ebook img

Revised distances of Northern HII regions PDF

27 Pages·2007·5.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Revised distances of Northern HII regions

A&A470,161–171(2007) Astronomy DOI:10.1051/0004-6361:20066051 & (cid:1)c ESO2007 Astrophysics (cid:1),(cid:1)(cid:1) Revised distances of Northern HII regions D.Russeil1,C.Adami2,andY.M.Georgelin1 1 LAM,2PlaceLeVerrier,13248MarseilleCedex04,France e-mail:[email protected] 2 LAM,TraverseduSiphon-LestroisLucs,BP8,13376MarseilleCedex12,France Received17July2006/Accepted19April2007 ABSTRACT Aims.OuraimistodeterminethedistanceofouterGalaxystar-formingcomplexesinordertomodelthekinematicstructureofour Galaxy. Methods.Wesearched for exciting star(s) of HII regions, with poor or unknown stellar distance, inthe second and third galactic quadrants.Wecarriedoutspectroscopicandphotometric(whennecessary)observationsinordertoestablishtheirspectraltypeand theirU,BandV magnitudes.Fromthesedata,complementedwithliteraturedata,wedeterminethespectro-photometricdistanceof theirassociatedcomplexes. Results.We (re)established the stellar distance of 23 star forming complexes. Reinvestigating the kinematics of the Perseus and Cygnusarms,wedeterminedthevelocitydeparturesfromcircularrotationandweinterpretedthemasstreamingmotionsinthespiral arms. Indeed, in addition to the Perseus arm where such departures were known for a long time, we added evidence for velocity deviationsintheCygnusarm.MostsignificantisthatwefoundtheoppositesignforthesedeparturesinthePerseusandCygnusarms, whichsuggeststhattheco-rotationradiusislocatedbetweenthesetwoarmsat∼13kpcfromthegalacticcenter. Keywords.Galaxy:general–Galaxy:kinematicsanddynamics–Galaxy:structure–ISM:HIIregions 1. Introduction We havefocussedourstudyonthese galacticquadrantsfor tworeasons: The study of the kinematics and spiral structure of the – In these quadrants the Perseus spiral arm is the dominant MilkyWayrequirestheestablishmentofthedistanceofthestar- structuralfeatureforwhich we wantto determinethe kine- formingcomplexesdistributedinto the arms. This can be done matics. Velocity anomalies in the Perseus arm have been viakinematicorstellardistancedeterminations. known for a long time (Rickard 1968; Humphreys 1970, 1976;Brand&Blitz1993).Morerecently,Heyer&Terebey – The kinematic distance determination is based on the rota- (1998) show evidence that expanding motions are present tioncurveofourGalaxyassumingtheobjectsareincircular withinthePerseusarm. rotation.Butdeparturesfromcircularrotationarecommonly – Inthesecondandthirdquadrantswecandeterminethestel- noted inducing sometimes significant errors. In addition, lardistanceoftheCygnusarmcomplexes(thisisimpossible these distances are unreliable toward center and anticenter in the inner galactic directions because of their larger dis- directions. Finally, they depend on the solar parameters R 0 andθ whichweregraduallyrevisedtolowervalues(Vallée tance and significant extinction). We want to confirm and 0 specify the design of the Cygnus arm (=External arm = 2005).Thisshortensthededucedkinematicdistances. Outer arm) as well as its velocity departure we suspected – Itisthenessentialtoestablishthestellardistanceofthestar- in the previous paper (Russeil 2003). Indeed, it was noted forming complexes. This is done from the stellar distance that beyond the Perseus arm there are complexes which of their constitutive HII regions. But, still today, numerous are very sparsely distributed. Several authors demonstrated HII regions have a very uncertain distance. This is mainly the presence of far-outer Galaxy molecular material: e.g. duetouncertaintyin,orabsenceof,thespectraltypedeter- Kutner&Mead(1981),Digeletal.(1994,1994),Wouterloot minationaswellastomisidentificationoftheexcitingstars. & Brand (1989), Brand & Wouterloot (1994), May et al. (1997), Heyer et al. (1998), Brunt et al. (2003), Nakagawa In this framework, we have selected from the catalogue of etal.(2005).Kaltcheva&Hilditch(2000),fromthedistribu- Russeil (2003), the complexesof the second and third galactic tionofbrightOBstarstowardslongitudes225◦and245◦and quadrantswhichhaveuncertainornodistancedeterminationin Kimeswenger&Weinberger(2004),fromthedistributionof orderto(re)establishtheirstellardistance. opticaltracersinthesecondgalacticquadrant,suggestedthe presenceofanexternalarmbeyondthePerseusarm. (cid:2) BasedonobservationscollectedattheHaute-Provence Observatory. Complexesin the far-outerGalaxyare importantto specifythe (cid:2)(cid:2) AppendixAisonlyavailableinelectronicformat presenceanddesignoftheCygnusarm,inadditiontotracethe http://www.aanda.org rotationcurveatlargegalactocentricdistance. Article published by EDP Sciences and available at http://www.aanda.orgor http://dx.doi.org/10.1051/0004-6361:20066051 162 D.Russeiletal.:ReviseddistancesofNorthernHIIregions 2. Observationsandspectralclassification Table1.Spectralclassificationofknownstars. WehaveselectedfromthecatalogueofRusseil(2003),thecom- Star Spectraltype Spectraltype plexes of the second and third galactic quadrants, observable (literature) (found) from OHP (Observatoire de Haute-Provence), which have un- GammaOri. B2III B2.5V certainornodistancedetermination.Toexcludelocalarmcom- EtaHyade B3V B2V plexeswefocusourstudyoncomplexeswithkinematicdistance HD214680 O9V O9V fartherthan1kpcandgalacticlatitudewithin±6◦.Forthecom- UpsilonOri. B0V B0V plexes selected we excluded HII regionsthat are very extented HD215835 O6V O5V or withveryunclearmorphologyand/orwithoutMSX orradio HD225160 O8Ib O7.5Ia counterpart. For these HII regions the exciting star(s) are very diffulttoidentify. The selected HII regions can be divided into three groups: wecorrectedfortheflat-field(tungstenlamp),biasandskycon- HII regionswith photometricand spectroscopic data in the lit- tribution.Thewavelengthcalibrationwas madeusinganargon erature,HIIregionswithonlyphotometricdataintheliterature lamp. andHIIregionswithnodataatallorveryunreliabledatainthe literature. For the first group we directly deduced the spectro- photometric distance, for the second group we complemented 2.3.Thespectralclassification thephotometricdatawithspectroscopicobservationsoftheex- citing star candidatesandfinally forthe third groupwe carried Amid the observedspectra we selectthe hotstar candidateson outphotometricandspectroscopicobservationsandsearchedfor the basis of the following criterion. For hot (O and B) stars theexcitingstarscandidates.Inthisway32HIIregionsbelong- the primary criteria is the presence of HeII and/orHeI absorp- ingto23complexesrequiredobservations. tion lines. The colder stars are characterised by the absence of Concerningthe exciting stars themselves, we based our se- He lines but the presence of the G band, CaII (H and K) and lection on the location of the star(s) regarding the HII region CaI linesandnumerousmetallic linesupto TiO bands(forthe morphology(theexcitingstar(s)candidate(s)areexpectedtobe cooleststars).Thefactthattheselectedstarsarehotisconfirmed strategicallypositionedintheHIIregionsseeninoptical,radio bytheequivalentwidthoftheHγline.FollowingtheTables8.1 andmid-IR)andfromU,BandV photometricdata(weselected and9.1ofJaschek&Jaschek(1987)thisequivalentwidthgives thebluestcandidatesofthefields,fromB−VversusU−Bplots). usaroughestimateofthespectraltype. We limited our selection to stars brighter than V magni- Toassess the spectraltypewecomparespectratothe spec- tude 17 because we cannot observe in a reasonable exposure tralatlasofWalborn&Fitzpatrick(1990)whichprovideslow- timethespectraoffainterstars.We thenobtainedthespectrum resolution spectra in the 4000–4700 Å range. We then re- forallthesecandidatestodeducetheirspectraltype. sized, rebined and cross-correlated (the cross-correlation was performedwithIDL)theobservedspectraofhotstarcandidates tothereferencespectraallowingforpossiblevelocityshiftsbe- 2.1.Photometry tweenthem. U, B and V images have been obtained in 2005 (1–5 Sep.) at TheresultingdataarelistedinTable2.Inthistableforevery the 1.20-m telescope at the Observatoire de Haute Provence HIIregion(listedinCol.1)wehavedeterminedthecoordinates (OHP,France).Thef/61.20-mOHPtelescopeisequippedwith (Cols. 3 and 4) for each observed stars from their identifica- a thinned TK 1024 × 1024 pixels CCD detector, with a pixel tiononDSSimagesusingAladin(Bonnareletal.2000).Aladin size of 0.69 arcsec and a field of view of 11.8 × 11.8 arcmin. (http://aladin.u-strasbg.fr/aladin.gml)isaninterac- At the adopted gain, the conversion is 3.5 e-/adu, with a read- tive software sky atlas allowing the user to visualize digitized outnoiseof8.5e-.Theobservationswerecalibratedandtrans- imagesofanypartofthesky,tosuperimposeentriesfromastro- formed into the Johnson UBV system using standard stars in nomicalcatalogsorpersonaluserdatafiles,andtointeractively the catalogue of Landolt (1983). The instrumental magnitudes accessrelateddataandinformationfromarchivesforallknown on the images have been measured using the Sextractor pack- objects in the field. In Col. 5, we give the determined spectral age(Bertin&Arnouts1996).Standardstarmeasurementsgave typeforhotstarsonly.Forcoldstarsweonlyindicatethemajor meandifferencesof0.11mag,thatweassumeasthetypicalun- featureswhichallowustorejectthem.Thelastcolumngivesthe certainty of the photometricresult. This impliesan uncertainty alternativenameofthestarwhenavailable.Theasteriskfollow- inthedistanceof2.2%. ingsomestarsnumbermeanstheyhavebeenobservedwiththe lowerresolutionspectroscopicconfiguration. 2.2.Spectroscopy To estimate the quality of our spectral type determination we observeda few starswith knownspectraltype in the litera- TheobservationswerecarriedoutwiththeCARELECspectro- ture.We passedthemthroughourclassificationprocessandre- graph (Lemaitre et al. 1990), mounted at the Cassegrain focus sults are given in Table 1. Despite the small sample, we note ofthe193-cmtelescopeoftheOHP.Theobservationswerecar- that main sequencestars are well identified while the luminos- ried out in three runs (16–21 Sep. 1998, 26–28 Oct. 2005 and ityclassislesswelldeterminedfor(super)giantsstars.Wethen 31Jan.–3Feb.2006)usingtwodifferentgratings.Thegratings adoptastypicalspectraltypeuncertaintythemaximaldifference used give spectra with dispersion of 33 Å/mm and 133 Å/mm wefound(oneunity)andfor(super)giantsstarsatypicaldiffer- andaspectralrangeof4055–4978Åand3800–6856Årespec- encefortheluminosityclassoftwo.Onthisbasis,theabsolute tively.Theslitis5.5arcminlongandhasawidthof2.1arcsec. magnitudeuncertaintyisthendeducedadoptingtheMv-spectral Theintegrationtimerangedfrom1200sto10800sdepending typecalibrationofRusseil(2003).Thisuncertaintydependson onthestar’smagnitudeandtheinstrumentalconfiguration.The the actual spectral type and luminosity class found and varies datareductionwascarriedoutusingMIDAS.Foreachspectrum between 0.24 mag that is to say 0.07 in relative distance D.Russeiletal.:ReviseddistancesofNorthernHIIregions 163 uncertainty(foraO8V)and2.61magthatistosay0.55inrela- tivedistanceuncertainty(foraB2IV). Let us note that we took advantage of CARELEC capabil- ities to arrange the slit orientation to observe at all times at least two stars in each exposure, even if the second star is not acandidate. 