Memoirs ofthe Museum ofVictoria 55(l):l-423 995) (1 REVISION OF THE AUSTRALIAN NATIVE BEE SUBGENUS LASIOGLOSSUM (CHILALICTUS) (HYMENOPTERA: HALICTIDAE) KENNETH WALKER Department ofEntomology. Museum ofVictoria. 71 Victoria Crescent, Abbotsford, Victoria 3067, Australia Abstract Walker. K... 1995 Revision ofthe Australian native bee genus Lasioglassum (ChiUtlietus) (Hymenoptera: Halictidae). Memoirs ofthe Museum ofVictoria 55: 1-423. The endemic Australian halictid bee subgenus Lasiogbssum (Chilalictus) is revised and redefined. One hundred and thirty four valid species are recognised. Sixty two new syn- onymies arc proposed: /.. excusum (Cockerel!) = L. asperithorax(Cockerell); Lfestivum (Rayment)./.. haematopumk(Comckerell), I.sanguinipes(Cockerell)and/.. leai(Cockerell) = L. bkingufatum(Smith): /.. (Cockerell) - L. blighi(Cockerell); /.. subetheridgei(Ray- ment)and /.. eborairme(Cockerell) - I,, brazieh(Cockerell); /.. granulithorax(Cockerell) amnadlsIoi.niutl(oCowcukmer(eClolc)kearnedll)L.=inLd.itduertnasn(dSim(iCtohc)ke=rellL);c/o..gnsuabiiunmdi(nSamintsh()C;oc/.k.eraellhlo),gu/t..tahtuuem- (Friese) = /.. conspicuitm(Smith); L. euryuntm(Cockerell),L. bursariae(Cockerell)and /.. griseovinaturn (Cockerell) = /.. convexum (Smith); /.. boweni(Cockerell) = /.. disduswn (Cockerell); I., suberylhrurum, L. maiwsculwn(Rayment), /.. basifucens(Cockerell),/.. atro- cyaneum(Cockerell), /,. fyrticome(Cockerell), /.. rufotinctum(Cockerell)and /.. cyclogna- thurrr(Cockerel!) = /.. erythrurum(Cockerell);L. vividum(Smith) = L.Jlorale(Smith); /.. milleri(Rayment),/.. evasum(Cockerell)and /.. circumdatum(Cockerell) = L.gilesi(Cock- erell): /.. eonfuseUutn(Cockerell), /.. isthmale(Cockerell)and /.. repertum(Cockerell) = /.. imitam (Cockerell); I,, mitt'helti(Cockerell)and ItalianslanuginosusSmith = /.. lanarium (Smith): /.. infrahirlum (Cockerell) - /,. littleri (Cockerell); /.. spenceri (Cockerell) = /.. meianopterum (Cockerell); L. anexoneuroides(Rayment), /.. nigropurpeum(Rayment), L. luetifieum (Cockerell). /.. dorskynaeum (Cockerell) = /.. mundulum (Cockerell); I. fur- neauxi (Cockerell) - /.. opadcolle (Cockerell); /.. viridarii (Cockerell) = /.. orbatum (Smith): L. lanaricllum (Cockerell) and /.. dolichocerum (Cockerell) - /.. pachycephalia)! (Cockerell); /.. mesemhrvanihemiellum (Rayment). /.. micridoneion (Cockerell) and /.. (iRntaeyrmmeendti)us(-Ra/.y.mernetp)rae=se/n.tpalmat(yScmeipthha);lum/..(Roamynmienvta)g;um/..g(iCpopcskieire(lRla)ym=ent/.). asncdul/p..tuurpatiuurmn (Cockerell): /.. nudum(Rayment) = /.. seduction(Cockerell): /.. exception(Cockerell) = L. suhplehcium(Cockerell); /.. goraeense(Rayment) - I- tainhurinei(Friese); /.. emeraldense (Rayment) - /.. vidoricllum(Cockerell); /.. ir/i/7<7cW(Rayment), L.purpurcion(Rayment), /.. daweri (Rayment), L. ornatum (Rayment). /.. glauerti (Rayment) and /.. purnongense (Cockerell) = '/.. vitripenne(Smith); /.. wahlenhergiaeMichener - /.. U//A7(Cockerell).One new combination is proposed: /.. tasmaniue(Cockerell) - llomalictustasmaniae. Seventy three new speciesareerected: /.. abrophilum, I., adustum, I., alacartnaiion. I,, albopilosum, I., alptnum. I,, amboqitestrum, L. amplexum, /.. anfbrticornum, L. aquilonium, I., argopi- latuiu. /.. aspratulum, I., uihrix. /.. aurt'opifatum, L. bibroehum, I., bleeps, /.. bicolor, /.. bidens, L. brochum, L. hrunncsetum. I,, bubrachium, L bucculum, I., Initiation, I., caesium. I., cardaleae. L. carpohnuum, I. castor. /.. elypeutiim, /.. copleyense, I., denueapillum, L. ebeneum. /,. edeniulaium. I,, eremaean. I,, eremophilum. L eiiryeepha/um, I,, lalcation, I,, iasctaium. I'.. tninkcma. I., froggatti, L grwniculum, I., hamatum,L, hapsidum,L. immacu- laium. I., inflation, I lam'ellosum, L. latiehilum. 1.. Imcatum, I., liiovil/um, L. megacepha- olucmh.meIhi.lmuems.QSI,i,eoncohirdoemuum.,I.L, pampeptaoldluimc.umI,., pIaramsup,he/.e.odruwfmr,enIs,,,poLl.lunxi,teLn.s,piIy.,on,oce/.i.dqeunas,draI.-. turn. I., roddi, L. sexseium. L. smaragdirtum, I., somr. L. spatulatum. I., speculation, I., striatum, I., lelttri. I., trianguktum, L. tndens, I, uiicinutum and /.. xerophilum. Keystobothsexesofspeciesandadetailedanalysisofthecharactersuiteareprovided.All species are fully described and illustrated and a map ofthe known distribution foreach is given. Where appropriate, scanning electron micrographs ofthe female head, labrum and dorsal surface ofthe mesosoma are provided as well as line drawingsofthe dorsal, ventral and lateral views ofthe male genitalia and associated sterna. 