ebook img

Revisiting the $B^{0} \to \pi^{0}\pi^{0} $ decays in the perturbative QCD approach PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Revisiting the $B^{0} \to \pi^{0}\pi^{0} $ decays in the perturbative QCD approach

Revisitingthe B0 π0π0 decays inthe perturbative QCD approach → Yun-Feng Li1,∗ and Xian-Qiao Yu1,† 1School of Physical Scienceand Technology, Southwest University, Chongqing 400715, China (Dated:July4,2016) WerecalculatethebranchingratioandCPasymmetryforB¯0(B0)→π0π0decaysinthePerturbativeQCD approach. Inthisapproach,weconsiderallthepossiblediagramsincludingnon-factorizablecontributionsand annihilationcontributions, andidentityprincipleisalsotakenintoaccount. Weobtainthebranching ratioof B0 → π0π0 is about 1.1×10−6. Our result is in agreement with the latest measured branching ratio of B0→π0π0bytheBelleandHFAGCollaborations.WealsopredictlargedirectCPasymmetryandmixingCP asymmetryinB0 →π0π0decays,whichcanbetestedbytherunningLHC-bexperiments. PACSnumbers:13.25.Hw,11.10.Hi,12.38.Bx 6 1 0 The detailed study of B meson decays is a key source of testing the Standard Model(SM), exploring CP violation and in 2 searching of possible new physics beyond the SM. The theoretical studies of B meson decays have been studied widely in l the literature, oneofthe challengesis thatthemeasuredbranchingratio [1–3] forthe decayofB mesonto neutralpionpairs u B0 π0π0 is significantly larger than the theoretical predictions obtained in the QCD factorization approach [4–7] or a J → perturbativeQCDapproach(PQCD)[8]. 1 ThebranchingratioofB0 π0π0hasbeenmeasured,whosedata[9]are → ] (1.83 0.21 0.13) 10−6;(BABAR), h (0.9±0 0.1±2 0.10×) 10−6;(Belle), . (1) p -  (1.1±7 0.1±3) 10×−6,(HFAG).  p ± × e Inthelastmorethan10years,manytheoreticalteamshavecalculatedthisdecaysindifferentapproach.BenekeandNeubert h madetheanalysisofB0 π0π0 decaybasedonQCDfactorizationin2003[5]. Recently,QinChang[10],XinLiu[11]and [ Cong-FengQiao[12]eta→l. recalculatedthisdecaymodelusingdifferentmethod. Thenext-leading-order(NLO)contributions from the vertex corrections, the quark loops, and the magnetic penguins have also been calculated in the literature [13–16]. 2 v By comparing their results, we find the agreement between the theoretical predictions and the experimental data is still not 2 satisfactory,sowerevisitthedecaysofB0 π0π0 inthispaper. WeusethePQCDapproachtocalculatedirectlythisdecays, → 3 non-factorizablecontributionsandannihilationcontributionandidentityprinciplearealltakenintoaccount. 6 FortheconsideredB¯0 π0π0decays,thecorrespondingweakeffectiveHamiltonianisgivenby [17]. 3 → 0 G 10 1. Heff = √F2 Vu∗dVub[C1(µ)O1(µ)+C2(µ)O2(µ)]−Vt∗dVtb[ Ci(µ)Oi(µ)] +H.c., (2) (cid:26) i=3 (cid:27) 0 X 6 whereCi(µ)areWilsoncoefficientsattherenormalizationscaleµandOi arethelocalfour-quarkoperators 1 (1)current-current(tree)operators : v Xi O1 = (u¯αuα)V−A(d¯βbβ)V−A , O2 = (u¯αbα)V−A(d¯βuβ)V−A ; (3) r (2)QCDpenguinoperators a O = (d¯ b ) (q¯ q ) , O = (d¯ b ) (q¯ q ) , 3 α α V−A β β V−A 4 α β V−A β α V−A Xq Xq (4) O = (d¯ b ) (q¯ q ) , O = (d¯ b ) (q¯ q ) ; 5 α α V−A β β V+A 6 α β V−A β α V+A q q X X (3)electroweakpenguinoperators 3 3 O = (d¯ b ) e (q¯ q ) , O = (d¯ b ) e (q¯ q ) , 7 α α V−A q β β V+A 8 α β V−A q β α V+A 2 2 3 Xq 3 Xq (5) O = (d¯ b ) e (q¯ q ) , O = (d¯ b ) e (q¯ q ) . 9 α α V−A q β β V−A 10 α β V−A q β α V−A 2 2 q q X X ∗Electronicaddress:[email protected] †Electronicaddress:[email protected] 2 Hereαandβ areSU(3)colorindices. Thenthecalculationofdecayamplitudeistocomputethehadronicmatrixelementsof thelocaloperators. InthePQCDapproach,thedecayamplitudecanbewrittenas Amplitude∼ d4k1d4k2d4k3Tr[C(t)ΦB¯0(k1)Φπ0(k2)Φπ0(k3)H(k1,k2,k3,t)]e−S(t). (6) Z In our following calculations, the B0 meson wave function, and the wave functionsof pion mesons and relevant distribution amplitudesΦA,P,T areofthesameformasthoseadoptedinRefs.[18]. theGegenbauermomentsaπ andotherparametersare π i adoptedfromRefs.[18,19] aπ =0, aπ =0.25, aπ = 0.015, 1 2 4 − ρ =m /m , η =0.015, ω = 3.0 (7) π π 0π 3 3 − withm thechiralmassofthepion. 0π Fig.1showsthelowestorderdiagramstobecalculatedinthePQCDapproachforB¯0 π0π0decay.Thesumcontributions → ofthenon-factorizablediagrams(a)and(b)whichcomefromtheoperatorO are 2 M4 1 1 ∞ = B − 32πC dx dx dx b db b db Φ (x ,b ) [(x 2)ΦA(x )ΦA(x ) Ma 2 √2N F 1 2 3 1 1 2 2 B 1 1 { 2− π 2 π 3 c Z0 Z0 +rπ(1−2x2)ΦTπ(x2)ΦAπ(x3)+rπ(1−2x2)ΦPπ(x2)ΦAπ(x3)]αs(t1a)h1a(x1,x2,x3,b1,b2) (8) exp[ S (t1) S (t1) S (t1)]C(t1) 2r ΦP(x )ΦA(x )α (t2) − B a − π a − π a a − π π 2 π 3 s a h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , a 1 2 3 1 2 − B a − π a − π a a } where C = 4/3 is the group factor of the SU(3) gauge group and r = M /M , the Sudakov factor S (t)(X = F c π 0π B X B¯0,π0,π0) can be found in the appendix of Ref.