3. Thedistanceofstar-formingcomplexes ThestellardistanceofindividualHIIregionsiscalculatedcom- biningUBVphotometryandspectraltypeoftheexcitingstarsas describedinSect.2.2ofRusseil(2003).Theresultsarelistedin Table3,whiletheidentificationfieldsandspectraoftheexciting starsarepresentedintheonlineappendix. On the basis on the new distance determinationfor HII re- gions we (re)established the distance of the star-forming com- plexestheybelongto.AcomplexisthegroupingofHIIregions basedontheirkinematicandspatialnearness.Thedetermination ofthecomplexesandtheirconstitutingHIIregionswithveloci- tiesarelistedanddiscussedinRusseil(2003,Table1). We also re-establishedthe distanceto theotherHII regions ofthecomplexesusingspectroscopicandphotometricdatafrom theliterature(usingCDS/Simbadfacilities).Forstarswithonly photometricdataweadoptanerroronthedistanceof40%.For othercasesthedistanceerrorisestimatedinthesamewayasfor ourdata.ThedistanceofHIIregionsandcomplexesarealways determinedfromtheusualleastsquaredmethod(Meyer1975). We discuss below the new distance determination for the complexes(summarizedinTable4andFig.2).Letusnotethat Fig.1.Top:colordiagramofstarsinthefieldofBFS6.Thecurverep- IAUnotationforSharplessregionsis“Sh2-”butforconvenience resentstheunreddened mainsequence whilethelineisthereddening inthispaperweabbreviateto“S”.ForexampleSh2-128willbe vector for a B3 star up to Av = 5 mag. Bottom: distribution of stars abovethereddeningvectorversusthedistance. notedS128. The complex 96.0+2.0: This complexgathersthe HII regions that DA 568 is the most prominentpart of a much larger star- BFS6, BFS7 and S128. Chini & Wink (1984) established the forming complex that includes the optical HII region BFS 10 spectral type (O7V) and UBV photometry of the exciting star (considered as a blister HII region) and numerous associated ofS128givingadistanceof7.91kpc.Recently,Bohigas&Tapia IRAS sources tracing the last generation of star formation oc- (2003)reevaluatedthedistance(adoptingthesamespectraltype curinginthecomplex.Thisstar-formingcomplexappearsquite forthestar)to9.4±0.4kpcusingJandV bandphotometry. evolved,with mostof the parentalgiantmolecularcloudbeing We observedBFS6 but, unfortunately,no exciting star was severelydisruptedbyDA568. found from spectroscopy. BFS6 has a quasi-circular (17.7(cid:4) × ItwassuspectedthatthestarALS12050,whichliesnearthe 16.5(cid:4))radiocounterpart,whileitisadiffuseopticalnebula.From center of the radio emission, is a probable exciting star which ourUBVimages(coveringalargepartoftheradioemissionex- we confirmfromourdata.We determinea distanceforDA568 tension),wemadetheU−BversusB−Vplotofthefieldobjects of4.99±0.32kpcfromthetwostarsidentified. (Fig. 1, top). We then selected and determinedthe photometric Thedistanceofthecomplexisthen5.25±0.29kpc. distance (assuming they are main sequence stars) of the bluest stars (28 stars) brighterthan 17 mag. Plotting the histogram of The complex 105.6+0.4: This complex is composed of S138 thedistance(Fig.1,bottom)themainfeatureappearsasapeak and S139. No stellar distance is available for S139. The spec- at10kpc.Thisfavours9.4kpcforthedistanceofS128. Wethenadoptforthecomplexadistanceof9.4±0.4kpc. trumofS138stellarcandidateshowsemissionlines,whichpre- ventsanyspectralclassification.Ourstarcandidatecorresponds tostar183inDeharvengetal.(1999).FromaspectrumnearHα The complex 96.3−0.2: This complex consists of BFS8 only. and8600ÅtheyshowthatthestarisprobablyaHerbigBestar. BSF8isafaintnebulawithadiameterofabout12(cid:4)(Fich1993). The photometric distance of the star has been evaluated in the We find an O5V star as exciting star for which we established samewayasfornormalstarsandassumingitisamainsequence adistanceof8.8±0.61kpc. star. Indeed, Wegner (1994) shows there is no significant dif- ference between the intrinsic flux distribution of normalB and Bestars.Weevaluateadistanceof2.91±1.4kpc.Weadoptthis Thecomplex101.4+2.7: ThiscomplexconsistsonlyoftheHII distanceforthiscomplex. region BFS10 for which we find a stellar distance of 6.39 ± 0.67 kpc. We now add the HII region DA568. Kerton et al. (2004) carried out a multiwavelength study of DA568. They The complex106.8+3.3: ThiscomplexconsistsofS141only, estimate a mean molecular velocity of −64 kms−1 and show forwhichweestablishedadistanceof8.34±0.6kpc.Star1is 164 D.Russeiletal.:ReviseddistancesofNorthernHIIregions Table2.Coordinatesandspectraltypeofexcitingstarcandidates. HIIregion Starnumber α δ Spectraltype Notes J2000 J2000 hms ◦(cid:4)(cid:4)(cid:4) BFS6 1 213622.1 +522816.2 TiObands 2 213621.9 +522720.0 BandG 3 213641.7 +522759.6 DominantHlines BFS8 1 214114.2 +523434.9 Numerouslines 2 214104.6 +523552.0 NoHelines 3 214103.2 +523605.0 DominantHlines 4* 214125.1 +523721.6 CaIIH,Klines+BandG 5* 214117.6 +523832.3 O5V DA568 1* 215515.4 +573945.3 O5V ALS12050 2* 215511.4 +573749.8 B2V BFS10 1 215630.5 +580140.5 O9V S138 1 223245.5 +582821.3 Emissionlines 2 223245.6 +582737.9 BandG+CaI 3* 223247.7 +582854.2 CaIIH,Klines+BandG S141 1 222838.8 +613745.3 O8V S144 1 224459.5 +595554.3 BandG+CaI 2 224453.9 +595104.3 TiObands S152 1 225914.1 +584431.1 BandG+CaI,faintHlines 2 225915.3 +584321.2 DominantHlines 3 225916.9 +584243.4 BandG+CaI 4 225841.6 +584656.6 O8.5V S153 1 225913.6 +584442.3 O9V/O9.5V ALS12719 S156 1 230510.3 +601442.0 O8 S158 1 231334.3 +613014.3 O9V 2 231330.3 +613011.6 O3V 3 231321.9 +613001.7 NoHelines S159 1 231549.1 +610758.2 O9V S163 1 233222.9 +604005.1 B1III ALS13004 2 233230.0 +603949.3 BandG+CaI+FeI 3 233205.7 +604041.7 DominantHlines 4 233208.8 +604035.0 BandG+CaI 5* 233336.9 +604506.8 O9V 6* 233332.7 +604732.1 O8V 7* 233349.6 +605107.0 B1V S170 1 000146.6 +643528.7 B1V ALS13376 2* 000134.9 +643724.8 O9V ALS13370 3* 000133.5 +643715.6 B2V 4* 000113.6 +643519.0 B2V ALS13365 5* 000108.3 +643721.1 B3V ALS13362 6* 000106.2 +643724.0 CaIIH,Klines+BandG S173 1 002152.1 +614527.0 B2IV ALS6150 2 002226.5 +614939.8 B1V ALS6158 3 002219.8 +613909.2 B2IV ALS6157 4 002224.3 +613923.4 NumerousFeIlines S175 1 002717.1 +644218.0 B1.5V ALS6200 2 002721.0 +644238.1 BandG S182 1 005006.0 +644533.5 EmissionPCygnilines 2 005005.6 +644558.2 BandG+CaI 3 005009.6 +644528.1 BandG+CaI+FeI 4 005003.9 +644600.4 BandG S187 1 012307.3 +615153.2 B2.5V 2 012308.4 +615134.0 DominantHlines 3 012312.5 +615033.1 Emissionlines S192 1 024724.4 +615448.0 B2.5V 2 024718.2 +615740.1 BandG+CaI+FeI S193 1 024742.0 +615828.1 B2.5V 2 024746.8 +615817.6 DominantHlines 3 024740.0 +615832.7 B1.5V 4 024734.4 +615840.4 FaintHlines,NoHelines wellcenteredontheopticalemissionaswellasonthering-like The MSX (mid-infrared Midcourse Space Experiment) featurestracedbyMSX-bandAemissionsupportingouridenti- bandA(λ=8.28µmand20arcsecresolution)data(Priceetal. ficationoftheexcitingstar. 