapping (Saturni et al. 2016), the and2008January14.Thiswasnotdiscussedinpreviousworkbe- lowerlimitisnot.Here,wesimplysetalowerlimittobeμ=2 causetheiranalysisconcentratedontheputativefastercomponents sincenomagnificationμ=1seemstobeunlikelyforsuchahigh- ofthewind. luminosity object. We consider two possible upper limits for the Similar trends are observed in the outflows seen in UV band. spinparameterinthissource.Wefirstassumethatthespinisless Trevese et al. (2013) investigated the long-term variability of the than a∗ ∼ 0.7, as might perhaps be appropriate if this source is absorptionlineprofilesfrom1998to2012,whichspansthetimeof MNRAS468,1442–1452(2017)
Description: