Reviews of Physiology, Biochemistry and Pharmacology 167 Reviews of Physiology, Biochemistry and Pharmacology More information about this series at http://www.springer.com/series/112 (cid:1) (cid:1) (cid:1) Bernd Nilius Thomas Gudermann Reinhard Jahn (cid:1) (cid:1) Roland Lill Stefan Offermanns Ole H. Petersen Editors Reviews of Physiology, Biochemistry and Pharmacology 167 Editors BerndNilius ThomasGudermann KULeuven Ludwig-Maximilians-Universita¨tMu¨nchen Dept.ofCell.andMolecularMedicine MedizinischeFakulta¨t LaboratoryofIonChannelResearch Walther-Straub-Institutfu¨rPharmakologie B-3000Leuven Mu¨nchen Belgium Germany ReinhardJahn RolandLill Max-Planck-InstituteforBiophysical UniversityofMarburg Chemistry Inst.ZytobiologieundZytopathologie Go¨ttingen Marburg Germany Germany StefanOffermanns OleH.Petersen Max-Planck-Institutfu¨rHerzund SchoolofBiosciences Lungen CardiffUniversity AbteilungII MuseumAvenue BadNauheim Cardiff,UK Germany ISSN0303-4240 ISSN1617-5786(electronic) ISBN978-3-319-11920-5 ISBN978-3-319-11921-2(eBook) DOI10.1007/978-3-319-11921-2 SpringerChamHeidelbergNewYorkDordrechtLondon #SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents TheTRPA1ChannelinInflammatoryandNeuropathicPain andMigraine ................................................................... 1 RominaNassini,SerenaMaterazzi,SilviaBenemei,andPierangeloGeppetti GlialCalciumSignallinginAlzheimer’sDisease ........................... 45 DmitryLim,VirginiaRonco,AmbraA.Grolla,AlexeiVerkhratsky, andArmandoA.Genazzani The“Sweet”SideofIonChannels ........................................... 67 JoannaLazniewskaandNorbertWeiss CardiacFunctionsofVoltage-GatedCa2+Channels:Roleofthe PharmacoresistantType(E-/R-Type)inCardiacModulation andPutativeImplicationinSuddenUnexpectedDeath inEpilepsy(SUDEP) ......................................................... 115 EtienneE.Tevoufouet,ErastusN.Nembo,MaxineDibue´-Adjei, Ju¨rgenHescheler,FilomainNguemo,andToniSchneider v RevPhysiolBiochemPharmacol(2014)167:1–44 DOI:10.1007/112_2014_18 ©Springer-VerlagBerlinHeidelberg2014 Publishedonline:26March2014 The TRPA1 Channel in Inflammatory and Neuropathic Pain and Migraine RominaNassini,SerenaMaterazzi,SilviaBenemei, andPierangeloGeppetti Abstract The transient receptor potential ankyrin 1 (TRPA1), a member of the TRPsuperfamilyofchannels,isprimarilylocalizedtoasubpopulationofprimary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptorsproducesandreleasestheneuropeptidessubstanceP(SP)andcalcito- nin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including moleculesofbotanicalorigin,environmentalirritants,andmedicines.However,the mostprominentfeatureofTRPA1residesinitsuniquesensitivityforlargeseriesof reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in modelsofdifferenttypesofpain,includinginflammatoryandneuropathicpainand migraine,issummarized.SpecificattentionispaidtoTRPA1asthemaincontrib- utingmechanismtothetransitionofmechanicalandcoldhypersensitivityfroman acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. AseriesofmigrainetriggersormedicineshavebeenreportedtomodulateTRPA1 activityandtheensuingCGRPrelease.Thus,TRPA1antagonistsmaybebeneficial inthetreatmentofinflammatoryandneuropathicpainandmigraine. Keywords Migraine(cid:1)Nociceptors(cid:1)Pain(cid:1)TRPA1 Contents 1 TRPChannelsandSensoryNeurons.......................................................... 2 1.1 TRPChannels:StructureandMechanismofActivation............................... 2 1.2 TRPChannelsandNociceptors......................................................... 3 R.Nassini,S.Materazzi,S.Benemei,andP.Geppetti(*) PharmacologyandOncologyUnit,DepartmentofHealthSciences,UniversityofFlorence, VialePieraccini,6,50139Florence,Italy e-mail:geppetti@unifi.it 2 R.Nassinietal. 2 TRPA1Channel.............................................................................. 4 2.1 StructureandFunctions................................................................ 5 2.2 NeuronalandExtra-NeuronalLocalization........................................... 6 2.3 TRPA1Agonists........................................................................ 7 2.4 ExogenousAgonists.................................................................... 8 2.5 EndogenousAgonists.................................................................. 10 2.6 ThermalandMechanicalActivation................................................... 