2001)spanawavelengthrangeof6.8–10.8µm,whichincludes D.Russeiletal.:ReviseddistancesofNorthernHIIregions 165 Table2.continued. HIIregion Starnumber α δ Spectraltype Notes J2000 J2000 hms ◦(cid:4)(cid:4)(cid:4) G137.8+1.0 1 024922.3 +582643.7 O9V GSC03712-01870 S196 1 025132.2 +621321.9 BandG+CaI 2 025132.1 +621225.7 IntenseCaI,faintHlines 3 025130.8 +621107.0 BandG+CaI 4* 025132.0 +621319.7 O9.5V S203 1 032303.0 +544716.1 BandG+CaI 2 032249.4 +544532.9 BandG+CaI 3* 032037.2 +545408.3 (B2Vphot) BFS31 1* 032451.2 +545705.0 B2V S204 1 035641.0 +571529.0 O9V ALS7811 S217 1 045851.5 +475919.6 CaIIH,Klines+BandG 2 045845.1 +475954.0 O9.5V ALS8107 3 045832.8 +480104.8 CaIIH,Klines+BandG S219 1 045607.1 +472303.1 B2.5V 2 045600.3 +472242.0 Noisy 3 045620.2 +472343.0 BandG+CaI 4 045610.2 +472332.2 B1V ALS8094 5 045608.9 +472353.9 BandG+CaI+FeI 6 045608.1 +472401.8 BandG+CaI 7 045607.4 +472355.3 B2.5V S256 1* 061236.6 +175625.3 CaIIH,Klines 2* 061236.6 +175653.4 B2.5V 3* 061236.6 +175752.8 CaIIH,Klines+BandG S258 1* 061327.6 +175431.6 CaIIH,Klines 2* 061327.6 +175520.9 B3V S283 1* 063812.4 +004400.9 B3V 2* 063813.6 +004409.9 O7V 3* 063815.6 +004418.5 CaIIH,Klines+BandG+CaI 4* 063828.1 +004440.6 Noisy,RefilledHlines 5* 063827.3 +004438.1 B1V BFS53 1* 064436.4 +010754.6 B2V S294 1* 071633.2 −092525.6 B1.5V 2* 071634.5 −092700.4 FeI+numerouslines Note:theasteriskfollowingsomestar’snumber meanstheyhavebeenobserved withthelowerresolutionspectroscopic configuration. ALSis acronymforAlmaLuminousStar(Reed1998). emissionbandsattributedtoPolycyclicAromaticHydrocarbons note a large discrepancy between the distance determination (PAHs) and thermal emission of dust (Cohen & Green 2001). of these two HII regions while Crampton et al. (1988) found In the star-forming regions PAHs emission is a good tracer of thematsimilardistancesof3.6and4kpcrespectivelyforS152 the photon-dominatedregions(Leger& Puget1984).The pho- and S153.However,kinematicstudies(Mirzoyan1994;Pismis ton dominated region allows us to establish the location of the 1990; Pismis & Hasse 1980) suggest that the two nebulae are parentalmolecularcloud.ThiscomplementstheHIIregionex- physicallylinkedinthewaytheywereformedwithinthesame tensionhelpingustolocatetheexcitingstar(s). cloud;butthey are at differentevolutionarystages, S152being theyoungest.TheyoungageofS152isconfirmedbyitsintense Inaddition,weselectedfromcolor–colorplottheblueststars (31 stars) and determined their photometric distance assuming MSX-BandAcounterpart. theyaremain-sequencestars.Themeanvalueofthedistribution For the distance determination of the complex, we favour gives a distance of 9.45 kpc. This supports the distance found the distance of star 4. Indeed, star 4 is obviouslyembedded in forS141. the optical emission of S152 while we can not rule out, due to thefaintopticalemissionofS153,thepossibilitythatALS12719 is a field star and thepossibility thatS153couldbeinterpreted The complex 107.7+0.8: This complex consists of S144 asaflowofionizedmatterfromS152. only. We do not identify the exciting star. The DSS image shows only a faint emission with a filament-like structure. The identification is also difficult because there is no detectable Thecomplex110.1+0.0: ThiscomplexgathersseveralHIIre- gions:BFS14,BFS15,BFS16,BFS17,BFS18andS156. MSX-BandAcounterpart. ThespectraltypeoftheexcitingstarofS156wasnotdeter- mined fromthe cross-correlationmethodbecauseof the strong The complex 108.8−1.0: This complex is composed of S152 refilling in the hydrogen lines. The presence of HeII lines is and S153. S152 is a bright and compact HII region excited characteristicofO typestar.We estimatedaO8Vspectraltype by star 4 (distance 2.39 ± 0.21 kpc) while S153 is a diffuse fromthe criteria(developedbyConti& Underhill1988) based region excited by ALS12719 (distance 4.73 ± 0.6 kpc). We on the equivalent widths of HeI4471 and HeII4541. Then, we 166 D.Russeiletal.:ReviseddistancesofNorthernHIIregions Table3.Photometry,distanceandextinctionoftheexcitingstars. HIIregion Starnumber V B−V U−B d(kpc) Av Notes BFS8 5 13.582 1.035 −0.088 8.88±0.61 4.32 DA568 1 11.898 0.900 −0.182 5.04±0.35 3.86 2 14.037 0.755 −0.037 4.74±0.86 3.13 BFS10 1 15.031 1.419 0.311 6.39±0.67 5.48 S138 1 15.014 1.578 0.547 2.91±1.4 5.89 photometric S141 1 14.282 0.969 −0.488 8.34±0.6 4.46 S152 4 11.925 1.002 −0.537 2.39±0.21 4.65 S153 1 11.38 0.466 −0.427 4.73±0.6 2.43 S156 1 11.234 0.979 0.257 2.87±0.75 3.73 S158 1 11.762 1.288 0.05 1.60±0.17 5.21 2 12.093 1.321 0.647 4.24±0.29 4.72 S159 1 11.919 0.921 −0.261 2.97±0.31 4.03 S163 1 11.51 0.83 −0.14 2.93±1.3 3.52 5 12.803 1.127 −0.029 3.38±0.35 4.63 6 14.054 1.485 0.3785 4.28±0.3 5.68 7 14.040 0.833 −0.079 5.63±0.93 3.48 S170 1 11.353 0.313 −0.477 3.55±0.58 1.80 2 9.786 0.439 −0.358 2.60±0.27 2.18 3 13.406 0.370 −0.258 6.52±1.19 1.80 4 12.401 0.396 −0.329 3.78±0.68 1.98 5 10.935 0.303 −0.457 1.43±0.28 1.74 S173 1 11.820 0.38 −0.45 3.78±2.06 2.02 2 11.220 0.17 −0.64 4.02±0.66 1.39 3 9.974 0.183 −0.502 2.27±1.23 1.29 S175 1 11.301 0.906 −0.196 1.09±0.21 3.90 S182 1 11.739 0.984 0.435 – – S187 1 13.570 1.236 0.254 1.44±0.26 4.78 3 14.711 0.85 0.159 – – S192 1 13.743 0.751 −0.315 2.96±0.54 3.39 S193 1 12.368 0.565 −0.42 2.11±0.39 2.75 3 14.598 0.615 −0.317 8.12±1.56 2.84 G137.8−1.0 1* 13.01 0.71 −0.41 6.78±0.59 3.32 Muzzio&Rydgren(1974) S196 4 12.183 0.530 −0.458 5.67±0.59 2.65 S203 3 15.439 1.0843 0.212 5.51±2.65 4.21 B2Vphotometric BFS31 1 12.670 1.018 0.175 1.71±0.31 3.97 S204 1 10.844 0.419 −0.57 3.98±0.42 2.32 S217 2* 11.32 0.42 −0.6 4.37±0.37 2.35 Georgelinetal.