[20]. The functions h1,2(x ,x ,x ,b ,b ) come from the Fourier transfor- a 1 2 3 1 2 mationofpropagatorsofvirtualquarkandgluon.Theyaredefinedby hj(x ,x ,x ,b ,b )= a 1 2 3 1 2 θ(b b )I (M x (1 x )b )K (M x (1 x )b ) 1 2 0 B 1 2 2 0 B 1 2 1 − − − (cid:26) p (Kp(M F b ), for F2 >0 0 B a(j) 1 a(j) +(b b ) , (9) 1 ↔ 2 (cid:27)× π2iH(01)(MB |Fa2(j)|b1), for Fa2(j) <0! q whereF ’saredefinedby a(j) F2 =1 x , a(1) − 2 F2 =x . (10) a(2) 1 Thetotalcontributionforthenon-factorizablediagrams(c)and(d)is M4 1 1 ∞ = B − 32πC dx dx dx b db b db Φ (x ,b ) [ΦA(x )ΦA(x )(1 x x ) Mc 2 √2N F 1 2 3 2 2 3 3 B 1 3 { π 2 π 3 − 1− 3 c Z0 Z0 +rπΦPπ(x2)ΦAπ(x3)(1−x2)+rπΦTπ(x2)ΦAπ(x3)(1−x2)]αs(t1c)h1c(x1,x2,x3,b2,b3) (11) exp[ S (t1) S (t1) S (t1)]C(t1)+[ ΦA(x )ΦA(x )(1+x x x ) r ΦP(x )ΦA(x )(1 x ) − B c − π c − π c c − π 2 π 3 3− 1− 2 − π π 2 π 3 − 2 +r ΦT(x )ΦA(x )(1 x )]α (t2)h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , π π 2 π 3 − 2 s c c 1 2 3 2 3 − B c − π c − π c c } where hj(x ,x ,x ,b ,b )= c 1 2 3 2 3 θ(b b )I (M x (1 x )b )K (M x (1 x )b ) 2 3 0 B 1 2 3 0 B 1 2 2 − − − (cid:26) p (Kp(M F b ), for F2 >0 0 B c(j) 3 c(j) +(b b ) , (12) 2 ↔ 3 (cid:27)× π2iH(01)(MB |Fc2(j)|b3), for Fc2(j) <0! q 3 FIG.1.TypicalFeynmandiagramscontributingtotheB¯0 →π0π0decaysinthePQCDapproachatleadingorder. andF ’saredefinedby c(j) F2 =x +x +x x x x x 1, c(1) 1 2 3− 1 2− 2 3− F2 =x x x x +x x . (13) c(2) 1− 3− 1 2 2 3 Thefactorizableannihilationdiagrams(e)and(f)whichcomefromtheoperatorsO ,O ,O ,O ,O ,O ,O ,O ,O in- 1 3 4 5 6 7 8 9 10 volveonlytwolightmesonswavefunctions. M isfor(V A)(V A)and(V A)(V +A)typeoperators,andMp isfor e − − − e 4 (1+γ )(1 γ )typeoperators: 5 5 − M4 1 ∞ = B8SπC dx dx b db b db [ ΦA(x )ΦA(x )x 2r2ΦP(x )ΦP(x )(1+x ) Me 2 F 2 3 2 2 3 3{− π 2 π 3 2− π π 2 π 3 2 Z0 Z0 +2rπ2ΦTπ(x2)ΦPπ(x3)(x2−1)]αs(t1e)h1e(x2,x3,b2,b3)exp[−Sπ(t1e)−Sπ(t1e)]C(t1e) (14) +[ΦA(x )ΦA(x )x +2r2ΦP(x )ΦP(x )(1+x )+2r2ΦP(x )ΦT(x )(1 x )] π 2 π 3 3 π π 2 π 3 3 π π 2 π 3 − 3 α (t2)h2(x ,x ,b ,b )exp[ S (t2) S (t2)]C(t2) , s e e 2 3 2 3 − π e − π e e } M4 1 ∞ P = B8SπC dx dx b db b db [ r ΦP(x )ΦA(x )x r ΦT(x )ΦA(x )x Me 2 F 2 3 2 2 3 3{− π π 2 π 3 2− π π 2 π 3 2 Z0 Z0 (15) 2r ΦA(x )ΦP(x )]α (t1)h1(x ,x ,b ,b )exp[ S (t1) S (t1)]C(t1)+[ 2r ΦP(x )ΦA(x ) − π π 2 π 3 s e e 2 3 2 3 − π e − π e e − π π 2 π 3 r ΦA(x )ΦP(x )x r ΦA(x )ΦT(x )x ]α (t2)h2(x ,x ,b ,b )exp[ S (t2) S (t2)]C(t2) , − π π 2 π 3 3− π π 2 π 3 3 s e e 2 3 2 3 − π e − π e e } whereS =2comesfromtherequirementofidentityprincipleand h1e(x2,x3,b2,b3)= St(x2)K0(MB√x2x3b3) θ(b2 b3)I0(MB√x2b2)K0(MB√x2b3)+(b2 b3) (16) ×{ − ↔ } h2e(x2,x3,b2,b3)= St(x3)K0(MB√x2x3b2) θ(b2 b3)I0(MB√x3b3)K0(MB√x3b2)+(b2 b3) (17) ×{ − ↔ } The non-factorizableannihilation diagrams (g) and (h) come from the operators