1 WALKER K. Introduction Rodd ofMt Tomah, New South Wales. Furthei specimens were received from overseas collec The Halictidae is one of the largest and most tions, particularly from the University ofKan widelydistributed familiesofbees(Krombeinet sas, the California Academy ofScience and the al.. 1979). During the past several decades, Natural History Museum, London; materia members ofthis family have attracted attention from these institutions included many of the due to high diversity ofnesting habits and nest types examined. Field work was conducted architecture (e.g. Sakagami and Michener, throughout Queensland, Victoria, the desert 1962), social structure (e.g. Houston, 1970; areasofcentralSouthAustraliaandthesouthern) Kncrer, 1980). behaviour (e.g. in Australia: areas ofWestern Australia. KukukandSchwarz. 1987and 1988; Kukukand The recommended method of pinning these- Crozier. 1990)and floral associations(e.g. Bern- bees is through the right cornerofthe scutellum hardt, 1983, 1984, 1986. 1989: Bernhardt and ratherthan the mesoscutum, usingmicropinsor Walker. 1984. 1985; Bernhardt et al. 1984). minutens. This technique enables maximum Unfortunately, the taxonomy of the family is access to sculpture characters which are fre- less studied. quently used for identification. In Australia, the Halictinae is diverse with Specimens were examined using a Wild M7 species richness occurring mainly in the binocular microscope. Examination of slide southern two-thirds of the continent. The sub- preparations ofvarious body parts (e.g. labrum, family is represented by fivegenera, in descend- palpi, genitalia) and subsequent drawings of ing order of diversity: Lasioglossum Curtis. thesepartsweredoneusingaWild M20EBcom- Homalictus Cockerell, Sphccodes Latreille, pound microscope and a camera lucida. With NomioidesSchenckand PachyhalictusCockerell the aid of a zoom lens on the Wild M20EB. (the last two represented by a single species drawings ofthe genitalia to a similar size were each). Lasioglossum is known from all conti- made (dimensions are indicated by scale lines). nents and is highly diverse. Michener (1965) Thegenitalcapsuleisacomplex structure, made dividedtheAustralianspeciesintoeightsubgen- more complicated by ventrally projecting retro- era. Ofthese, Australians Michener, Callalictus rse lobes (figs 31A-D). To display the relevant Michener. Glossaliclus Michener and Pseudo- characters three views, ventral, dorsal and lat- chilalictus Michenerareendemic, Austrcvy/acus eralweredrawnaswellastheseventhandeighth Michener extends to New Zealand, Parasphe- sterna (fig. 3IE). The ventral view omits, on the Codes Smith occurs in New Guinea and a single left side the volsella and penis valve, and on the species of Chilalictus Michener occurs in New rightside,theretrorselobe.Onlytherightsideof Caledonia. The eighth subgenus. Ctenonomia the capsule was drawn to show the dorsal Cameron includes extralimital species which view. occur throughout South-east Asia. Temporarymountsofmalegenitaliawerepre- This work revises Chilalictus. the largest sub- pared by removing the last three or four meta- genus. Keys and descriptions, scanningelectron somal segments after24 hours ofrehydration in micrographsand linedrawings, areprovided for a humidifier. Best results of tissue maceration allspecies. Biologicalandmedicalcommentsare were achieved using a 10% KOH solution and made were appropriate. In particular, the status boiling in a waterbath for 30 minutes, followed of three species. L. aureopilatum sp. nov., L. with several water washes and dehydration in macrops(Cockerell)andL. victoriae(Cockerell). glacial acetic acid. The metasomal segments is ofa concern as no specimens have been col- wereplaced intoadropofglycerineandthegeni- lected in almost 50 years and these species may talia dissected out. examined and drawn. now be extinct. Of medical concern is enveno- Finally, all metasomaltissuewasplacedinavial