(1973) S219 1 14.387 0.726 −0.088 4.64±0.85 3.06 4 12.06 0.498 −0.33 3.74±0.62 2.39 7* 14.43 0.84 −0.04 3.90±0.65 3.47 Lahulla(1987) S256 2* 14.37 1.15 −0.03 2.14±0.39 4.73 Moffatetal.(1979) S258 2* 15.28 1.22 0.4 2.90±0.51 4.57 Moffatetal.(1979) S283 1* 13.12 1.30 1.01 1.24±0.22 4.26 Moffatetal.(1979) 2* 12.19 0.52 −0.52 8.11±0.31 2.67 Turbide&Moffat(1993) 5* 14.22 0.65 −0.4 7.39±1.21 3.08 Moffatetal.(1979) BFS53 1* 13.93 0.85 −0.23 4.01±0.73 3.71 Moffatetal.(1979) S294 1* 13.99 1.03 −0.03 3.24±0.56 4.23 Moffatetal.(1979) Notes:Theasteriskfollowingsomestar’snumbermeansthatthephotometryiscomingfromtheliteraturewhithreferenceinCol.8.InCol.6,the distanceanditsuncertainty(calculatedfromerrorsonthephotometry,spectraltypeandluminosityclassdetermination)isgiven. determine the distance of 2.87 ± 0.75 kpc assuming the star is The complex 114.0−0.7: Thiscomplexis composedofS163, amainsequencestar. S164 and S166. For S166 Foster & MacWilliams (2006) give From CDS/ALADIN facilities we can identify the a spectrophotometric stellar distance of 2.57 ± 0.6 kpc for the star WRAM17 (Wramdemark 1981) as a probable excit- excitingstarBD+602607. ing star of BFS17. From their photometric data (Wramdemark S164 is excited by the B0.2III star (Negueruela & Marco 1981) and assuming it is a main sequence star, we estimate 2003)ALS13056.UsingSIMBADwecollectitsphotometryand B1.5Vasthespectraltypeandadistanceof3.66±1.7kpc. calculateadistanceof2.87±0.26kpc. Wethenadoptforthecomplexthedistance3±0.7kpc. For S163 we observed four hot stars. Star 1 is outside the optical and MSX emissions while star 7 is in the direction of thePDR.Stars6and5aretheclosesttothecenteroftheradio Thecomplex111.5−0.8: ThiscomplexiscomposedoftheHII source GB6B2331+6031.Then, we establish a distance of 4 ± regionsS158andS159.Weestablishedadistanceof2.27±0.15 0.22kpcforS163basedonstar5,6and7. forS158and2.97±0.31kpcforS159andthenforthecomplex We then determine a distance of 3.53 ± 0.17 kpc for the adistanceof2.40±0.14kpc. complex. D.Russeiletal.:ReviseddistancesofNorthernHIIregions 167 Table4.Revisedstellardistanceofthestar-formingcomplexes. Complex Velocity Old New V distance distance lsr kms−1 kpc kpc 96.00+2.00 −74.0 7.8±2.3 9.40±0.4 96.30−0.20 −54.2 – 8.88±0.61 101.40+2.70 −62.0 – 5.25±0.29 105.60+0.40 −52.0 4±1.2 2.91±1.4 106.80+3.30 −64.4 – 8.34±0.6 108.80−1.00 −51.0 3.7±0.8 2.39±0.21 110.10+0.00 −52.0 4.2±0.9 3±0.7 Fig.2.Newstellardistanceofthecomplexes(filledsymbols)versusold 111.50−0.80 −55.3 4.1±0.9 2.4±0.14 distance.Theolddistanceiseithertheoldstellardistance(squares)or 114.00−0.70 −44.3 2.4±0.4 3.53±0.17 thekinematicdistance(circles).TheSunisrepresentedbythelargestar 117.60+2.30 −43.7 2.8±0.6 2.6±0.27 symbolandthearmsbythecontinuouslines.Thecurvesarethefitted 119.00−1.10 −36.6 2.4±0.5 3.12±0.34 spiralarmsfromRusseil(2003). 120.40+2.00 −49.0 2.3±0.7 1.09±0.21 126.70−1.00 −13.0 – 1.44±0.26 136.10+2.10 −46.3 – 2.40±0.32 137.80−1.00 −102.0 – 6.78±0.59 143.60−1.80 −34.4 – 1.71±0.31 145.80+3.00 −26.0 4±1.2 3.83±0.26 classified as O9.5V (Georgelin et al. 1973). This placed it at 159.50+2.50 −23.9 6.1±0.7 4.19±0.27 2.13 kpc. Now, we find a spectral type for this star of B1.5V 192.50−0.10 7.6 2.3±0.3 2.46±0.16 givingadistanceof1.09±0.21kpc. 210.60−1.40 22.0 1.9±0.4 1.17±0.29 211.14−1.01 37.1 – 4.01±0.73 213.00−1.00 47.4 6.6±0.25 7.89±0.27 The complex 122.7+2.1: This complex consists of S181 and 224.20+1.20 33.6 5.4±1.6 3.24±0.56 S182.NodistanceisavailableforS181whichisanextendedand Note:theadoptederrorbaronthevelocity(±5kms−1),thevelocityof diffuse HII region.The exciting star of S182 exhibits emission thecomplexesandtheolddistancearefromRusseil(2003). lines which prevent any classification. Indeed, the lines, espe- ciallythehydrogenones,exhibitPcygniprofilesorareemission lines. S182 is associated with the source IRAS 00470+6429. The complex 117.6+2.3: This complex is S170. S170 has a Thissourceisclassifiedasaproto-planetarynebulaandthespec- round(diameter∼17(cid:4))andwelldefinedmorphology.Alltheob- tral type is Ae (Kelly & Hrivnak 2005). S182 is then removed servedstarsarelocatedinthecentralpartoftheregionbelong- fromthecomplex. ingcertainlytotheclusterStock18.Unfortunately,nodistance is available in the literature for this cluster. We found 5 stellar candidates with distance ranging from 1.4 to 6.5 kpc. Four of Thecomplex126.7−1.0: Thiscomplexpreviouslygatheredthe themareBtypestarswhilestar2 isanOtypestar. Inaddition HIIregionsS183,S187andS188. star 2 is located at the center of the HII region.We then adopt S183mustberemovedfromthiscomplex.Landeckeretal. thedistanceofstar2(2.6±0.27kpc)forthecomplex. (1992)showthatS183correspondstoabrightrimofradioemis- sion on the western edge of a much larger object apparently The complex 119.0−1.1: Thiscomplexis composedofS172, hidden by extensive obscuring material. The region is seen as S173 and S177. No stellar distance is available for S172. a bubble blown by the stellar winds of the star(s) which excite For S177, Foster & MacWilliams (2006) propose HD2421 the HII region. In addition, Landecker et al. (1992) obtained (a B0.5IV star with distance 2.04 ± 0.47 kpc) as exciting star from the radio recombination line observations a