O ,O ,O ,O . M is the contribution 4 6 8 10 g containingtheoperatoroftype(V A)(V A),andMP isthecontributioncontainingtheoperatoroftype(1+γ )(1 γ ). − − g 5 − 5 M4 1 1 ∞ = B 32SπC dx dx dx b db b db Φ (x ,b ) [(x +x )ΦA(x )ΦA(x ) Mg 2 √2N F 1 2 3 1 1 2 2 B 1 1 { 1 3 π 2 π 3 c Z0 Z0 +r2(2+x +x +x )ΦP(x )ΦP(x ) r2ΦP(x )ΦT(x )(x x x )+r2ΦT(x )ΦP(x )(x +x x ) π 1 2 3 π 2 π 3 − π π 2 π 3 2− 1− 3 π π 2 π 3 1 3− 2 −rπ2ΦTπ(x2)ΦTπ(x3)(2−x1−x2−x3)]αs(t1g)h1g(x1,x2,x3,b1,b2)exp[−SB(t1g)−Sπ(t1g)−Sπ(t1g)]C(t1g) (18) +[ ΦA(x )ΦA(x )x +r2ΦP(x )ΦP(x )(x x x ) r2ΦP(x )ΦT(x )(x x +x ) − π 2 π 3 2 π π 2 π 3 1− 2− 3 − π π 2 π 3 1− 3 2 r2ΦT(x )ΦP(x )(x x +x )+r2ΦT(x )ΦT(x )(x x x )]α (t2) − π π 2 π 3 1− 3 2 π π 2 π 3 1− 2− 3 s g h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , g 1 2 3 1 2 − B g − π g − π g g } M4 1 1 ∞ P = B − 32SπC dx dx dx b db b db Φ (x ,b ) [ ΦA(x )ΦA(x )x Mg 2 √2N F 1 2 3 1 1 2 2 B 1 1 {− π 2 π 3 2 c Z0 Z0 r2(2+x +x +x )ΦP(x )ΦP(x ) r2ΦP(x )ΦT(x )(x x x ) − π 1 2 3 π 2 π 3 − π π 2 π 3 2− 1− 3 +rπ2ΦTπ(x2)ΦPπ(x3)(x1+x3−x2)+rπ2ΦTπ(x2)ΦTπ(x3)(x1+x2+x3−2)]αs(t1g)h1g(x1,x2,x3,b1,b2) (19) exp[ S (t1) S (t1) S (t1)]C(t1)+[ ΦA(x )ΦA(x )(x x ) r2ΦP(x )ΦP(x )(x x x ) − B g − π g − π g g − π 2 π 3 1− 3 − π π 2 π 3 1− 2− 3 r2ΦP(x )ΦT(x )(x x +x )+r2ΦT(x )ΦP(x )(x +x x ) r2ΦT(x )ΦT(x )(x +x x )] − π π 2 π 3 1− 3 2 π π 2 π 3 1 2− 3 − π π 2 π 3 2 3− 1 α (t2)h2(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)]C(t2) , s g g 1 2 3 1 2 − B g − π g − π g g } where hj(x ,x ,x ,b ,b )= g 1 2 3 1 2 θ(b b )I (M √x x b )K (M √x x b ) 1 2 0 B 2 3 1 0 B 2 3 2 − (cid:26) (K (M F b ), for F2 >0 0 B g(j) 1 g(j) +(b b ) , (20) 1 ↔ 2 (cid:27)× π2iH(01)(MB |Fg2(j)|b1), for Fg2(j) <0! q 5 andF ’saredefinedby g(j) F2 =x +x +x x x x x , g(1) 1 2 3− 1 2− 2 3 F2 =x x x x . (21) g(2) 1 2− 2 3 ThetotaldecayamplitudeofB¯0 π0π0 isthen → 5 2 1 ¯(B¯0 π0π0)=V∗V [C f +C ( + )] V∗V [(2C + C +2C + C + C A → ud ub 1Me B 2 Ma Mc − td tb 3 3 4 5 3 6 2 7 (22) 1 1 1 1 1 1 + C + C C ) f +(C C ) Pf +(2C + C ) +(2C + C ) P] 6 8 2 9− 3 10 Me B 6− 2 8 Me B 4 2 10 Mg 6 2 8 Mg andthedecaywidthisexpressedas G2M3 Γ(B¯0 π0π0)= F B ¯(B¯0 π0π0)2 (23) → 128π |A → | Thedecayamplitudeof thechargeconjugatechannelforB¯0 π0π0 canbe obtainedbyreplacingV∗ V to V V∗ and V∗V toV V∗ inEq.(22). ThedecayamplitudeofB¯0 π0π0→inEq.(22)canbeparameterizedas ud ub ud ub td tb td tb → ¯=V∗ V T V∗V P =V∗ V T[1+zei(−α+δ)], (24) A ud ub − td tb ud ub where z = V∗V /V∗ V P/T , and δ = arg(P/T) is the relative strong phase between tree diagrams T and penguin | td tb ud ub|| | diagramsP.zandδcanbecalculatedfromPQCD. Similarly,thedecayamplitudeforB0 π0π0 canbeparameterizedas → =V∗V T V∗V P =V∗V T[1+zei(α+δ)]. (25) A ub ud − tb td ub ud Thefollowingparametershavebeenusedinournumericalcalculation[1,2,21,22]. Λf=4 =0.25GeV , m =80.41GeV , m =5.280GeV , QCD W B fπ =0.13GeV ,fB =0.19GeV , m0π =1.4GeV , τB0 =1.55 10−12s, (26) × V∗V =0.00346, V∗V =0.00885. | ud ub| | td tb| 1.3 D 6 - 1.2 0 1 @ L Π0 Π0 1.1 ® 0B Hr B 1.0 0.9 0 50 100 150 ΑHdegreeL FIG.2.TheaveragedbranchingratioofB¯0(B0)→π0π0decayasafunctionofCKMangleα. WeleavetheCabibbo-Kobayashi-Maskawa(CKM)phaseangleαasafreeparametertoexplorethebranchingratioandCP asymmetry.FromEqs.(24)and(25),wegettheaverageddecaywidthforB¯0(B0) π0π0 → G2M3 2 ¯2 Γ(B¯0(B0) π0π0)= F B(|A| + |A| ) → 128π 2 2 G2M3 = F B V∗ V T 2[1+2zcos(α)cos(δ)+z2]. (27) 128π | ud ub | 6 Usingtheaboveparameters,wegetz = 0.52andδ = 106◦ inPQCD.Equation(27)isafunctionofCKMangleα. InFig.2, weplottheaveragedbranchingratioofthedecayB¯0(B0) π0π0 withrespecttotheparameterα. SincetheCKMangleαis constrainedasαaround85◦[22]. → α=(85.4+3.9)◦ (28) −3.8 WecanarrivefromFig.2 1.08 10−6 <Br(B¯0(B0) π0π0)<1.12 10−6, for80◦ <α<90◦ (29) × → × Thenumberz = V∗V /V∗ V P/T =0.52meansthattheamplitudeofpenguindiagramsisabout0.52timesthatoftree | td tb ud ub|| | diagrams,whichshowsthoughthetreecontributiondominatethisdecay,thepenguincontributioncannotbeignored,i. e.,there arelargecontributionsfrombothtreediagramsandpenguindiagrams. Intheliterature,therealreadyexistalotofstudiesonB0 π0π0decay.Wegivesomerecentworksdevotedtotheresolution → ofthechallenge: (a)InRef.[10],QinChangandJunfengSunetaldoaglobalfitonthespectatorscatteringandannihilationparametersX (ρ ,φ ), H H H Xi(ρi ,φi )andXf(ρf,φf)fortheavailableexperimentaldataforB ππ,πKandKK¯ decaysintheQCDFframework. A A A A A A u,d → TheyobtainedlargeB0 π0π0branchingratios1.67+0.33 10−6and2.13+0.43 10−6fordifferentscenarios. → −0.30× −0.38× (b)In Ref. [11], Xin Liu , Hsiang-nan Li and Zhen-Jun Xiao investigate the Glauber-gluoneffect on the B ππ and ρρ → decaysbased onthe k factorizationtheorem,they observedsignificantmodificationof B0 π0π0 branchingratio through T → a transverse-momentum-dependent(TMD)wave functionforthe pionwith a weakfalloff in partontransversemomentumk . T TheygetthebranchingratiooftheB0 π0π0 0.61 10−6. → × (c)In Ref. [12], Cong-Feng Qiao et al give a possible solution to the B ππ puzzle using the principle of maximum → conformality. They foundthe