mation from L. lanahum (Smith) which has and attached to the pin beneath the specimen. placedtwovictimsin hospital withonesuffering Specimens or sclerites used for SEMs were an anaphylactic reaction. washed in a DECON 90 and hot water solution and sonic vibrated for approximately 10 min- utestoremovepollenandnectar.Thespecimens Materials and Methods were dried in a Polaron critical point drier, sputter-coated and scanned on a JSM-T20 at Specimens (24.017) were examined from 5kV. all Australian museum collections, as well as from Taxonomic descriptions follow the format the extensive private collection of Mr Norman employed by recent workers (e.g. Michener, AUSTRALIAN LASIOGI.OSSLM {('HILALICTl'S) 1980; McGinley, 1986: Walker, 1986). Charac- were easily comparable between sexes, and par- ter states common to all members ofthe subge- ticularly between species, the method adopted nusareomitted fromspeciesdescriptions. Afull by Houston (1983, 1990, 1991) was used. All citation list for each species is available in Car- relative head measurements were standardised dale (1993); only original descriptions and syn- toa head width of 100 units. They may then be onymies are cited here. The condition oftypes expressed as a percentage and arc directly com- should be considered good unless otherwise parable between sexes and species. indicated. All availabletype material wasexam- Lahrum.TheL. (Chilalictus) female labium is ined, listed, and distributions, including lati- acomplex structureofferingasuiteofcharacters tudes and longitudes, arc given. Absolute body fordiagnosticanalysis. The labium isdorsoven- and relative head measurements for all type trally compressed (fig. 8C)and should be viewed specimensarepresented inAppendix 1.Thedes- dorsally, aslateral (fig. 8D)and ventral viewsare ignation of paratypes for new species known non-informative in terms of morphological from hundredsofspecimenswas usually restric- characters. For convenience ofcharacter analy- ted to specimens taken with the holotype or in sis, the labrum was treated as two separate pro- thesurroundingareasat.orabout,thesametime- cesses, a basal box and a distal process (fig. 8C). as the holotype. The full label data, including The basal box is rectangular and may possess latitudes and longitudes, arc given for all type median protuberances, lateral depressions or a material. Abbreviated label data are provided raised anterior margin. The distal process may forthe remainingspecimens, although full label haveoneofthree shapes: triangularwith thelat- dataforthesespecimensarcavailable in Walker eral margins tapering to a rounded point; with (1994). The floral forage record lists the plant the lateral margins slightly taperingand the dis- families and genera on which each species was tal margin broadly truncate or sinuate; or with collected and does not assume that pollen, nec- the lateral margins slightly flanged so that the taror oils were gathered; therefore such records distal margin iswiderthanthebasal margin.The should be used only asaguideto the pollination distal margin in several species is deeply emar- potential of a species. Each plant family and ginate. A median keel is always present, though genus floral forage record provides the number reduced in several species. Lateral ridges are ofcatches, notspecimens, ofthat specieson that eitherabsentorpresent,and ifpresentareeither plant. The frequency ofcaptureofa specieson a small or grossly enlarged and serrate dorsally. particular plant family or genus is a better indi- Lateral teethareeitherpresentorabsent, ifpres- cation ofits forage preferencesthan the number ent they are either straight or distally hooked. ofspecimenscaught as the latter is too variable. Lateral setae are always present, the point of The flight phenology data for each species, insertion being either on the margin or in from record the number of collections made of the themargin atadistancelessthan thediametcrof species, not the number ofspecimens collected. the seta or in from the margin as a distance The computer program MAPPLOT (O'Neill greater than the diameter ofthe seta. and Yeates, 1987) was used to generate a Mer- Winglength. Fraying ofdistal portions ofthe cator