Revisitingthe B0 π0π0 decays inthe perturbative QCD approach → Yun-Feng Li1,∗ and Xian-Qiao Yu1,† 1School of Physical Scienceand Technology, Southwest University, Chongqing 400715, China (Dated:July4,2016) WerecalculatethebranchingratioandCPasymmetryforB¯0(B0)→π0π0decaysinthePerturbativeQCD approach. Inthisapproach,weconsiderallthepossiblediagramsincludingnon-factorizablecontributionsand annihilationcontributions, andidentityprincipleisalsotakenintoaccount. Weobtainthebranching ratioof B0 → π0π0 is about 1.1×10−6. Our result is in agreement with the latest measured branching ratio of B0→π0π0bytheBelleandHFAGCollaborations.WealsopredictlargedirectCPasymmetryandmixingCP asymmetryinB0 →π0π0decays,whichcanbetestedbytherunningLHC-bexperiments. PACSnumbers:13.25.Hw,11.10.Hi,12.38.Bx 6 1 0 The detailed study of B meson decays is a key source of testing the Standard Model(SM), exploring CP violation and in 2 searching of possible new physics beyond the SM. The theoretical studies of B meson decays have been studied widely in l the literature, oneofthe challengesis thatthemeasuredbranchingratio [1–3] forthe decayofB mesonto neutralpionpairs u B0 π0π0 is significantly larger than the theoretical predictions obtained in the QCD factorization approach [4–7] or a J → perturbativeQCDapproach(PQCD)[8]. 1 ThebranchingratioofB0 π0π0hasbeenmeasured,whosedata[9]are → ] (1.83 0.21 0.13) 10−6;(BABAR), h (0.9±0 0.1±2 0.10×) 10−6;(Belle), . (1) p - (1.1±7 0.1±3) 10×−6,(HFAG). p ± × e Inthelastmorethan10years,manytheoreticalteamshavecalculatedthisdecaysindifferentapproach.BenekeandNeubert h madetheanalysisofB0 π0π0 decaybasedonQCDfactorizationin2003[5]. Recently,QinChang[10],XinLiu[11]and [ Cong-FengQiao[12]eta→l. recalculatedthisdecaymodelusingdifferentmethod. Thenext-leading-order(NLO)contributions from the vertex corrections, the quark loops, and the magnetic penguins have also been calculated in the literature [13–16]. 2 v By comparing their results, we find the agreement between the theoretical predictions and the experimental data is still not 2 satisfactory,sowerevisitthedecaysofB0 π0π0 inthispaper. WeusethePQCDapproachtocalculatedirectlythisdecays, → 3 non-factorizablecontributionsandannihilationcontributionandidentityprinciplearealltakenintoaccount. 6 FortheconsideredB¯0 π0π0decays,thecorrespondingweakeffectiveHamiltonianisgivenby [17]. 3 → 0 G 10 1. Heff = √F2 Vu∗dVub[C1(µ)O1(µ)+C2(µ)O2(µ)]−Vt∗dVtb[ Ci(µ)Oi(µ)] +H.c., (2) (cid:26) i=3 (cid:27) 0 X 6 whereCi(µ)areWilsoncoefficientsattherenormalizationscaleµandOi arethelocalfour-quarkoperators 1 (1)current-current(tree)operators : v Xi O1 = (u¯αuα)V−A(d¯βbβ)V−A , O2 = (u¯αbα)V−A(d¯βuβ)V−A ; (3) r (2)QCDpenguinoperators a O = (d¯ b ) (q¯ q ) , O = (d¯ b ) (q¯ q ) , 3 α α V−A β β V−A 4 α β V−A β α V−A Xq Xq (4) O = (d¯ b ) (q¯ q ) , O = (d¯ b ) (q¯ q ) ; 5 α α V−A β β V+A 6 α β V−A β α V+A q q X X (3)electroweakpenguinoperators 3 3 O = (d¯ b ) e (q¯ q ) , O = (d¯ b ) e (q¯ q ) , 7 α α V−A q β β V+A 8 α β V−A q β α V+A 2 2 3 Xq 3 Xq (5) O = (d¯ b ) e (q¯ q ) , O = (d¯ b ) e (q¯ q ) . 9 α α V−A q β β V−A 10 α β V−A q β α V−A 2 2 q q X X ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] 2 Hereαandβ areSU(3)colorindices. Thenthecalculationofdecayamplitudeistocomputethehadronicmatrixelementsof thelocaloperators. InthePQCDapproach,thedecayamplitudecanbewrittenas Amplitude∼ d4k1d4k2d4k3Tr[C(t)ΦB¯0(k1)Φπ0(k2)Φπ0(k3)H(k1,k2,k3,t)]e−S(t). (6) Z In our following calculations, the B0 meson wave function, and the wave functionsof pion mesons and relevant distribution amplitudesΦA,P,T areofthesameformasthoseadoptedinRefs.[18]. theGegenbauermomentsaπ andotherparametersare π i adoptedfromRefs.[18,19] aπ =0, aπ =0.25, aπ = 0.015, 1 2 4 − ρ =m /m , η =0.015, ω = 3.0 (7) π π 0π 3 3 − withm thechiralmassofthepion. 0π Fig.1showsthelowestorderdiagramstobecalculatedinthePQCDapproachforB¯0 π0π0decay.Thesumcontributions → ofthenon-factorizablediagrams(a)and(b)whichcomefromtheoperatorO are 2 M4 1 1 ∞ = B − 32πC dx dx dx b db b db Φ (x ,b ) [(x 2)ΦA(x )ΦA(x ) Ma 2 √2N F 1 2 3 1 1 2 2 B 1 1 { 2− π 2 π 3 c Z0 Z0 +rπ(1−2x2)ΦTπ(x2)ΦAπ(x3)+rπ(1−2x2)ΦPπ(x2)ΦAπ(x3)]αs(t1a)h1a(x1,x2,x3,b1,b2) (8) exp[ S (t1) S (t1) S (t1)]C(t1) 2r ΦP(x )ΦA(x )α (t2) − B a − π a − π a a − π π 2 π 3 s a h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , a 1 2 3 1 2 − B a − π a − π a a } where C = 4/3 is the group factor of the SU(3) gauge group and r = M /M , the Sudakov factor S (t)(X = F c π 0π B X B¯0,π0,π0) can be found in the appendix of Ref.[20]. The functions h1,2(x ,x ,x ,b ,b ) come from the Fourier transfor- a 1 2 3 1 2 mationofpropagatorsofvirtualquarkandgluon.Theyaredefinedby hj(x ,x ,x ,b ,b )= a 1 2 3 1 2 θ(b b )I (M x (1 x )b )K (M x (1 x )b ) 1 2 0 B 1 2 2 0 B 1 2 1 − − − (cid:26) p (Kp(M F b ), for F2 >0 0 B a(j) 1 a(j) +(b b ) , (9) 1 ↔ 2 (cid:27)× π2iH(01)(MB |Fa2(j)|b1), for Fa2(j) <0! q whereF ’saredefinedby a(j) F2 =1 x , a(1) − 2 F2 =x . (10) a(2) 1 Thetotalcontributionforthenon-factorizablediagrams(c)and(d)is M4 1 1 ∞ = B − 32πC dx dx dx b db b db Φ (x ,b ) [ΦA(x )ΦA(x )(1 x x ) Mc 2 √2N F 1 2 3 2 2 3 3 B 1 3 { π 2 π 3 − 1− 3 c Z0 Z0 +rπΦPπ(x2)ΦAπ(x3)(1−x2)+rπΦTπ(x2)ΦAπ(x3)(1−x2)]αs(t1c)h1c(x1,x2,x3,b2,b3) (11) exp[ S (t1) S (t1) S (t1)]C(t1)+[ ΦA(x )ΦA(x )(1+x x x ) r ΦP(x )ΦA(x )(1 x ) − B c − π c − π c c − π 2 π 3 3− 1− 2 − π π 2 π 3 − 2 +r ΦT(x )ΦA(x )(1 x )]α (t2)h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , π π 2 π 3 − 2 s c c 1 2 3 2 3 − B c − π c − π c c } where hj(x ,x ,x ,b ,b )= c 1 2 3 2 3 θ(b b )I (M x (1 x )b )K (M x (1 x )b ) 2 3 0 B 1 2 3 0 B 1 2 2 − − − (cid:26) p (Kp(M F b ), for F2 >0 0 B c(j) 3 c(j) +(b b ) , (12) 2 ↔ 3 (cid:27)× π2iH(01)(MB |Fc2(j)|b3), for Fc2(j) <0! q 3 FIG.1.TypicalFeynmandiagramscontributingtotheB¯0 →π0π0decaysinthePQCDapproachatleadingorder. andF ’saredefinedby c(j) F2 =x +x +x x x x x 1, c(1) 1 2 3− 1 2− 2 3− F2 =x x x x +x x . (13) c(2) 1− 3− 1 2 2 3 Thefactorizableannihilationdiagrams(e)and(f)whichcomefromtheoperatorsO ,O ,O ,O ,O ,O ,O ,O ,O in- 1 3 4 5 6 7 8 9 10 volveonlytwolightmesonswavefunctions. M isfor(V A)(V A)and(V A)(V +A)typeoperators,andMp isfor e − − − e 4 (1+γ )(1 γ )typeoperators: 5 5 − M4 1 ∞ = B8SπC dx dx b db b db [ ΦA(x )ΦA(x )x 2r2ΦP(x )ΦP(x )(1+x ) Me 2 F 2 3 2 2 3 3{− π 2 π 3 2− π π 2 π 3 2 Z0 Z0 +2rπ2ΦTπ(x2)ΦPπ(x3)(x2−1)]αs(t1e)h1e(x2,x3,b2,b3)exp[−Sπ(t1e)−Sπ(t1e)]C(t1e) (14) +[ΦA(x )ΦA(x )x +2r2ΦP(x )ΦP(x )(1+x )+2r2ΦP(x )ΦT(x )(1 x )] π 2 π 3 3 π π 2 π 3 3 π π 2 π 3 − 3 α (t2)h2(x ,x ,b ,b )exp[ S (t2) S (t2)]C(t2) , s e e 2 3 2 3 − π e − π e e } M4 1 ∞ P = B8SπC dx dx b db b db [ r ΦP(x )ΦA(x )x r ΦT(x )ΦA(x )x Me 2 F 2 3 2 2 3 3{− π π 2 π 3 2− π π 2 π 3 2 Z0 Z0 (15) 2r ΦA(x )ΦP(x )]α (t1)h1(x ,x ,b ,b )exp[ S (t1) S (t1)]C(t1)+[ 2r ΦP(x )ΦA(x ) − π π 2 π 3 s e e 2 3 2 3 − π e − π e e − π π 2 π 3 r ΦA(x )ΦP(x )x r ΦA(x )ΦT(x )x ]α (t2)h2(x ,x ,b ,b )exp[ S (t2) S (t2)]C(t2) , − π π 2 π 3 3− π π 2 π 3 3 s e e 2 3 2 3 − π e − π e e } whereS =2comesfromtherequirementofidentityprincipleand h1e(x2,x3,b2,b3)= St(x2)K0(MB√x2x3b3) θ(b2 b3)I0(MB√x2b2)K0(MB√x2b3)+(b2 b3) (16) ×{ − ↔ } h2e(x2,x3,b2,b3)= St(x3)K0(MB√x2x3b2) θ(b2 b3)I0(MB√x3b3)K0(MB√x3b2)+(b2 b3) (17) ×{ − ↔ } The non-factorizableannihilation diagrams (g) and (h) come from the operators O ,O ,O ,O . M is the contribution 4 6 8 10 g containingtheoperatoroftype(V A)(V A),andMP isthecontributioncontainingtheoperatoroftype(1+γ )(1 γ ). − − g 5 − 5 M4 1 1 ∞ = B 32SπC dx dx dx b db b db Φ (x ,b ) [(x +x )ΦA(x )ΦA(x ) Mg 2 √2N F 1 2 3 1 1 2 2 B 1 1 { 1 3 π 2 π 3 c Z0 Z0 +r2(2+x +x +x )ΦP(x )ΦP(x ) r2ΦP(x )ΦT(x )(x x x )+r2ΦT(x )ΦP(x )(x +x x ) π 1 2 3 π 2 π 3 − π π 2 π 3 2− 1− 3 π π 2 π 3 1 3− 2 −rπ2ΦTπ(x2)ΦTπ(x3)(2−x1−x2−x3)]αs(t1g)h1g(x1,x2,x3,b1,b2)exp[−SB(t1g)−Sπ(t1g)−Sπ(t1g)]C(t1g) (18) +[ ΦA(x )ΦA(x )x +r2ΦP(x )ΦP(x )(x x x ) r2ΦP(x )ΦT(x )(x x +x ) − π 2 π 3 2 π π 2 π 3 1− 2− 3 − π π 2 π 3 1− 3 2 r2ΦT(x )ΦP(x )(x x +x )+r2ΦT(x )ΦT(x )(x x x )]α (t2) − π π 2 π 3 1− 3 2 π π 2 π 3 1− 2− 3 s g h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , g 1 2 3 1 2 − B g − π g − π g g } M4 1 1 ∞ P = B − 32SπC dx dx dx b db b db Φ (x ,b ) [ ΦA(x )ΦA(x )x Mg 2 √2N F 1 2 3 1 1 2 2 B 1 1 {− π 2 π 3 2 c Z0 Z0 r2(2+x +x +x )ΦP(x )ΦP(x ) r2ΦP(x )ΦT(x )(x x x ) − π 1 2 3 π 2 π 3 − π π 2 π 3 2− 1− 3 +rπ2ΦTπ(x2)ΦPπ(x3)(x1+x3−x2)+rπ2ΦTπ(x2)ΦTπ(x3)(x1+x2+x3−2)]αs(t1g)h1g(x1,x2,x3,b1,b2) (19) exp[ S (t1) S (t1) S (t1)]C(t1)+[ ΦA(x )ΦA(x )(x x ) r2ΦP(x )ΦP(x )(x x x ) − B g − π g − π g g − π 2 π 3 1− 3 − π π 2 π 3 1− 2− 3 r2ΦP(x )ΦT(x )(x x +x )+r2ΦT(x )ΦP(x )(x +x x ) r2ΦT(x )ΦT(x )(x +x x )] − π π 2 π 3 1− 3 2 π π 2 π 3 1 2− 3 − π π 2 π 3 2 3− 1 α (t2)h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , s g g 1 2 3 1 2 − B g − π g − π g g } where hj(x ,x ,x ,b ,b )= g 1 2 3 1 2 θ(b b )I (M √x x b )K (M √x x b ) 1 2 0 B 2 3 1 0 B 2 3 2 − (cid:26) (K (M F b ), for F2 >0 0 B g(j) 1 g(j) +(b b ) , (20) 1 ↔ 2 (cid:27)× π2iH(01)(MB |Fg2(j)|b1), for Fg2(j) <0! q 5 andF ’saredefinedby g(j) F2 =x +x +x x x x x , g(1) 1 2 3− 1 2− 2 3 F2 =x x x x . (21) g(2) 1 2− 2 3 ThetotaldecayamplitudeofB¯0 π0π0 isthen → 5 2 1 ¯(B¯0 π0π0)=V∗V [C f +C ( + )] V∗V [(2C + C +2C + C + C A → ud ub 1Me B 2 Ma Mc − td tb 3 3 4 5 3 6 2 7 (22) 1 1 1 1 1 1 + C + C C ) f +(C C ) Pf +(2C + C ) +(2C + C ) P] 6 8 2 9− 3 10 Me B 6− 2 8 Me B 4 2 10 Mg 6 2 8 Mg andthedecaywidthisexpressedas G2M3 Γ(B¯0 π0π0)= F B ¯(B¯0 π0π0)2 (23) → 128π |A → | Thedecayamplitudeof thechargeconjugatechannelforB¯0 π0π0 canbe obtainedbyreplacingV∗ V to V V∗ and V∗V toV V∗ inEq.(22). ThedecayamplitudeofB¯0 π0π0→inEq.