12 2.7 TRPA1Antagonists.................................................................... 13 3 TRPA1andInflammatoryPain.............................................................. 15 3.1 ModelsofInflammatoryPain.......................................................... 16 4 TRPA1andNeuropathicPain................................................................ 19 4.1 NerveInjuryandDiabetesPainfulNeuropathy....................................... 20 4.2 Chemotherapeutic-InducedNeuropathy............................................... 21 5 TRPA1andMigraineHeadache............................................................. 23 5.1 TRPA1isActivatedbyMigraine-ProducingAgents................................. 24 5.2 AnalgesicandAntimigraineDrugsActbyTRPA1Targeting....................... 26 6 AdditionalPathophysiologicalRolesofTRPA1RelatedtoPrimarySensoryNeurons... 27 6.1 TheAirways............................................................................ 27 6.2 TheGastrointestinalTract.............................................................. 28 6.3 TheUrinaryTract...................................................................... 29 6.4 ItchandSkinInflammation............................................................ 29 7 Conclusions................................................................................... 30 References........................................................................................ 30 1 TRP Channels and Sensory Neurons The original discovery that vision in Drosophila is produced by an initial activation of a transient inward current associated with receptor stimulation (MontellandRubin1989)hasled,withanunprecedentedpace,totheidentifica- tion of the transient receptor potential (TRP) channels. TRPs represent one of the largest families of ion channels with more than 56 subtypes, which are widely distributed within the phylogeny where they contribute to an array of different physiological functions and are implicated in a series of pathological conditions.Inmammals,TRPscomprise28membraneproteinsmainlybehaving as non-selective cation permeable channels. TRPs are classified into seven subfamilies: TRPC (‘Canonical’), TRPV (‘Vanilloid’), TRPM (‘Melastatin’), TRPP (‘Polycystin’), TRPML (‘Mucolipin’), TRPA (‘Ankyrin’), and TRPN (‘NOMP-C’)(seealso(Nilius2007)). 1.1 TRP Channels: Structure and Mechanism of Activation TRP’s general structure recapitulates that of voltage-gated channels with six transmembrane domains (S1-6) and the intracellular N- and C-terminal regions of variable length with a pore loop between S5 and S6 (Owsianik et al. 2006; Nilius 2007). It has been reported that four subunits, each composed of six TheTRPA1ChannelinInflammatoryandNeuropathicPainandMigraine 3 transmembranedomains,mayassembleinhomo-and/orhetero-tetramerstoform thefunctionalchannel,whereeachsubunitcontributestoasharedselectivityfilter andion-conductingpore(Schaefer2005).Beyondtheirgeneralmembranetopol- ogyandpermeabilitytocations,TRPchannelsarestrikinglydiverseandexhibita widevarietyofmodesofactivationbychemicalandphysicalstimuli(exogenous chemical compounds, lipids, oxidative stress, acids, pheromones, osmolarity, mechanical stimulation, light, temperature, and others), regulatory mechanisms (transcription, alternative splicing, glycosylation, phosphorylation), and tissue distribution (virtually all cells tested express at least one member of the super- family). These features underline the unprecedented diversity of physiological and pathophysiological functions mediated by TRPs and their definition as polymodalsensors. 1.2 TRP Channels and Nociceptors TRP channels are expressed in cellular membranes, with the exception of the nuclear envelope and mitochondria, of almost every excitable and non-excitable celltype.Theobjectofthepresentreviewisfinalizedtodescribephysiologicaland pathophysiologicalfunctionsoftheTRPchannelslocalizedtoasubsetofprimary sensoryneurons(Szallasietal.2007),wheretheyresulthighlyinvolvedinsensing physiological and noxious agents and, more generally, in pain perception. Just aboutacenturyago,Sherringtonproposedtheexistenceofnociceptors,asubgroup ofprimarysensoryneuronswhichareactivatedbytissuedamagingstimuli,suchas heat, intense pressure, or irritant chemicals, but not by innocuous stimuli such as