distribution map for each species. wings reduces the precision ofmeasurements of The terminology of morphological features wing length. Therefore, following McGinley follows Michener'(l965, 1978), except as fol- (1986), forewing length was measured from the lows: base of the arcuate basal vein (vein M) to the Bodylength. To reducethe imprecisionofthis distal most margin ofthe third submarginal cell measurement, the total body length was usually (vein 2 r-m) (fig. 3D). measured only on uncurled specimens; separate Pronotallateralangle. Thisanglewasassessed measurements of head, mesosoma and meta- in dorsal view, being rounded, bluntly obtuseor soma were tallied for curled specimens. Head acute. The lateral angle was usually projected flexure may result in body length measurement although in several species it is absent. variation,theposition oftheantennal sockets is Ratios. Several ratios were calculated relative minimally affected by head flexure, therefore to the head: antennae, mesoscutum, seutellum this point was used in all body measurements and propodeum. All measurements were made rather than the anterior margin ofthe clypeus. at the widest point. Re/alive head measurements. Figures 3A and Sculpture nomenclature. This follows Harris 3B detail the points used for relative head (1979). measurements. Abbreviations used are listed Mesoscutum punclation nomenclature. This below. To ensure relative head measurements follows Walker (1986): dense, interspaces WALKER K. between punctureslessthandiameterofa punc- tal Territory; BCRI, Biological and Chemical ture;close, interspacesbetween puncturesequal Research Institute, Sydney, New South Wales; to diameter of puncture; open, interspaces BERLIN, Institut fur Spezielle Zoologie und betweenpuncturesgreaterthan 1 X butlessthan Zoologisches Museum der Humboldt Univer- 2 X diameter of puncture; sparse, interspaces sity. Berlin; BISHOP, Bernice P. Bishop between punctures equal to orgreater than 2 X Museum, Honolulu, Hawaii; BMNH, Natural diameter of puncture. To standardise the History Museum, London; CAS, California description ofthe mesoscutum punctation, the Academy ofSciences, San Franciso, California; mesoscutum was subdivided into areas as fol- DPI, Department of Primary Industries Insect lows (see fig. 3C): anteromesial. area along the Collection, Brisbane, Queensland; DPIM, leadingedgeofthemesoscutumandoneachside DepartmentofPrimary IndustriesInsectCollec- of the midline: anterolateral, area on the tion, Mareeba, Queensland; LACM, Los anterior lateral corners of the mesoscutum; Angeles County Natural History Museum, Cali- mesial, area between parapsidal lines; parapsi- fornia; MUBD, University of Melbourne. dal areas, areas between parapsidal lines and School of Botany, Melbourne, Victoria; NMV, nearest lateral margin: laterad of parapsidal Museum ofVictoria. Melbourne, Victoria; QM, lines, area adjacent to the outer margin of the Queensland Museum, Brisbane, Queensland; parapsidallines;mesiadofparapsidal lines,area RODD private collection ofMrNorman Rodd, adjacent to the inner margin of the parapsidal Mt Tomah. New South Wales (The final depo- lines; posterior, area alongthe posterior margin sitionofthiscollectionwillbeAM);SAM, South ofthe mesoscutum. Australian Museum, Adelaide. South Australia; Tibialspurs. Analysisofthetibialspursaspre- SEM, SnowEntomological Museum. University sented by Eickwort and Fischer 963) was not ofKansas. Lawrence, Kansas;TDA. Tasmanian (1 attempted. Gross shapes are recorded for each Department ofAgriculture, Hobart. Tasmania: species. UQIC, University ofQueensland Insect Collec- Retrorselobes(fig. 31D).The malegenitaliaof tion. Brisbane. Queensland; USNM, United L. (Chilalictus) species often possess large lobes States National Museum, Smithsonian Insti- arising from the lateral ventral surface of the tution, Washington; WADA, Western Australia gonocoxitc. These lobes are referred to as re- Department of Agriculture Insect Collection. trorse lobes following the terminology of Perth, Western Australia; WAITE, Waite Agri- (M1i9t8c6h)e.llT(h1e96r0e)t.rMoriscehelonbeers(c1o9n7s8i)stasndofMacGvienntlreayl caiudlet,urAadlelRaeisdeea,rcShouItnhstAiutsutter,alUinai;vWerAsMit.y