velocity of while accordingto Felli & Perinotto (1974) the excitingstar is −63.5 kms−1 which is very different from the velocity of the ALS6240(aO9Vstarwithdistance2.42±0.55kpc).AsS177is complex(−13kms−1).Fich&Blitz(1984)measuredaCOve- an extended(diameterabout40 arcmin)anddiffuse HII region locityat−10.3kms−1 inthedirectionofS183whileFichetal. with no clear MSX and radio counterpart, it is not possible to (1990)giveaHαvelocityof−62.6kms−1.Similarly,Dameetal. confirmtheexcitingstaridentification. (1987)presentedmapsshowingcloudsofCOaroundthisveloc- In the field of S173, using ALADIN we identified seven ity. Wouterloot & Brand (1989) list three CO velocity compo- hot stars. From data extracted from the literature (Haug 1970; nentsat−66.4kms−1(thestrongest,4.2K)−12.6kms−1(2.4K) Nicolet 1978) we establish the distance of the stars: ALS6151 and−5kms−1(2.8K).Bruntetal.(2003)findmolecularclouds (O9V, d = 2.57 ± 0.5 kpc), ALS6156 (photometric spectral inthedirectionofS183distributedaroundtwomainvelocities: typeB2V,d=4.41±1.77kpc),ALS6145(photometricspectral −62.4and−12kms−1.TheyalsoshowthattheHIprofilepeaks type B0.5V, d = 3.17 ± 1.27 kpc) and ALS6155 (photometric at−63.5kms−1.Theseobservationsindicatethatthemolecular spectral type B0.5V, d = 3.36 ± 1.34 kpc). From our observa- materialaround−13kms−1 isprobablyassociatedwithabsorb- tions we establish the distance of the stars: ALS6150 (3.78 ± ing materialinfrontofS183.S183nowformsa newcomplex, 1.89 kpc), ALS6158 (4.02 ± 0.66 kpc) and ALS6157 (2.27 ± 123.28+3.03,withvelocity−63kms−1. 1.14 kpc). The distance of S173 is then 3.12 ± 0.34 kpc. We S188isaplanetarynebulaewithadistancebetween600pc adoptthisdistanceforthecomplex. (Harris et al. 1997) and 1000 pc (Napiwotzki 2001). It is removedfromthecomplex. The complex 120.4+2.0: This complex is S175. The star Thenthedistanceofthecomplexisbasedonthedistanceof centered on the nebula is ALS6206. This star was previously S187onlywhichis1.44±0.26kpc. 168 D.Russeiletal.:ReviseddistancesofNorthernHIIregions The complex 136.1+2.1: We included in this complex the counterpart while no MSX counterpart is noted. We identify HII regions S192, S193 and S196 on the basis of their veloci- a hot star close to the radio source GB6 B0316+5439 but its tiesonly. spectral classification is not possible due to the refilling of the The HII regions S192 and S193 clearly define a subgroup. lines.InparticulartheHαlineisinemissionwhiletheotherhy- Indeed the MSX-band A emission appears elongated encom- drogenlinesareclearlyrefilled.TheHeIlinesat4390Å,4471Å passing these 2 HII regions. Near the middle of these HII re- and4924ÅareclearlynotedsuggestingitisaBstar.Thenwe gions,correspondingtoanMSXemissionpeak(02h47m26.47s estimated only the photometric distance. However, due to the +61◦56(cid:4)49.2(cid:4)(cid:4)),thereistheIRASsourceIRAS02435+6144and largeextentandthemorphologyofS203,theassociationofthis the near infrared star clusters [BDS2003]57 (Bica et al. 2003) starwithS203isveryuncertain. possibly inducedby the HII regions. This consolidatesthe fact BFS31isontheborderofS203.ItexhibitsMSXandradio thattheyarephysicallylinked. counterpartssuggestingitisarecentHIIregion.Theidentifica- Weestablishadistanceof2.96±0.54kpcforS192forwhich tion of its exciting star is unambiguous, contrary to S203. We the quasi-circular morphologymakes easy the identification of thenadoptthedistanceofBFS31(1.71kpc)forthedistanceof thestar.ForS193theobservedstar3exhibitsverydifferentdis- thecomplex. tance. Itslargedistance (8.12kpc),suggestsit is a background star.TheadopteddistanceforS193(2.11±0.39kpc)isthenthe distanceofthestar1. Thecomplex145.8+3.0: ThiscomplexistheHIIregionS204. The case of S196 is more complex. On the one hand, S204 is a faint and diffuse arc-like nebula extended on about the ionized (−48.1 kms−1, Fich et al. 1990) and molecular 48arcminwithoutMSXbandAcounterpart. (−45.1kms−1,Blitzetal.1982)gasvelocitiesofS196aresim- FromCDS/ALADINwefindintheareatworadiosources: ilar to that of S192 and S193 suggesting they are linked. On RRF1509andGB6B0355+5658inthedirectionofwhichthere the other hand, the stellar distance assigned to S196 is 5.67 ± are respectively the stars ALS7833 (O7.5, Hiltner & Johnson 0.59kpc(star4).Thisdistanceisdifferentfromthedistanceof 1956;Nicolet1978,d=4.21±1.77kpc)andBD+56◦866(O9V, other HII regions of this complex. Already Hunter & Massey Hiltner & Johnson 1956; Haug 1970, d = 3.63 ± 0.38 kpc). (1990) found a large and unreliable distance (9 kpc) for the In addition, three hot stars, with photometric data only (Haug identified star leading them to adopt the kinematic distance. 1970),areidentifiedinthefield:ALS7816(photometricspectral Moreover, in Digel et al. (1994), the molecular cloud associ- typeB0V,d=4.49±1.35kpc),ALS7815(photometricspectral ated to S192 and S193 is clearly noted (cloud 28) while S196 typeB1V,d=4.33±1.3kpc)andALS7829(photometricspec- appearsassociatedtoadistinctfaintermolecularfeaturemaking traltypeB1V,d =3.63±1.09kpc).Fromourobservationswe itsbelongingtothecomplexnotclear. establishaspectraltypeanddistanceforALS7811ofO9Vand We choosearbitrarilyto calculatethe distanceforthecom- 3.98±0.42kpc. plex(2.4±0.32kpc)basedonthedistancesofS192andS193 ThedistanceoftheHIIregionisthen3.83±0.26kpc. butwenotethatthecaseofS196isnotclosed. Thecomplex159.5+2.5: ThiscomplexgathersS219,S217and BFS44.ForBFS44nostellardistanceisavailable. The complex 137.8−1.0: This complex corresponds to the The spectral type of the main exciting star (ALS8107) of molecular cloud denoted as Cloud 2 in the list by Digel et al. S217 is O9.5V, B0V or O8V according to Georgelin et al. (1994). (1973), Moffat et al. (1979) and Chini & Wink (1984) respec- De Geus et al. (1993) reported an extended Hα