PQCD prediction is highly sensitive to the choice of the renormalizationscale which enter the decayamplitude,theyobtainedBr(B π0π0)=(0.98+0.44) 10−6byapplyingtheprincipleofmaximumconformality. d → −0.31 × (d)InRef. [23], Ya-LanZhanget al performeda systematic study forthe B (π+π−,π+π0,π0π0) decaysin the PQCD → factorizationapproachwith the inclusion ofall currentlyknownNLO contributionsfromvarioussources. Theygotthe NLO PQCDpredictionforB0 π0π0 branchingratioBr(B0 π0π0) = [0.23+0.08(ω(b))+0.05(f )+0.04(aπ)] 10−6,itisstill → → −0.05 −0.04 B −0.03 2 × muchsmallerthanthemeasureddata. (e)In Ref. [24], Hai-Yang Cheng, Cheng-Wei Chiang and An-Li Kuo used flavor SU(3) symmetry to analyze the data of charmlessBmesondecaystotwopseudoscalarmesons(PP)andonevectorandonepseudoscalarmesons(VP). Theyfound thecolor-suppressedtreeamplitudelargerthanpreviouslyknownandhasastrongphaseof 70◦ relativetothecolorfavored tree amplitude in the PP sector, this large color-suppressed tree amplitude results in the lar−ge B0 π0π0 branching ratios 1.43 0.55 10−6and1.88 0.42 10−6fordifferentscheme. → Th±ere are×some works on B±0 π×0π0 decay in the framework of PQCD approach before[8, 18, 23]. Ref. [8] is the ear- → liest PQCD calculations for B0 π0π0 decay at the leading order, Hsiang-nan Li et al considered partial NLO contribu- → tions in Ref. [18]. Based on the work of Ref. [8, 18], Ya-Lan Zhang et al calculated all currentlyknown NLO contributions from various sources in Ref. [23]. All these calculations got a branching ratio which is much smaller than the experimen- tal data. In this work, we recalculate the B0 π0π0 decay in the framework of PQCD approach. We find the largest → contributions come from the factorizable annihilation diagrams (e) and (f)(see Fig. 1), both tree operator(O ) and penguin 1 operators(O ,O ,O ,O ,O ,O ,O ,O ) contribute to this two diagrams. Our result is much larger than that of previous 3 4 5 6 7 8 9 10 predictions[8,18,23],therearetworeasonsthatmakethedifference.InpreviousPQCDworks[8,18,23],first,thecontributions ofthefactorizableannihilationdiagrams(e)and(f)comefromtreeoperatorO hadnotbeentakenintoaccount,theauthors 1 only consideredthe non-factorizablediagrams(a) and (b)(small contributions)for operatorO ; second, For O ,O ,O ,O 1 3 4 9 10 operators,previouscalculations[8]showedtheircontributionscancelbetweendiagram(e)and(f), however,werecalculateit and find their contributionscannotbe canceled between diagram (e) and (f), as shown in Eqs.