WoefsAtdeerln- lobe that projects at almost 90° to the ventral Australian Museum, Perth. Western Australia. surfaceofthegonocoxite. In several species, the Descriptive abbreviations are as follows (figs ventral lobe possessesanadditional processthat 3A-D. 31A-E): AOD, antennocular distance; arisesalongthemargin ofthe ventral lobeand is AS, antennal segment; BP, hind basitibial plate; paralleltotheventralsurfaceofthegonocoxite. I CL. clypeal length; EW, eye width, in side view; have named this additional lobe the "ventral FL. flagellum length; GL. glossa length; GW, flange". Vestiture of the retrorse lobes occurs genal width, in side view; HL, head length; HW, only on the inner margin and varies from head width; IAD. interantennal distance; IOD, glabrous to coarsely setose. When the genital interocellar distance; LID, lower interorbital capsule is viewed ventrally it appears that the distance; LPL. labial palpus length; MGL, setaeoccurontheoutersurfaceofthelobes. The maxillary galeal length; MPL, maxillary palpus lateral view clearly shows that the setae arise length; ML, mandibular length; MS, malar from the inner surface only. space; MW, basal width of mandible; OAD, ocellantennal distance; OOD. ocellocular dis- tance; PGL, paraglossa length; PML, premen- tum length; SCL, supraclypeal length measured Institutions and Depositories from ventral margin ofantennal sockets toepis- The following abbreviations are used for tomal suture; SD, standard deviation; S1-S8, museums and other institutions holding speci- metasomal sterna 1-8; SL, scapelength;T1-T5, mens examined during this study: AM, Aus- metasomal terga 1-5; UID. upper interorbital tralian Museum, Sydney, New South Wales; distance. Collector name abbreviations are as AMNH, American Museum ofNatural History, follows: JCC. J. C. Cardale; EME, E. M. Exlev: New York; ANIC, Australian National Insect TFH, T. F. Houston; IDN. I. D. Naumann; Collection, CSIRO. Canberra. Australian Capi- KLW, K. L. Walker. AUSTRALIAN LASIOGLOSSUM (CHILALICTUS) 5 Checklist provided as a guide to the abundance of the species. Lasioglossum (Chilalictus) is endemic to Aus- The checklist is summarised as follows. Cur- tralia with the exception of L. (C.) polygoni rently, there are 134 valid species recognised (Cockerell). The type locality of this species is under L. (Chilalictus), although the subgeneric New Caledonia, although presumed conspecific placement of two valid taxa (L. blighi (Cock- specimens have been recorded from north erell) and L. disclusum (Cockerell)) cannot be Queensland (see Remarks on L. polygoni). resolved until females are collected. The 134 Unfortunatelynomaleswereavailableforstudy valid taxa comprise 73 new species, 59 valid from either locality nor was there any recent species from Michener's 1965 checklist and two additional material from New Caledonia. fromWalker(1986).Thestatusoftheremaining Michener (1965) erected L. (Chilalictus) and 71 names from Michener's 1965 checklist is as associated with it 130 specific names. These follows: 65 synonymised, 62 as new synonymies species were new combinations from Halictus and three previously nominated (and accepted Latreille,exceptforseveralnewspecieswhich he here) by Cockerell; four species with status un- placed directly into the subgenus. In addition. resolved where type material or associated Walker (1986) transferred two Homalictus specimens remain unknown (L. darwiniellum species to L. (Chilalictus). (Cockerell), L.familiare(Erichson), L. infimum A complete checklist givingthe current status (Erichson) and /.. percingulatum (Rayment); ofall speciesnamesreferredto L. (Chilalictus) is one nomcn nudum (L. dimorphum (Rayment)); presented in Table 1. The numberofspecimens and one new combination (Homalictus tasman- ofboth sexes examined for each valid species is iac (Cockerell) comb. nov.). Table 1. Checklist of Australian Lasioglossum (Chilalictus) spp. and number of specimens examined. Species No. ofspecimens: 2 6 Total L. abrophilum sp. nov. 1 1 8 L. adustum sp. nov. 100 41 141 L. alacarinatum sp. nov. 46 3 49 L. albopilosum sp. nov. 16 15 31 L. alpinum sp. nov. 3 3 L. amboquestrum sp. nov. 9 9 L. amplexum sp. nov. 199 207 406 L. anforticornum sp. nov. 6 4 10 