(22)canbeparameterizedas ud ub ud ub td tb td tb → ¯=V∗ V T V∗V P =V∗ V T[1+zei(−α+δ)], (24) A ud ub − td tb ud ub where z = V∗V /V∗ V P/T , and δ = arg(P/T) is the relative strong phase between tree diagrams T and penguin | td tb ud ub|| | diagramsP.zandδcanbecalculatedfromPQCD. Similarly,thedecayamplitudeforB0 π0π0 canbeparameterizedas → =V∗V T V∗V P =V∗V T[1+zei(α+δ)]. (25) A ub ud − tb td ub ud Thefollowingparametershavebeenusedinournumericalcalculation[1,2,21,22]. Λf=4 =0.25GeV , m =80.41GeV , m =5.280GeV , QCD W B fπ =0.13GeV ,fB =0.19GeV , m0π =1.4GeV , τB0 =1.55 10−12s, (26) × V∗V =0.00346, V∗V =0.00885. | ud ub| | td tb| 1.3 D 6 - 1.2 0 1 @ L Π0 Π0 1.1 ® 0B Hr B 1.0 0.9 0 50 100 150 ΑHdegreeL FIG.2.TheaveragedbranchingratioofB¯0(B0)→π0π0decayasafunctionofCKMangleα. WeleavetheCabibbo-Kobayashi-Maskawa(CKM)phaseangleαasafreeparametertoexplorethebranchingratioandCP asymmetry.FromEqs.(24)and(25),wegettheaverageddecaywidthforB¯0(B0) π0π0 → G2M3 2 ¯2 Γ(B¯0(B0) π0π0)= F B(|A| + |A| ) → 128π 2 2 G2M3 = F B V∗ V T 2[1+2zcos(α)cos(δ)+z2]. (27) 128π | ud ub | 6 Usingtheaboveparameters,wegetz = 0.52andδ = 106◦ inPQCD.Equation(27)isafunctionofCKMangleα. InFig.2, weplottheaveragedbranchingratioofthedecayB¯0(B0) π0π0 withrespecttotheparameterα. SincetheCKMangleαis constrainedasαaround85◦[22]. → α=(85.4+3.9)◦ (28) −3.8 WecanarrivefromFig.2 1.08 10−6 <Br(B¯0(B0) π0π0)<1.12 10−6, for80◦ <α<90◦ (29) × → × Thenumberz = V∗V /V∗ V P/T =0.52meansthattheamplitudeofpenguindiagramsisabout0.52timesthatoftree | td tb ud ub|| | diagrams,whichshowsthoughthetreecontributiondominatethisdecay,thepenguincontributioncannotbeignored,i. e.,there arelargecontributionsfrombothtreediagramsandpenguindiagrams. Intheliterature,therealreadyexistalotofstudiesonB0 π0π0decay.Wegivesomerecentworksdevotedtotheresolution → ofthechallenge: (a)InRef.[10],QinChangandJunfengSunetaldoaglobalfitonthespectatorscatteringandannihilationparametersX (ρ ,φ ), H H H Xi(ρi ,φi )andXf(ρf,φf)fortheavailableexperimentaldataforB ππ,πKandKK¯ decaysintheQCDFframework. A A A A A A u,d → TheyobtainedlargeB0 π0π0branchingratios1.67+0.33 10−6and2.13+0.43 10−6fordifferentscenarios. → −0.30× −0.38× (b)In Ref. [11], Xin Liu , Hsiang-nan Li and Zhen-Jun Xiao investigate the Glauber-gluoneffect on the B ππ and ρρ → decaysbased onthe k factorizationtheorem,they observedsignificantmodificationof B0 π0π0 branchingratio through T → a transverse-momentum-dependent(TMD)wave functionforthe pionwith a weakfalloff in partontransversemomentumk . T TheygetthebranchingratiooftheB0 π0π0 0.61 10−6. → × (c)In Ref. [12], Cong-Feng Qiao et al give a possible solution to the B ππ puzzle using the principle of maximum → conformality. They foundthe PQCD prediction is highly sensitive to the choice of the