emission tively. Deharveng et al. (2003), from the analysis of the nebu- withthesameradialvelocityasCloud2(VLSR=−103kms−1). lar emission lines, show that S217 and S219 appearto be low- TheyconcludedthatthisHαemissiontracesanHIIregionasso- excitation regionssuggesting a B0V spectral type for the main ciatedwithCloud2,andtheyproposedanearlyB-typestarnear excitatingstarofS219andaO9.5VorO9Vfortheexcitingstar Cloud2(“MR1“:Muzzio&Rydgren1974)asthephotoioniz- ofS217. ingsource. We confirm the O9.5V spectral type of Georgelin et al. Smarttet al. (1996), observedand analysedhigh resolution (1973) for the exciting star of S217 for which we determine spectraofMR1usingLTEatmospheremodelisation.Theyesti- a distance of 4.37 ± 0.37 kpc. For S219 we establish a dis- mate a distance between 8.2 kpc and 12 kpc and a LSR veloc- tance of 3.99 ± 0.39 kpc. The distance of the complex is then ityforthestarof−90±13kms−1.Fromourspectraweestab- 4.19±0.27kpc. lishedavelocityforthestarof−102.7±12kms−1inagreement with thenebularandmolecularcloudconfirmingtheirphysical Thecomplex192.5−0.1: Thiscomplexiscomposedofthere- link. In addition, the geometry of ionized gas, IRAS sources, gions S254, S255, S256, S257 and S258. Moffat et al. (1979) NIRsources,andmolecularcloudsuggeststhatMR1hastrig- identifiedtheexcitingstarsoftheseHIIregionsgivingthespec- gered the star formation activity in the cloud (Kobayashi & traltypeandphotometry(fromwhichweestablishthedistance: Tokunaga2000)confirmingthelinkbetweenthestar,theHIIre- S254 (HD253247, O9V, d = 2.49 ± 0.26 kpc), S255 (ALS19, gionandthemolecularcloud. B0V, d = 2.36 ± 0.37 kpc) and S257 (HD253327, B0V, d = We established a distance of 6.78 kpc. In agreement with 2.53±0.37)andgiveonlyphotometricinformationfortheex- Smartt et al. (1996) we confirm the large discrepancybetween citingstarofS256andS258. the stellar distance and the kinematic distance (23 kpc) which The spectral type found for the exciting star of S258 is in underlinesthepresenceofnon-circularmotions. good agreementwith the photometricspectral type and its dis- tanceis2.9±0.51kpc.ThereviseddistanceofS256,whichis The complex 143.6−1.8: This complex gathers S203 and 2.14±0.39kpc,isinbetteragreementwiththedistanceofthe BFS31. S203 is an extended quite diffuse HII region (1.23◦ × otherHII regions.Indeed,the photometricdistancewas unreli- 1◦) as seen in Hα in the VTSS survey (Dennison et al. 1997). able(6.8kpc). Only the northern part of S203 exhibits a radio (5 GHz) Thedistancetothiscomplexisthen2.46±0.16kpc. D.Russeiletal.:ReviseddistancesofNorthernHIIregions 169 Fig.3.Computedrotationcurve(dashedline)comparedwiththeBrand &Blitz(1993)curve(solidline). The complex 210.8−1.3: This complex is composed of the Fig.4. Fitted spiral structure. The symbol size is proportional to the regionsBFS53,S282andBFS54. excitationparameter(seeRusseil2003).TheSunpositionisgivenby thelargestarsymbol.1:Sagittarius-Carinaarm,2:Scutum-Cruxarm, ThedistanceofBFS54isestimatedfromthedistanceofthe 1(cid:4):Norma-Cygnusarmand2(cid:4):Perseusarm.Thelocalarmfeature(long starHD289120.ThisstarclassifiedasB3(Nesterovetal.1995) dashedline),thebar(dashed-dot-dot line,fromEnglmaier&Gerhard hasadistanceof1.13±0.34kpcassumingitisamainsequence 1999),theexpecteddeparturefromthelogarithmicspiralobservedfor star.TheexcitingstarofS282isHD47432(Carrasco-Gonzalez the Sagittarius-Carina arm (short dashed line) and a feature probably etal.2006),itsspectraltypeisO9.5II(Karchenko2001)andits linkedtothe3-kpcarm(solidline)aresketched. distanceis1.3±0.55kpc. BFS53wasplacedinthiscomplexduetoitsionisedgasve- locity (23.5 kms−1). But its CO velocity is 37.1 kms−1 while 4. Kinematicimplications the velocity of S282 and BFS54 is 22 kms−1. From the stellar We take advantage of the new distance determinationsto rein- distance we can now put BFS53 aside. Indeed, for BFS53 we vestigate the kinematic of our Galaxy. Indeed, in the Perseus determineadistanceof4.01±0.73kpcverydifferentfromthe arm,velocitydepartureshavebeenobservedforalongtime(e.g. others. Miller 1968; Rickard 1968; Roberts 1972; Humphreys 1976; On this basis we can split the complex into two com- Brand&Blitz1993).Inthepresentdiscussionwehaveadopted plexes: complex 210.6−1.4 (BFS54 and S282) with a distance fortheSunagalactocentricdistanceof8.5kpcandforthesolar of 1.17± 0.29kpcand BFS 53(complex211.14−1.01)placed circularvelocityavalueof220kms−1. at4.01±0.73kpc. For the following kinematic study of the Galaxy, we adopt the analytical expression of the Brand & Blitz (1993) rotation curve. Indeed,refitting the rotation curve (Fig. 3), we still find Thecomplex213.0−1.0: Thiscomplexiscomposedofthefol- aresultsimilartothatofBrand&Blitz (1993).Duetothefact lowing HII regions: S283, S284, S285 and S286. For S286 no thatmostobjectsinthispaperareatgalactocentricdistancesbe- distance is available. Turbide & Moffat (1993) obtained CCD tween 10 and 12 kpc, where there are already lots of objects UBVmagnitudesofstarstowardsS283,S284andS285.Based tracingtherotationcurve,thenewdistancedeterminationswere on isochrones fits (assuming solar abundance) they determine expectedtohavenegligibleeffectonthisrotationcurve. distance of 7.3, 5.6 and 6.9 kpc respectively for S283, S284 To investigate the velocity departuresof star-forming com- andS285. plexesinthePerseusandCygnusarmswefirstidentifythecom- WedetermineforS283adistancea8.06±0.30kpcfromour plexes location respectively to each of these arms. We then fit stars 2 and 5. We determine distance for S284 and S285 from the fourarmmodel(Russeil2003) takingintoaccountthe new thephotometricandspectroscopicresultsofMoffatetal.