L, apposition (Rayment) 2594 80 2674 L. aquilonium sp. nov. 3 3 L. argopilatum sp. nov. 2 3 5 L. asperithorax (Cockerell) 34 29 63 L. excwum (Cockerell) syn. nov. L. aspratulum sp. nov. 83 22 105 L. athrix sp. nov. 9 5 14 L. aureopilatum sp. nov. 6 2 8 L. baudini (Cockerell) 30 20 50 L. bibrochum sp. nov. 2 1 3 L. biceps sp. nov. 11 8 19 L. bicingulatum (Smith) 543 304 847 /.. leai (Cockerell) syn. nov. /.. sanguinipes (Cockerell) syn. nov. /.. haematopum (Cockerell) syn. nov. /.. festivum (Rayment) syn. nov. WALKER 6 K. Table 1. Checklist ofAustralian Lasioglossum (Chilalictus) spp. (continued) No. ofspecimens: Species Total L. bicolor sp. nov. 43 3 46 L. bidens sp. nov. 15 3 18 L. blight (Cockerell) 3 3 L. braz/,i.ebraiss(iCo(cCokcekreerlell)l) syn. nov. 71 63 134 /.. eboracense (Cockerell) syn. nov. L. subetheridgei (Rayment) syn. nov. L. brochum sp. nov. 16 16 L. brunnesetum sp. nov. 100 63 163 L. bubrachium sp. nov. 2 56 58 L. bucculum sp. nov. 21 28 49 L. bullatum sp. nov. 6 6 L. caesium sp. nov. 7 7 L. calophyllae (Rayment) 123 13 136 L. cambagei (Cockerell) 9 9 18 L. cardaleae sp. nov. 5 5 L. carpobrotum sp. nov. 2 1 3 /.. castor sp. nov. 163 22 186 L. cephalochilum Michener 23 4 27 L. chapmani (Cockerell) 276 93 369 L. clariventre (Friese) 36 1 37 L. clelandi (Cockerell) 222 140 362 /.. idoneum (Cockerell) syn. nov. L. granulithorax(Cockerell) syn. nov. L. clypeatum sp. nov. 17 22 39 L. cognatum (Smith) 763 357 1120 /.. inclinans (Smith) syn. nov. /.. haematsoma (Cockerell) syn. nov. /.. subinclinans (Cockerell) syn. nov. L. colonicum (Rayment) 8 8 L. conspicuum (Smith) 93 11 104 L. alboguttatum (Friese) syn. nov. L. convexum (Smith) 94 50 144 /.. griseovittatum (Cockerell) syn. nov. /.. bursariae (Cockerell) syn. nov. /.. mjobergi (Friese) syn. by Cockerell. /.. euryurum (Cockerell) syn. nov. L. copleyense sp. nov. 2 1 3 L. demicapillum sp. nov. 11 4 15 L. disclusum (Cockerell) 23 23 L. boweni (Cockerell) syn. nov. L. ebeneum sp. nov. 73 72 145 L. edentulatum sp. nov. 3 3 L. eremaean sp. nov. 502 312 814 L. eremophilum sp. nov. 3 3 /.. erythrurum (Cockerell) 130 41 1171 L. cyclognathum (Cockerell) syn. nov. L. rufotinctum (Cockerell) syn. nov. L.forticorne (Cockerell) syn. nov. L. atrocyaneum (Cockerell) syn. nov. L. basilucens (Cockerell) syn. nov. L. maiusculum (Rayment) syn. nov. L. suberythrurum (Rayment) syn. nov. AUSTRALIAN LASIOGLOSSUM (CHILALICTUS) Species No. ofspecimens: Total eurycephalum sp. nov. 47 14 61 expansifrons (Cockerell) 97 64 161 falcatum sp. nov. 8 8 fasciatum sp. nov. 324 213 537 florale (Smith) 1202 796 1998 L. vividum (Smith) syn. nov. frankenia sp. nov. 38 3 41 L. froggatti sp. nov. 1 1 L. gilesi (Cockerell) 320 73 393 L. circumdatum (Cockerell) syn. nov. L. evasion (Cockerell) syn. nov. L. miller/ (Rayment) syn. nov. L. globosum (Smith) 45 20 65 L. greavesi (Rayment) 155 80 235 L. grumiculum sp. nov. 6 6 L. gunboweren.se (Rayment) 226 32 258 L. gynochilum Michener 60 85 145 L. hamatum sp. nov. 2 2 L. hapsidum sp. nov. 33 1 34 helichrysi (Cockerell) 169 74 243 hemichalceum (Cockerell) 406 64 470 humei (Cockerell) 63 13 76 imitans (Cockerell) 53 31 84 L. repertum (Cockerell) syn. nov. L. isthmale (Cockerell) syn. nov. /.. eonlusellum (Cockerell) syn. nov. immaculatum sp. nov. 222 180 402 inflation sp. nov. 9 8 17 instabilis (Cockerell) 268 30 298 L. elliotii (Rayment) syn. nov. L. lamellosum sp. nov. 5 17 22 L. lanarium (Smith) 363 714 1077 Halictus lanuginosus Smith syn. nov. L. miiehelli (Cockerell) syn. nov. L. latichilum sp. nov. 6 6 L. lineatum sp. nov. 2 2 L. litovillum sp. nov. 35 8 43 L. littleri (Cockerell) 112 11 123 /.. infrahirlus (Cockerell) syn. nov. Halictus ohseuripes (Fricse) syn. by Cockerell. L. macrops (Cockerell) 2 6 8 L. mediopolitum (Cockerell) 430 20 450 L. megacephalum sp. nov. 32 26 58 L. melanopterum (Cockerell) 7 4 11 /.. spenceri (Cockerell) syn. nov. L. mesembryanthemi (Cockerell) 49 16 65 L. mesostenoideum sp. nov. 51 53 104 L. metallicum sp. nov. 8 1 9 L. mirandum (Cockerell) 241 36 277 L. moreense (Cockerell) 39 9 48 L. mu sp. nov. 79 8 87 1 WALKER K. 8 Table I. Checklist ofAustralian Lasioglossum (Chilalictus) spp. (continued) No. ofspecimens: Species Total L. mundulum (Cockerell) 435 70 505 