renormalizationscale which enter the decayamplitude,theyobtainedBr(B π0π0)=(0.98+0.44) 10−6byapplyingtheprincipleofmaximumconformality. d → −0.31 × (d)InRef. [23], Ya-LanZhanget al performeda systematic study forthe B (π+π−,π+π0,π0π0) decaysin the PQCD → factorizationapproachwith the inclusion ofall currentlyknownNLO contributionsfromvarioussources. Theygotthe NLO PQCDpredictionforB0 π0π0 branchingratioBr(B0 π0π0) = [0.23+0.08(ω(b))+0.05(f )+0.04(aπ)] 10−6,itisstill → → −0.05 −0.04 B −0.03 2 × muchsmallerthanthemeasureddata. (e)In Ref. [24], Hai-Yang Cheng, Cheng-Wei Chiang and An-Li Kuo used flavor SU(3) symmetry to analyze the data of charmlessBmesondecaystotwopseudoscalarmesons(PP)andonevectorandonepseudoscalarmesons(VP). Theyfound thecolor-suppressedtreeamplitudelargerthanpreviouslyknownandhasastrongphaseof 70◦ relativetothecolorfavored tree amplitude in the PP sector, this large color-suppressed tree amplitude results in the lar−ge B0 π0π0 branching ratios 1.43 0.55 10−6and1.88 0.42 10−6fordifferentscheme. → Th±ere are×some works on B±0 π×0π0 decay in the framework of PQCD approach before[8, 18, 23]. Ref. [8] is the ear- → liest PQCD calculations for B0 π0π0 decay at the leading order, Hsiang-nan Li et al considered partial NLO contribu- → tions in Ref. [18]. Based on the work of Ref. [8, 18], Ya-Lan Zhang et al calculated all currentlyknown NLO contributions from various sources in Ref. [23]. All these calculations got a branching ratio which is much smaller than the experimen- tal data. In this work, we recalculate the B0 π0π0 decay in the framework of PQCD approach. We find the largest → contributions come from the factorizable annihilation diagrams (e) and (f)(see Fig. 1), both tree operator(O ) and penguin 1 operators(O ,O ,O ,O ,O ,O ,O ,O ) contribute to this two diagrams. Our result is much larger than that of previous 3 4 5 6 7 8 9 10 predictions[8,18,23],therearetworeasonsthatmakethedifference.InpreviousPQCDworks[8,18,23],first,thecontributions ofthefactorizableannihilationdiagrams(e)and(f)comefromtreeoperatorO hadnotbeentakenintoaccount,theauthors 1 only consideredthe non-factorizablediagrams(a) and (b)(small contributions)for operatorO ; second, For O ,O ,O ,O 1 3 4 9 10 operators,previouscalculations[8]showedtheircontributionscancelbetweendiagram(e)and(f), however,werecalculateit and find their contributionscannotbe canceled between diagram (e) and (f), as shown in Eqs.(14)(15). If we get rid of the contributionsof and P termsinEq.