(14)(15). If we get rid of the contributionsof and P termsinEq.(22), ourresultisBr(B¯0(B0) π0π0) 0.26 10−6, whichisconsistentwith Me Me → ∼ × previous PQCD predictions[8, 18, 23]. In our recalculations, we consider all the possible diagrams’s contribution, including non-factorizablecontributionsandannihilationcontributions,andidentityprincipleisalsotakenintoaccount,weobtainbranch- ingratioofB0 π0π0 around1.1 10−6,whichisstillsmallerthanBABARresult[9],butitisconsistentwiththeBelleand → × HFAGresults[9]. MoreexperimentalandtheoreticaleffortsshouldbemadetoresolvetheB0 π0π0puzzle. → InSM,theCKMphaseangleistheoriginofCPviolation.UsingEqs.(24)and(25),thedirectCPviolatingparameteris ¯2 2 2zsin(α)sin(δ) dir = |A| −|A| = (30) ACP ¯2+ 2 1+2zcos(α)cos(δ)+z2 |A| |A| ItisapproximatelyproportionaltoCKManglesin(α),strongphasesin(δ),andtherelativesizezbetweenpenguincontribution and tree contribution. We show the direct CP asymmetry dir in Fig. 3. One can see from the figure that the direct CP asymmetryparameterofB¯0(B0) π0π0 canbeaslargeasAfrCoPm 80%to 78%when80◦ < α < 90◦. ThelargedirectCP → − − asymmetryisalsoaresultoftherearelargecontributionsfrombothtreediagramsandpenguindiagramsinthisdecays. 7 0.0 -0.2 dirCP -0.4 A -0.6 -0.8 0 50 100 150 ΑHdegreeL FIG.3.DirectCPviolationparameterofB¯0(B0)→π0π0decayasafunctionofCKMangleα. For the neutral B0 decays, the B¯0 B0 mixing is very complex. Following notations in the previous literature [25], we − definethemixinginducedCPviolationparameteras 2Im(λ ) CP aǫ+ǫ′ = −1+ λ 2 , (31) CP | | where V∗V <π0π0 H B¯0 > λ = tb td | eff| . (32) CP V V∗ <π0π0 H B0 > tb td | eff| Usingequations(24)and(25),wecanderiveas 1+zei(δ−α) λ =e2iα (33) CP 1+zei(δ+α) 0.5 aΕ+Ε’ 0.0 -0.5 0 50 100 150 ΑHdegreeL FIG.4.MixingCPviolationparameterofB¯0(B0)→π0π0decayasafunctionofCKMangleα. Ifzisaverysmallnumber,i.e.,thepenguindiagramcontributionissuppressedcomparingwiththetreediagramcontribution, themixinginducedCPasymmetryparameteraǫ+ǫ′ isproportionalto sin2α,whichwillbeagoodplacefortheCKMangle − αmeasurement. Howeveraswehavealreadymentioned,z isnotverysmall. WegivethemixingCPasymmetryinFig.4,one 8 canseethataǫ+ǫ′ isnotasimple sin2αbehaviorbecauseoftheso-calledpenguinpollution.Itiscloseto9%whentheangle near85◦. Atpresent,thereareno−CPasymmetrymeasurementsinexperimentbutthepossiblelargeCPviolationwepredictfor B¯0(B0) π0π0decaysmightbeobservedintherunningLHC-bexperiments. Inconc→lusion,werecalculatethebranchingratioandCPasymmetryofthedecaysB¯0(B0) π0π0inPQCDapproach.From