ReviewsofPhysiology,BiochemistryandPharmacology156 Reviewsof 156 Physiology Biochemistry and Pharmacology Editors S.G.Amara,Pittsburgh•E.Bamberg,Frankfurt S.Grinstein,Toronto(cid:127)S.C.Hebert,NewHaven R.Jahn,Göttingen(cid:127)W.J.Lederer,Baltimore R.Lill,Marburg(cid:127)A.Miyajima,Tokyo H.Murer,Zürich(cid:127)S.Offermanns,Heidelberg G.Schultz,Berlin(cid:127)M.Schweiger,Berlin With15Figuresand3Tables 123 LibraryofCongress-Catalog-CardNumber74-3674 ISSN030-4240 ISBN-103-540-31123-8SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-31123-2SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindata banks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermission forusemustalwaysbeobtainedfromSpringer.Violationsareliableforprosecutionunder theGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c SpringerBerlinHeidelberg2006 PrintedintheNetherlands Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,eveninthe absenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Productliability:Thepublishercannotguaranteetheaccuracyofanyinformationabout dosageandapplicationcontainedinthisbook.Ineveryindividualcasetheusermustcheck suchinformationbyconsultingtherelevantliterature. Editor:SimonRallison,London DeskEditor:AnneClauss,Heidelberg ProductionEditor:PatrickWaltemate,Leipzig TypesettingandProduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Cover:design&production,Heidelberg Printedonacid-freepaper 14/3150YL–543210 RevPhysiolBiochemPharmacol(2006) DOI10.1007/s10254-005-0001-0 E.A.Craig·P.Huang·R.Aron·A.Andrew The diverse roles of J-proteins, the obligate Hsp70 co-chaperone Publishedonline:20January2006 ©Springer-Verlag2006 Abstract Hsp70s and J-proteins, which constitute one of the most ubiquitous types of molecularchaperonemachineries,functioninawidevarietyofcellularprocesses.J-proteins playacentralrolebystimulatinganHsp70’sATPaseactivity,therebystabilizingitsinter- actionwithclientproteins.However,whileallJ-proteinsservethiscorepurpose,individual proteinsarebothstructurallyandfunctionallydiverse.Some,butnotall,J-proteinsinteract withclientpolypeptidesthemselves,facilitatingtheirbindingtoanHsp70.SomeJ-proteins havemanyclientproteins,othersonlyone.CertainJ-proteins,whilenotothers,aretethered toparticularlocationswithinacellularcompartment,thus“recruiting”Hsp70stothevicin- ityoftheirclients.HerewereviewrecentworkonthediversefamilyofJ-proteins,outlining emergingthemesconcerningtheirfunction. Introductoryremarks Molecular chaperones are a ubiquitous class of proteins that interact with short stretches ofhydrophobicaminoacidstypicallyexposedinpartiallyunfoldedproteins.Throughsuch interactions, chaperones function in a broad range of physiological processes, facilitating proteinfolding,proteintranslocationacrossmembranes,andremodelingofmultimericpro- teincomplexes.Hsp70sandJ-proteins(oftenalsoreferredtocollectivelyasDnaJ-likepro- teins or Hsp40s), which form obligate partnerships, areamong themost ubiquitous of the chaperones.Infact,mosteukaryoticandprokaryoticgenomesencodebothmultipleHsp70s andmultipleJ-proteins,reflectingthefactthattheyhaveevolvedtofunctioninsuchawide variety of processes. The number of J-proteins, particularly, has expanded with the com- E.A.Craig((cid:1))·P.Huang·R.Aron·A.Andrew UniversityofWisconsin-Madison,441EBiochemistryAddition,DepartmentofBiochemistry, 433BabcockDrive,Madison,53706WI,USA e-mail:[email protected]·Tel.:+1-608-263-7105·Fax:+1-608-262-3453 R.Aron·A.Andrew UniversityofWisconsin-Madison,GraduatePrograminBiomolecularChemistry, Madison,53706WI,USA 2 RevPhysiolBiochemPharmacol(2006) plexityoftheorganisminwhichtheyarefound.Forexample,theEscherichiacoligenome has6J-proteins, theyeastSaccharomyces cerevisiaegenome, 22,andthehuman genome, approximately32. Over the years most research has focused on the Hsp70 component of this chaperone machinery (Bukau and Horwich 1998; Erbse et al. 2004; Slepenkov and Witt 2002). The structure and amino acid sequence of Hsp70s from different organisms and different or- ganellesareremarkablysimilar.AllarecomposedofahighlyconservedN-terminalATPase domain, followedbyaless-conservedpeptide-binding domain having acleft inwhichhy- drophobic stretchesofapproximately fiveamino acids interact. Bindingand hydrolysis of ATPintheN-terminusregulatestheinteractionoftheC-terminuswithunfoldedorpartially unfoldedclientpolypeptides.ATPhydrolysisstabilizestheinteractionwiththesepolypep- tidesubstrates. Theessenceof allJ-protein function is theabilitytostimulatetheATPase activity of Hsp70 upon the transient interaction of their highly conserved J-domains with Hsp70’sATPasedomain. Inthisreview,meanttocomplementearlierreviewsthatalsofocusedonJ-proteinfunc- tion (Cheethamand Caplan1998; Fanet