dorsieynaeum (Cockerell) syn. nov. /.. /.. lurtificum (Cockerell) syn. nov. nigropurpureum (Rayment) syn. nov. /.. anexoneuwides (Rayment) syn. nov. /.. /.. nefrens sp. nov. 33 66 9 L. nigropolitum (Cockerell) 1166 16 L. nitens sp. nov. 2211 21 L. oblitum (Smith) 2255 25 L. obscurissimum Michener 332288 112299 457 L. occidens sp. nov. 3355 22 37 L. ochrochilum sp. nov. 2233 ^55 28 /.. ochroma sp. nov. 54 34 /.. opacicolle (Cockerell) 110099 1188 127 /.. furneauxi (Cockerell) syn. nov. L. orbatum (Smith) 228888 119922 480 /.. viridarii (Cockerell) syn. nov. L. pachycephalum (Cockerell) 4400 7700 110 /.. dolichoceruin (Cockerell) syn. now /.. lanariellum (Cockerell) syn. nov. /.. pappodum sp. nov. 55 5 L. parasphecodum sp. nov. 2211 1122 32 L. platycephalum (Rayment) 4466 1199 65 /.. intermedins(Rayment) syn. nov. /.. micridoneum (Cockerell) syn. nov. /.. mesembryanthemiellum (Rayment) syn. nov. /.. plebeium (Cockerell) 6677 1166 83 L. pollux sp. nov. 11 22 3 L. polygoni (Cockerell) 1155 15 /.. ptyon sp. nov. 22 2 L. pulvitectum (Cockerell) 112211 5544 175 L. quadratum sp. nov. 3311 3322 63 L. repraesentans (Smith) 8866 1122 98 /.. aptum (Rayment) syn. nov. /.. gipp.sii (Rayment) syn. nov. L. roddi sp. nov. 11 11 2 L. sculpturatum (Cockerell) 113322 1188 150 /.. omnivagum (Cockerell) syn. nov. L. seductum (Cockerell) 71 40 111 L. nudum (Rayment) syn. nov. L. seminitens (Cockerell) 41 5 46 L. sexsetum sp. nov. 64 43 107 L. smaragdinum sp. nov. 10 3 13 /.. soror sp. nov. 293 45 744 /.. spatulatum sp. nov. 2 2 L. speculatum sp. nov. 52 19 71 L. .striatum sp. nov. 35 2 37 L. subplebeium (Cockerell) 116 9 125 /.. exception (Cockerell) syn. nov. L. supralucens (Cockerell) 161 9 170 L. tamburinei (Friese) 73 10 83 /.. goraeen.se (Rayment) syn. nov. AUSTRALIAN LASIOGLOSSUM(CHILALJCTUS) Species No. ofspecimens: Total L. teltiri sp. nov. 16 3 19 L. triangulatum sp. nov. 391 180 571 L. tridens sp. nov. 19 2 21 L. uncinatum sp. nov. 1 1 L. veronicae (Cockerell) 203 152 355 L. victoriae (Cockerell) 7 7 14 L. victoriellum (Cockerell) 237 23 260 /.. emeraldense (Raymcnt) syn. nov. L. vitripenm (Smith) 513 361 874 L. purnongense (Cockerell) syn. nov. /.. mackaycn.se (Friese) syn. by Cockerell. L. glauerti (Rayment) syn. nov. /.. omatum (Rayment) syn. nov. /.. doweri (Rayment) syn. nov. /.. purpurcum (Rayment) syn. nov. /.. whileleyi (Rayment) syn. nov. L. willsi (Cockerell) 109 64 173 L. wahlenbergiae Michener syn. nov. L. xerophitum sp. nov. 16 16 Totals 7057 6960 14017 Morphological Analysis it minimises solar heating but the distributions of metallic and non-metallic species-groups Measurements overlap. Absolutemeasurements. Known body lengths of Most females in the metallic species-group L. (Chilalietus) species range from small (9 3.23 have bright metallic markings on all dorsal sur- mm, 6 2.93 mm, for L. smaragdinum) to large faces of the body but L. erythrurum, /.. hemi- (2 12.32 mm, 6 10.78 mm. for /.. tamburinei). cthhraolucgehuomutatnhde ELy.reamnunadnudluBmas,siawnhipcrhovionccceus,r This is the largest range for Australian Halic- haverelativelydull metallicmarkingscompared tinae. The body lengths ofseveral L. (Parasphe- tothoselimitedtothe Eyrean province. Females codes) species are similar to the largest of the in the non-metallic species-group occurring in range, while several L. (Austrevylaeus) species the Eyrean province, either exhibit bright met- areSpseicmiielsarwtioththemestmaalllliecst.markings are usually allic markings on the head and mesosoma (/.. ms5em.ta0al8lllmeirmc,(2max3r.=k2i33n.-96g9.s)31(t2hma3nm.,9s3p-xec1=i2e.4s3.26w4itmmhmm,d;arx6k,=2n.6o9.n392-- erheerfaeldmecataeinavednmamenesdsoosLsc.uotmmueatmaa(lnLl.dieehubimeg)nhleoyurmphoaalvniedsh/ae..dbeluaarncydk- mm; 6 3.39-10.78 mm, x=5.83). The metallic cepRhealaltuimv)e.measurements. Both sexes havesimi- cspleicmiaetseoocfcuthrepEryerdeoamninparnotvliyncien twhheilheotnoann-dmedtr-y larrangesofrelative head measurements except allic species occur mainly in the cool and wet ginelsloummelsepnegctihesofwhtheeremathleeuipspgerreartaenrgtehoafnthine ftlhae- climateoftheBassian region. Ingeneral, L. (Chi- female (Table 2). Most relative measurement lalietus) species are smaller in hot, dry climates characters