(22), ourresultisBr(B¯0(B0) π0π0) 0.26 10−6, whichisconsistentwith Me Me → ∼ × previous PQCD predictions[8, 18, 23]. In our recalculations, we consider all the possible diagrams’s contribution, including non-factorizablecontributionsandannihilationcontributions,andidentityprincipleisalsotakenintoaccount,weobtainbranch- ingratioofB0 π0π0 around1.1 10−6,whichisstillsmallerthanBABARresult[9],butitisconsistentwiththeBelleand → × HFAGresults[9]. MoreexperimentalandtheoreticaleffortsshouldbemadetoresolvetheB0 π0π0puzzle. → InSM,theCKMphaseangleistheoriginofCPviolation.UsingEqs.(24)and(25),thedirectCPviolatingparameteris ¯2 2 2zsin(α)sin(δ) dir = |A| −|A| = (30) ACP ¯2+ 2 1+2zcos(α)cos(δ)+z2 |A| |A| ItisapproximatelyproportionaltoCKManglesin(α),strongphasesin(δ),andtherelativesizezbetweenpenguincontribution and tree contribution. We show the direct CP asymmetry dir in Fig. 3. One can see from the figure that the direct CP asymmetryparameterofB¯0(B0) π0π0 canbeaslargeasAfrCoPm 80%to 78%when80◦ < α < 90◦. ThelargedirectCP → − − asymmetryisalsoaresultoftherearelargecontributionsfrombothtreediagramsandpenguindiagramsinthisdecays. 7 0.0 -0.2 dirCP -0.4 A -0.6 -0.8 0 50 100 150 ΑHdegreeL FIG.3.DirectCPviolationparameterofB¯0(B0)→π0π0decayasafunctionofCKMangleα. For the neutral B0 decays, the B¯0 B0 mixing is very complex. Following notations in the previous literature [25], we − definethemixinginducedCPviolationparameteras 2Im(λ ) CP aǫ+ǫ′ = −1+ λ 2 , (31) CP | | where V∗V <π0π0 H B¯0 > λ = tb td | eff| . (32) CP V V∗ <π0π0 H B0 > tb td | eff| Usingequations(24)and(25),wecanderiveas 1+zei(δ−α) λ =e2iα (33) CP 1+zei(δ+α) 0.5 aΕ+Ε’ 0.0 -0.5 0 50 100 150 ΑHdegreeL FIG.4.MixingCPviolationparameterofB¯0(B0)→π0π0decayasafunctionofCKMangleα. Ifzisaverysmallnumber,i.e.,thepenguindiagramcontributionissuppressedcomparingwiththetreediagramcontribution, themixinginducedCPasymmetryparameteraǫ+ǫ′ isproportionalto sin2α,whichwillbeagoodplacefortheCKMangle − αmeasurement. Howeveraswehavealreadymentioned,z isnotverysmall. WegivethemixingCPasymmetryinFig.4,one 8 canseethataǫ+ǫ′ isnotasimple sin2αbehaviorbecauseoftheso-calledpenguinpollution.Itiscloseto9%whentheangle near85◦. Atpresent,thereareno−CPasymmetrymeasurementsinexperimentbutthepossiblelargeCPviolationwepredictfor B¯0(B0) π0π0decaysmightbeobservedintherunningLHC-bexperiments. Inconc→lusion,werecalculatethebranchingratioandCPasymmetryofthedecaysB¯0(B0) π0π0inPQCDapproach.From