ebook img

Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172 PDF

104 Pages·2016·2.924 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reviews of Physiology, Biochemistry and Pharmacology, Vol. 172

Reviews of Physiology, Biochemistry and Pharmacology 172 Reviews of Physiology, Biochemistry and Pharmacology More information about this series at http://www.springer.com/series/112 (cid:1) (cid:1) Bernd Nilius Pieter de Tombe (cid:1) (cid:1) Thomas Gudermann Reinhard Jahn (cid:1) Roland Lill Ole H. Petersen Editors Reviews of Physiology, Biochemistry and Pharmacology 172 EditorinChief BerndNilius KULeuven Leuven Belgium Editors PieterdeTombe ThomasGudermann CardiovascularResearchCenter Walther-Straub-Institutfu¨r LoyolaUniversityChicago PharmakologieundToxikologie Maywood,Illinois Mu¨nchen,Bayern USA Germany ReinhardJahn RolandLill DepartmentofNeurobiology DepartmentofCytobiology Max-Planck-Institute UniversityofMarburg Go¨ttingen,Niedersachsen Marburg Germany Germany OleH.Petersen CardiffSchoolofBiosciences CardiffUniversity Cardiff UnitedKingdom ISSN0303-4240 ISSN1617-5786 (electronic) Reviews of Physiology,Biochemistry and Pharmacology ISBN978-3-319-49901-7 ISBN978-3-319-49902-4 (eBook) DOI10.1007/978-3-319-49902-4 #SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents HepaticStellateCellsinLiverFibrosisandsiRNA-BasedTherapy ....... 1 RefaatOmar,JiaqiYang,HaoyuanLiu,NealM.Davies,andYuewenGong Exosomes:FromFunctionsinHost-PathogenInteractions andImmunitytoDiagnosticandTherapeuticOpportunities ............. 39 JessicaCarrie`re,NicolasBarnich,andHangThiThuNguyen TheStress-ResponseMAPKinaseSignalinginCardiacArrhythmias ... 77 XunAi,JiajieYan,ElenaCarrillo,andWenmaoDing v RevPhysiolBiochemPharmacol(2016)172:1–38 DOI:10.1007/112_2016_6 ©SpringerInternationalPublishingSwitzerland2016 Publishedonline:8August2016 Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy RefaatOmar,JiaqiYang,HaoyuanLiu,NealM.Davies,andYuewenGong Abstract Hepaticfibrosisisareversiblewound-healingresponsetoeitheracuteor chronicliverinjury caused byhepatitisBorC,alcohol,andtoxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of commonfunctionsoftheliver.Hepaticstellatecells(HSC)playamajorroleinthe developmentofliverfibrosisasHSCarethemainsourceoftheexcessiveproduc- tionofECMinaninjuredliver.RNAinterference(RNAi)isarecentlydiscovered therapeutictoolthatmayprovideasolutiontomanagemultiplediseasesincluding liverfibrosisthroughsilencingofspecificgeneexpressionindiseasedcells.How- ever, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA deliverytothetargetcellsisakeyissueforthedevelopmentofsiRNAtherapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymersandlipid-based nanoparticlesfor targeteddelivery ofsiRNAto theliver. Keywords BMPs(cid:129)Liverfibrosis(cid:129)siRNA(cid:129)Stellatecells(cid:129)Targeteddelivery R.Omar,J.Yang,H.Liu,andY.Gong(*) CollegeofPharmacy,FacultyofHealthSciences,UniversityofManitoba,750McDermot Avenue,Winnipeg,MB,CanadaR3E0T5 e-mail:[email protected] N.M.Davies CollegeofPharmacy,FacultyofHealthSciences,UniversityofManitoba,750McDermot Avenue,Winnipeg,MB,CanadaR3E0T5 FacultyofPharmacy&PharmaceuticalSciences,UniversityofAlberta,8613-114Street, Edmonton,AB,CanadaT6G2H1 2 R.Omaretal. Contents 1 Introduction................................................................................... 2 2 HepaticStellateCells........................................................................ 4 2.1 FunctionsofHSCintheNormalandintheInjuredLiver........................... 4 2.2 HSCandLiverFibrosis................................................................ 6 3 ResolutionofFibrosis........................................................................ 8 3.1 Anti-fibroticTherapeuticApproaches................................................. 8 3.2 GeneTherapy........................................................................... 9 3.3 RNAInterference...................................................................... 11 4 Lipid-BasedsiRNADelivery................................................................ 13 4.1 CationicLiposomes.................................................................... 13 4.2 NeutralLipids.......................................................................... 16 4.3 StableNucleicAcid–LipidParticles(SNALPs)...................................... 17 5 PolymericNanoparticles..................................................................... 18 5.1 Polyethyleneimine...................................................................... 18 5.2 Poly(Lactic-co-GlycolicAcid)(PLGA)............................................... 20 5.3 Chitosan................................................................................ 21 5.4 Cyclodextrin............................................................................ 21 6 SiRNA-NanotherapeuticsandLiverFibrosis............................................... 22 7 Conclusion.................................................................................... 24 References........................................................................................ 25 1 Introduction Fibrosis of the liver is a reversible response following liver injury (Lee and Friedman 2011). Although fibrosis is an attempt to minimize the liver injury, the liver function is significantly impaired. The major causes of liver injury include chronic viral infection by hepatitis B and C; excessive alcohol consumption; nonalcoholic steatohepatitis (NASH); iron overload; autoimmune disorders, such as primary biliary cirrhosis and autoimmune hepatitis; drug-related toxicity; cho- lestasis; and inherited metabolic diseases such as hemochromatosis as well as Wilson’s disease and Alfa 1-antitrypsin deficiency (Li et al. 2008; Adrian etal.2007;LeeandFriedman2011). Hepaticfibrosisischaracterizedbyexcessiveaccumulationandreduceddegra- dation of extracellular matrix (ECM). Accumulation of ECM is due to increased productionanddecreaseddegradationofECM(Arthur2000;BatallerandBrenner 2005). Decreased degradation of ECM is due to imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase (TIMPs) that regulate the ECM degradation processes (Knittel et al. 1999b; Tacke and Weiskirchen 2012). After liver injury, TIMP-1 is overexpressed resultingindecreasedremovalofECM(BatallerandBrenner2005). AccumulationofECMalters thehepaticarchitecture byformingafibrousscar and development of nodules leading to cirrhosis (Friedman 2003). Cirrhosis increases the intrahepatic resistance to blood flow, which results in hepatic insuf- ficiency and portal hypertension (Fig. 1). This effect leads to failure of common functionsoftheliver includingmetabolism ofproteins,carbohydrates,andlipids; protein synthesis; and detoxification of chemicals, drugs, and other xenobiotic HepaticStellateCellsinLiverFibrosisandsiRNA-BasedTherapy 3 hepatocytes space of disse HSC heptatic sinusoid KC EC Fig.1 Schematicrepresentationoftheliver.Kupffercells(KC)arefoundinsinusoids.Hepatic stellate cells (HSC) are located in the space of Disse, between endothelial cells (ECs) and hepatocytes.ECsfeaturethewallsofsinusoidsandpossessfenestrationthatprovideaselective barrierbetweenthebloodstreamandthespaceofDisse compoundsandtheirclearancefromthebody(HuiandFriedman2003).Thereare variouscellsthatareinvolvedinthedevelopmentofliverfibrosissuchashepato- cytes,Kupffercells(KCs),endothelialcells(ECs),andhepaticstellatecells(HSC). However,HSCarestillthemajorplayerinthedevelopmentofliverfibrosisasHSC arethemainsourceoftheexcessiveproductionofECMinaninjuredliver(Maher andMcGuire1990;WuandZern2000). 4 R.Omaretal. 2 Hepatic Stellate Cells Hepatic stellate cells (HSC) are also referred to as vitamin A-storing cells, fat-storing cells, lipocytes, and Ito cells. HSC are non-parenchymal cells of the liverrepresenting1.4%oftotallivervolumeand5–8%ofthetotallivercells.HSC are located in the perisinusoidal space which is known as the space of Disse between hepatocytes and sinusoidal endothelial cells. This anatomical position of HSC provides physical contact to the sinusoidal endothelial cells and to the hepatocytes(HuiandFriedman2003).HSCarepresentintwodifferentphenotypes thatexhibitvariousstructuresandbehaviors:thequiescentphenotypeinthenormal liverandtheactivatedmyofibroblast-likephenotypeintheinjuredliver 2.1 FunctionsofHSCintheNormalandintheInjuredLiver 2.1.1 StorageofVitaminA TheprimaryfunctionofquiescentHSCinthehealthyliveristhestorageofretinoid (vitamin A). The liver stores around 70% of the total retinoid found in the body. HSCstoreabout90–95%ofhepaticretinoidintheirlipiddropletsasretinylesters with the help of retinol-binding protein (RBP). Therefore, HSC constitute the largestreservoirofvitaminAinthebody(Blaneretal.2009). 2.1.2 ExtracellularMatrix(ECM)SynthesisandDegradation HSC are mainly responsible for the production of ECM in the liver and for the synthesisofenzymesthatregulate ECMdegradation(MaherandMcGuire 1990); consequently, HSC are the major players in the development of liver fibrosis. Generally, the quiescent HSC in the normal liver secrete adequate amount of ECMproteinssuchascollagentypeIII,collagentypeIV,andlaminin.Inaddition, HSCsecreteseveraldegradingenzymescalledmatrixmetalloproteinases(MMPs), such as MMP-1, MMP-8, and MMP-13 which promote ECM degradation. HSC also produce inhibitors called tissue inhibitors of matrix metalloproteinase (TIMPs), such as TIMP-1 and TIMP-2. The balance between MMPs and TIMPs regulate the ECM degradation processes (Tacke and Weiskirchen 2012; Knittel etal.1999b). 2.1.3 LiverDevelopmentandRegeneration HSCplayanimportantroleinlivergrowthandregenerationduetotheiranatomical position. HSC surround sinusoids in a cylindrical manner that enables them to

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.