proved useful for species determi- than those species restricted to a cooler Bassian nation but few were useful for discriminating climate. (Biogeographic provinces according to species-groups. Main (1981). This might suggest that metallic colour is advantageous in hot environs because WALKER 10 K. Table 2. Relative head measurements offemale with over 90% separation from the other two (123 spp., n= 1218 specimens) and male (118 groups, whereas the two non-metallic groups spp., n=864 specimens) Lasioglossum remain merged and show less than 10% overlay (ChHalictus) spp. on the metallic species-group. The correlation coefficients (Table 3) indicate that for the Standard female, frons length (OAD), head length (HL) Ranges Mean deviation and upper interorbital distance (UID) are most useful characters in descending order. For the Female male, the useful characters are interocellar dis- tance (IOD) and frons length (OAD), in that HL 72-118 83.50 6.00 order, although both have lower correlation UID 53-73 61.15 3.62 coefficients than those scored for the female. ALIODD 4138--6253 2550..8359 31..1203 These results give morphological support to thetwo majorspecies-groupsbut not tothe sub- IAD 8-19 11.44 1.90 groups of the non-metallic species-group. Sev- OAD 20-43 28.11 4.42 eraldesert-inhabiting, non-metallicspecieshave IOD 14-28 19.80 3.21 head elongation (OAD) similarto species ofthe OOD 10-30 15.71 2.86 metallic group. GCLW 16-26 20.46 1.61 OAD (a measure of frons length) is useful to EW 13-28 17.99 2.46 separate females of the metallic and non-met- 19-32 25.12 2.17 OAD allic species-groups; in males, is not so SL 28-47 38.59 3.32 useful for species-group separation. In general, FL 55-84 69.79 6.81 the Lasioglossum (Chilalictus) species from the Male Eyrean province, mainlyofthe metallicspecies- group, have OAD equal to orgreater than 30%, HL 70-118 85.90 5.31 with one species (L. frankenia) at 43%. Most UID 52-72 63.99 3.18 speciesfromthe Bassian province, mainlyofthe LID 40-70 49.95 4.62 non-metallic species-group, have OAD values AOD 12-21 16.99 1.70 less than 30% although there are several excep- IOAADD 2120--3199 2174..5404 31..4628 otifonfse.eTdhiings dsitfrfaetergeinecse.caMentbaelleixcplsapienceiedsinmatienrlmys IOOODD 16-28 21.31 3.04 occur in the semi-arid and arid Eyrean province 12-25 17.50 2.60 whereasthe black, non-metallic speciesoccurin GCLW 15-26 20.83 1.78 acooler, wetterclimate ofthe Bassian province. EW 2144--3470 2198..6083 22..3794 rPlaanngtesofinxetrhiec fEeyarteuarnespdreosviignnceed otoftreendupcoessweastsera SL 20-37 29.18 3.04 loss, in particular elongation ofthe corolla (e.g. FL 55-205 120.26 28.74 Eremophila R.Br., a commonly used nectar source). To best utilise available nectar resourcesfrom nectaries located in an elongated Morphological and biological charactersuites corolla, many Eyrean species ofL. (Chilalictus) of L. (Chilaliclusj suggest that there arc two have an increased head length compared to majorspecies-groups: the metallic(group 1)and species found in the Bassian province. non-metallic. Within the latter are two smaller While the metallic species-group dominates species-groups, based on the absence (group 2) the drier areas, several species occur across the or presence (group 3) of posterolateral carinac lowerEyreanregionand intrudeextensivelyinto on the dorsal surfaceofthe propodeum carinae. theBassianregion.One,L. vitripenne, istheonly A discriminant analysis on relative head metallic species with OAD equal to or less than measurements ofthese groups was used to test 30% (OAD. 28-30). Conversely, several of the whetherthey could beused toseparatetaxa into desert-inhabiting, non-metallic species (e.g. L. their respective species-groups and which biceps(OAD. 36-37)and L. injlatitm(OAD, 34- characters would determine such groupings. 35)) have OAD values greater than 30%. These The results arc expressed as factor plot dia- results suggest a strong correlation between grams and tabulated correlation values for rela- frons length and habitat. Other relative head tive head measurements (fig. 2). In both sexes, measurements are not correlated with colouror the metallic species-group is well distinguished habitat in this wav.