ourcalculation,wefindthebranchingratioofB0 π0π0around1.1 10−6,muchlargerth→anthatofpreviouspredictions[8], → × andtherearelargeCPviolationintheprocess,whichmaybemeasuredintherunningLHC-bexperiments.Thebranchingratio wegetisstillsmallerthanBABARresult[9],butitisconsistentwiththelatestBelleandHFAGresults[9]. We wouldto thankDr. Ming-ZhenZhouand Dr. Wen-LongSangfor valuablediscussions. Thisworkis supportedby the NationalNaturalScienceFoundationofChinaunderGrantNo.11047028andtheFundamentalResearchFundsoftheCentral Universities,GrantNumberXDJK2012C040. [1] J.Beringeretal.[ParticleDataGroupCollaboration],Phys.Rev.D86,010001(2012)and2013partialupdateforthe2014edition. [2] Y.Amhisetal.[HeavyFlavorAveragingGroupCollab-oration],arXiv:1207.1158. [3] B.Aubertetal.[BaBarCollaboration],Phys.Rev.Lett.91(24),241801(2003); Phys.Rev.Lett.94(18),181802(2005); K.Abeetal. [BelleCollaboration],Phys.Rev.Lett.94(18),181803(2005). [4] M.Beneke,T.HuberandX.Q.Li,Nucl.Phys.B832,109(2010); G.Bell,Nucl.Phys.B822,172(2009); V.Pilipp,Nucl.Phys.B794, 154(2008);G.Bell,Nucl.Phys.B795,1(2008). [5] M.BenekeandM.Neubert,Nucl.Phys.B675,333(2003). [6] C.N.BurrelandA.R.Williamson,Phys.Rev.D73,114004(2006). [7] M.BenekeandD.Yang,Nucl.Phys.B736,34(2006);M.BenekeandS.Ja¨ger,Nucl.Phys.B751,160(2006). [8] Cai-DianLu¨,KazumasaUkai,Mao-ZhiYang,Phys.Rev.D63(7),074009(2001). [9] HeavyFlavorAveragingGroup,Y.Amhisetal.arXiv:1412.7515. [10] Q.Chang,J.Sun,Y.Yang,andX.Li,Phys.Rev.D90(5),054019(2014). [11] Xin.Liu,Hsiang-nan.Li,Zhen-Jun.Xiao,Phys.Rev.D91,114019(2015). [12] C.F.Qiao,R.L.Zhu,X.G.WuandS.J.Brodsky,Phys.Lett.B748,422(2015). [13] S.NandiandH.N.Li,Phys.Rev.D76(3),034008(2007). [14] H.N.Li,Y.L.Shen,Y.M.WangandH.Zou,Phys.Rev.D83(5),054029(2011). [15] H.N.Li,Y.L.Shen,Y.M.Wang,Phys.Rev.D85(7),074004(2012). [16] H.-n.LiandS.Mishima,Phys.Rev.D73(11),114014(2006). [17] G.Buchalla,A.J.BurasandM.E.Lautenbacher,Rev.Mod. Phys.68(4),1125(1996). [18] H.-n.Li,S.Mishima,andA.I.Sanda,Phys.Rev.D72,114005(2005). [19] P.BallandR.Zwicky,Phys.Rev.D71,014015(2005). [20] YingLi,Cai-DianLu¨,ZhenJunXiaoandXian-QiaoYu,Phys.Rev.D70,034009(2004). [21] J.Charlesetal.[CKMfitterGroup],Eur.Phys.J.C41(1),1(2005). [22] A.Ho¨ckeretal,Eur.Phys.J.C21(2),225(2001). [23] Ya-LanZhang,Xue-YanLiu,Ying-YingFan,ShanCheng,andZhen-JunXiao,Phys.Rev.D90(1),014029(2014). [24] H.Y.Cheng,C.W.Chiang,andA.L.Kuo,Phys.Rev.D91(1),014011(2015). [25] G.Kramer,W.F.Palmer,andY.L.Wu,CommunicationsinTheoreticalPhysics.27(4),457(1997).