(1979) stellardistances(Fig.4).Asexpected,thelargescalestructureis andTurbide&Moffat(1993).Adistanceof6.03±1.16kpcis notmodifiedbythefewnewdistances.Plottingthearmsandthe deducedfor S284fromstar 1, 9 and 12 of Moffatet al. (1979) complexesinagalactocentricdistanceversuslongitudediagram andadistanceof7.69±0.68kpcisdeducedforS285fromstar1 (Fig. 5) we determine the complexes association to every arm and6ofMoffatetal.(1979). assuming that a complexbelongsto an arm if its position is in Wewillfavourtheselastdistanceestimatesforhomogeneity. thearmorifitserrorbarreachesthearm.Toquantifytheveloc- Thedistanceforthecomplexisthen7.89±0.27kpc. itydepartureswecalculatethevelocitydifferencededucedfrom themeasuredradialvelocityandthestellardistance(Fig.6),re- spectively. The complex 224.2+1.2: The distance of this complex is the The Perseus arm exhibitsmean Vlsr departuresof −14.9± distance of S294. We find a new distance of 3.24 ± 0.56 kpc. 8.9 kms−1 in the second Galactic quadrant and +5.17 ± Theolddistance(5.4kpc)wasdeterminedfromthesamephoto- 9.14 kms−1 in the third Galactic quadrant. The Cygnus arm metricdata(Moffatetal.1979)butwithaphotometricspectral exhibits mean Vlsr departures +8.06 ± 9.95 kms−1 in the sec- typeB0V. ondGalacticquadrantand−8.34±6.95kms−1 inthethird. 170 D.Russeiletal.:ReviseddistancesofNorthernHIIregions Fig.5.Positionofthecomplexesrespectivelytothefittedarms.Every arm is represented by three curves (central position and and width, Fig.6.VelocitydifferenceversuslongitudeforthePerseusarm(circular ±0.7 kpc, extension of the arm). Up is the cygnus arm, down is the symbol)andtheCygnusarm(squaresymbols). Perseus arm. The triangle symbols are the complexes with kinematic distanceonly. Thesevaluesconfirmourpreviousresults(Russeil2003)and are in agreement with the typical values observed in external galaxies. In addition, these velocity departures imply that the kinematicdistanceofthePerseuscomplexesareover-estimated whilethekinematicdistancetotheCygnuscomplexesareunder- estimated. Inexternalgalaxiessuchmotionsareobservedonlargeparts ofarms(e.g.inNGC300,Marcelinetal.1985;inM31,Ryden & Stark 1986; in M 81, Adler & Westpfahl 1996; in M 83, Tilanus & Allen 1993; in NGC 1530, Zurita et al. 2004) from atomic,molecularandionizedgasvelocitydata.Theamplitudes ofthesemotionsaretypicallybetween10and40kms−1. In addition, we note that the velocity departures we obtain Fig.7. Circular velocity difference versus galactocentric distance (the haveoppositesignforthetwoarms.FromHIdataBurton(1973) symbolsarethesameasinFig.6).Thelinearregressiongivesaslope and Burton & Bania (1974) previouslyfoundnegativevelocity of8.74±1.10andaconstanttermof−111.09±13.34. difference(forthesecondquadrant)atthelocationofthePerseus arm and positive difference at the location of the external arm this way we find the co-rotation radius to be 12.7 kpc (Fig. 7) (see e.g.Fig. 7 of Burton1973). He showedthatalonga given fromthefittedlineexpression. lineofsightthestreamingmotionhasaperiodicvariation.Such This is higher than the usual value which places the co- a behaviourwasmodeledbyFeitzinger&Spicker(1987)from rotation radius close to the Sun’s location at a galactocentric modelsoftheradialvelocityfieldofourGalaxytakingintoac- distance ∼9 kpc. In the classical Lin et al. (1969) theory, the countstreamingmotionsduetospiraldensitywave. co-rotation resonance in our Galaxy is situated at the very end Then, the velocity departures we obtain and their signs of the Galactic disc. However,Marochniket al. (1972) and in- are well explained by the streaming motion along the arms. dependentlyCrézé&Mennessier(1973)cametotheconclusion According to the density-wave theory, the perturbationsof the that the co-rotation is located close to the Solar position. This gravitationalpotentialinarotatinggalaxyandtheresultingspi- resulthasbeensupportedbylaterwork(e.g.Nelson&Matsuda ralshocksgiverisetostreamingmotionofyoungstarsandgas 1977;Amaral& Lépine1997; Mishurovetal. 1997;Mishurov (Lin et al. 1969; Roberts 1969). These streaming motions pro- &Zenina1999;Fernandezetal.2001;Lépineetal.2001;Luna duceradialandazimuthalresidualvelocities.Sitniketal.(2001) etal.2006;Diasetal.2005).Recently,Popova&Loktin(2005) showedthatinside theco-rotationradiustheresidualvelocities founda co-rotationradiusofabout10.5kpcfromkinematicof should be maximumnear the inner edge of the arm, where the openstarclustersandOBstars. shock front occurs. The radial and azimuthal residual veloci- ties are directed toward the Galactic center and oppositeto the Galacticrotationrespectively.Themagnitudeoftheresidualve- 5. Conclusion locity decreases with the distance to the edge of the arm. At Basedonspectro-photometricobservationsweestablishedorre- the outer edge of the arm the radial residual velocity is close finedthestellardistanceofHIIregions,andthenoftheirassoci- tozeroandtheazimuthalresidualvelocityisinthedirectionof atedcomplex,oftheouterGalaxy. the Galactic rotation. Outside the co-rotation radius the radial Wereachthefollowingmainconclusions: component of the streaming motion is directed away from the Galacticcenterandtheazimuthalcomponentisinthedirection – Therotationcurveisunchangedandstillinagreementwith oftheGalacticrotation(Mel’niketal.2001). theBrand&Blitz(1993)rotationcurve. In this frameworkwe can interpretthe opposite sign of the – We confirm the presence of departures from circular rota- velocitydeparturesasindicatingthatthePerseusarmliesinside tion in the Perseus arm and quantifysuch departuresin the the co-rotation radius while the Cygnus arm lies outside it. In Cygnusarm.

Description:
Note: the asterisk following some star's number means they have been observed with the lower Conti, P. S., & Underhill, A. B. 1988, O Stars and Wolf-Rayet Stars, NASA SP- Feitzinger, J. V., & Spicker, J. 1987, A&A, 184, 122.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.