ourcalculation,wefindthebranchingratioofB0 π0π0around1.1 10−6,muchlargerth→anthatofpreviouspredictions[8], → × andtherearelargeCPviolationintheprocess,whichmaybemeasuredintherunningLHC-bexperiments.Thebranchingratio wegetisstillsmallerthanBABARresult[9],butitisconsistentwiththelatestBelleandHFAGresults[9]. We wouldto thankDr. Ming-ZhenZhouand Dr. Wen-LongSangfor valuablediscussions. Thisworkis supportedby the NationalNaturalScienceFoundationofChinaunderGrantNo.11047028andtheFundamentalResearchFundsoftheCentral Universities,GrantNumberXDJK2012C040. [1] J.Beringeretal.[ParticleDataGroupCollaboration],Phys.Rev.D86,010001(2012)and2013partialupdateforthe2014edition. [2] Y.Amhisetal.[HeavyFlavorAveragingGroupCollab-oration],arXiv:1207.1158. [3] B.Aubertetal.[BaBarCollaboration],Phys.Rev.Lett.91(24),241801(2003); Phys.Rev.Lett.94(18),181802(2005); K.Abeetal. [BelleCollaboration],Phys.Rev.Lett.94(18),181803(2005). [4] M.Beneke,T.HuberandX.Q.Li,Nucl.Phys.B832,109(2010); G.Bell,Nucl.Phys.B822,172(2009); V.Pilipp,Nucl.Phys.B794, 154(2008);G.Bell,Nucl.Phys.B795,1(2008). [5] M.BenekeandM.Neubert,Nucl.Phys.B675,333(2003). [6] C.N.BurrelandA.R.Williamson,Phys.Rev.D73,114004(2006). [7] M.BenekeandD.Yang,Nucl.Phys.B736,34(2006);M.BenekeandS.Ja¨ger,Nucl.Phys.B751,160(2006). [8] Cai-DianLu¨,KazumasaUkai,Mao-ZhiYang,Phys.Rev.D63(7),074009(2001). [9] HeavyFlavorAveragingGroup,Y.Amhisetal.arXiv:1412.7515. [10] Q.Chang,J.Sun,Y.Yang,andX.Li,Phys.Rev.D90(5),054019(2014). [11] Xin.Liu,Hsiang-nan.Li,Zhen-Jun.Xiao,Phys.Rev.D91,114019(2015). [12] C.F.Qiao,R.L.Zhu,X.G.WuandS.J.Brodsky,Phys.Lett.B748,422(2015). [13] S.NandiandH.N.Li,Phys.Rev.D76(3),034008(2007). [14] H.N.Li,Y.L.Shen,Y.M.WangandH.Zou,Phys.Rev.D83(5),054029(2011). [15] H.N.Li,Y.L.Shen,Y.M.Wang,Phys.Rev.D85(7),074004(2012). [16] H.-n.LiandS.Mishima,Phys.Rev.D73(11),114014(2006). [17] G.Buchalla,A.J.BurasandM.E.Lautenbacher,Rev.Mod. Phys.68(4),1125(1996). [18] H.-n.Li,S.Mishima,andA.I.Sanda,Phys.Rev.D72,114005(2005). [19] P.BallandR.Zwicky,Phys.Rev.D71,014015(2005). [20] YingLi,Cai-DianLu¨,ZhenJunXiaoandXian-QiaoYu,Phys.Rev.D70,034009(2004). [21] J.Charlesetal.[CKMfitterGroup],Eur.Phys.J.C41(1),1(2005). [22] A.Ho¨ckeretal,Eur.Phys.J.C21(2),225(2001). [23] Ya-LanZhang,Xue-YanLiu,Ying-YingFan,ShanCheng,andZhen-JunXiao,Phys.Rev.D90(1),014029(2014). [24] H.Y.Cheng,C.W.Chiang,andA.L.Kuo,Phys.Rev.D91(1),014011(2015). [25] G.Kramer,W.F.Palmer,andY.L.Wu,CommunicationsinTheoreticalPhysics.27(4),457(1997).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.