warmingorlighttouch(Sherrington1906;JuliusandBasbaum2001).Thehetero- geneous population of primary sensory neurons and the fibres that they originate canbedifferentiatedaccordingtomorphological,electrophysiological,neurochem- ical, functional, andothercriteria.Inparticular,neuronswith thelargestdiameter cell body give rise to myelinated, rapidly conducting Aβ fibres, which detect innocuousstimuliandnormallydonotcontributetonociceptivestimulustransduc- tion.Incontrast,neuronswithsmall-andmedium-diametercellbodiesgiveriseto un-myelinated, slowly conducting C-fibres and thinly myelinated, more rapidly conducting Aδ-fibres. Both are highly involved in nociception. Aδ- and C-nociceptive fibres either respond to a single type of physical stimuli, or more commonly integrate and generate responses to potentially damaging thermal, mechanical, and/or chemical stimuli, and for this reason are also defined as polymodalnociceptors(JuliusandBasbaum2001). Aspecific subsetofC-fibre andAδ-fibrenociceptors isexquisitelysensitiveto capsaicin,thepungentingredientinhotpeppers,andforthisreasontheyhavebeen labelled as ‘capsaicin-sensitive’ sensory neurons. The selective excitatory role of capsaicin is associated in a time- and concentration/dose-dependent manner with the ability of the compound to desensitize the channel and to defunctionalize TRPV1-positive nociceptors to capsaicin itself and to any other stimulus. This 4 R.Nassinietal. uniquepropertyofcapsaicinmostlikelyderivesfromexcessiveCa2+influxthrough thechannel,which,inadultratstransientlyandinnewbornratspermanently,alters nociceptormorphologyandfunctioning(BevanandSzolcsanyi1990;Szallasiand Blumberg 1999; Szallasi et al. 2007; O’Neill et al. 2012). This pharmacological property of capsaicin to produce non-specific nociceptor defunctionalization has been exploited therapeutically for topical treatment of patients affected by neuro- pathicpainofviralorigin(Backonjaetal.2008). TRPV1-expressing neurons comprise a subcategory defined as peptidergic because they produce the neuropeptides calcitonin gene-related peptide (CGRP) andthetachykinins,substanceP(SP)andneurokininA(NKA),whichinresponse to depolarization, capsaicin or other excitatory stimuli, are released from central andperipheralneuronalterminals.Uponperipheralneuropeptiderelease,activation of CGRP and tachykinin (NK , NK and NK ) receptors on effector cells, partic- 1 2 3 ularlyatthevascularlevel,causesaseriesofinflammatoryresponses,collectively referredtoas“neurogenicinflammation”(GeppettiandHolzer1996).Giventheir relevanceinmigraine andotherdiseases,neurogenicinflammatoryresponses will be further discussed in Sects. 5 and 6. The peculiar property of capsaicin, first to excite and thereafter to desensitize both afferent (nociception) and efferent (neu- rogenic inflammation) responses, has given an unprecedented contribution to our currentunderstandingoftheroleoftheseneuronsinhealthanddisease.Inaddition toTRPV1,peptidergicnociceptorsalsoexpressotherTRPs,includingtheTRPV2, TRPV3, and TRPV4 channels and TRPA1 (Story et al. 2003), whereas TRPM8 seemstobeconfinedtonon-peptidergicsensoryneurons(Bhattacharyaetal.2008). Because of the property to sense temperatures from cold (A1 and M8) to warm (V3andV4)andhot(V1andV2),thesechannelshavebeencollectivelylabelledas thermoTRPs(Guleretal.2002;Watanabeetal.2002;Storyetal.2003).Exogenous agents,recognizedearlyonasthermoTRPstimulants,includecamphorforTRPV3 andTRPV4(Moqrichetal.2005),mentholforTRPM8(McKemyetal.2002;Peier etal.2002),andmustardandcinnamonoilforTRPA1 (Bandelletal.2004;Jordt etal.2004).Theabilitytosense,inadditiontovariationsintemperature,physical and chemical changes within nerve terminal milieu indicates thermoTRPs as molecular integrators of multiple sensory modalities. Finally, coexistence of neu- ropeptides and TRPs in the same sensory nerve terminals implies that different channel(TRPV1,TRPV4,orTRPA1)activationmaydrivethereleasemechanism that eventually results in the protective and/or detrimental process promoted by neurogenicinflammation(GeppettiandHolzer1996). 2 TRPA1 Channel From its first cloning (Jaquemar et al. 1999), the ankyrin-1 subtype of the TRP superfamilyhasgainedincreasingscientificinterestbecauseofitsroleasasensor ofirritatingandcell-damagingagents.Inparticular,theidentificationofTRPA1as the target of an unprecedented series of chemically diverse molecules, many of