al.2003; Walshet al.2004), wefirstdiscuss the J-domain that is obligatory for the in vivo function of all J-proteins. However, since all J-proteinshavedomainsinadditiontotheirJ-domain,theremainderofthereviewconcen- trates on recent work aimed at understanding the diverse roles played by these different regions. Some,but notall,ofthesedomains bindclientproteins whosetransfertoHsp70s is facilitated by the J-domain. Other domains of J-proteins serve to target the J-protein to aparticularlocationwithinthecellularcompartmentinwhichtheyfunction.Belowweout- line what is known about theseadditional domains, focusing on theyeast S. cerevisiae as amodelbecauseoftheavailabilityofextensivegenomicandgeneticanalyses. TheJ-domain:thecommondenominator J-proteins,bydefinition,containaconserved, roughly 70-amino-acid signatureregion, the J-domain, namedafterthewell-studiedE.coliprotein, DnaJ.TheDnaJJ-domaincontains four α helices, with helices II and III forming a coiled-coil motif around a hydrophobic core(Pellecchiaetal.1996;Fig.1a).TheJ-domainsoftwomammalianJ-proteins,human Hdj1(Qianetal.1996)andmurinepolyomavirustumorantigen(Berjanskiietal.2000),are remarkably similar. Even the more divergent auxilin J-domain possesses these conserved J-domainfeatures,whilealsohavinganN-terminalhelixandalongloopinsertedbetween helicesIandII(Jiangetal.2003). The most highly conserved amino acids of J-domains, the histidine-proline-aspartate (HPD)tripeptidelocatedintheloopbetweenhelixIIandIII,hasbeenshowntobecritical for ATPasestimulationinmany systems,and thus invivo function (Feldheim et al. 1992; TsaiandDouglas1996;Voisineetal.2001;Walletal.1994;Yanetal.1998).However,ad- ditionalresidues,bothwithinhelicesIIandIIIandwithintheinterveningloop,arerequired fortheinvivofunctionofDnaJ(Genevauxetal.2002).Thesidechainsoftheseresiduesand thoseoftheHPDtripeptidearesolvent-exposedandorientedinthesamedirection,andthus possibly form an Hsp70 interaction surface. Indeed, nuclear magnetic resonance (NMR) perturbation mapping of the J-domain of DnaJ in the presence of DnaK indicated a simi- lar negatively charged surface around helix II as the region involved in DnaK interaction (Greeneetal.1998;Fig.1b). RevPhysiolBiochemPharmacol(2006) 3 Fig.1a,b Theinteraction betweentheJ-domainandtheHsp70ATPasedomain.Ribbondiagram(a)and surface map(b)ofthe J-domain ofDnaJ (PDBfile: 1XBL)(Pellecchia et al. 1996), onthe left, and the ATPasedomainofDnaK (PDBfile:1DKG)(Harrison etal.1997), ontheright. Basedonthestudies of DnaK–DnaJ(Genevauxetal.2002;Greeneetal.1998;Gässleretal.1998;Suhetal.1998)andSsb-Zuo1 systems(Huangetal.2005),theresidues(oranalogousresiduesinthecaseoftheSsb-Zuo1system)found tobeimportant fortheinteraction between aJ-domainandanATPasedomain arehighlighted inorange withthemostcriticalHPDtripeptidehighlightedinred.ThestructuresarepreparedusingPyMOLsoftware (http://pymol.sourceforge.net/). HighlightedresiduesinDnaKincludeR167,I169,N170,andT215(Suhet al.1998);Y145,N147,D148,E217,andV218(Gässleretal.1998),andanalogousresiduesR76,P113,I168, N170,V192,andF200(Huangetal.2005),allofwhichwereisolatedfromgeneticmutagenesisstudies.The residueshighlightedinDnaJincludeY25,R26,H33,P34,D35,R36,N37,F47(underlinedistheHPDmo- tif),fromthemutagenesisstudy(Genevauxetal.2002);andV12,S13,R19,E20,R22,A24,Y25,K26,R27, L28,M30,Y32,H33,D35,Y54,andT58thatshowedashiftgreater than10HzinNMRanalysis when DnaKwaspresent(Greeneetal.1998) ConsistentwithitsabilitytostimulateHsp70’s ATPaseactivity,theJ-domain ofDnaJ interacts with the ATPasedomain of DnaK in the presence of ATP (Wittung-Stafshede et al.2003). However,asisthecasewithmostJ-domain:Hsp70 interactions,thisassociation isquitetransient(Misselwitzetal.1999;Suhetal.1999).Althoughtheexactcontactsites between any J-protein and Hsp70 are not known, a region of Hsp70 has been implicated in J-domain interaction in studies of E. coli and S. cerevisiae. Allele-specific suppressors of the phenotype of dnaJ-D35N, which encodes an alteration of the HPD signature motif initsJ-domain,wereidentifiedindnaK.Threesuppressorsencoding alterationsinsubdo- mainIAofDnaK’sATPasedomainwereisolated(Suhetal.1998). Inasimilarapproach, suppressors ofamutationinZUO1(zuo1-H128Q), whichencodes theJ-proteinpartnerof Ssb,theyeastribosomeassociatedHsp70,wereisolated.Again,alterationswereclustered in the AI subdomain (Huang et al. 2005). In addition, site-directed dnaK mutant proteins havingaminoacidalterationsinthisregionwerefoundtohavedefectsinDnaJinteraction (Gässleretal.1998). Collectively,theseresiduesformasurfaceontheATPasedomainof Hsp70(Fig.1b)withagroovenearthenucleotidebindingcleft,makingiteasytoenvision bindingofaJ-domaincausingstimulationofATPhydrolysisbyHsp70. 4 RevPhysiolBiochemPharmacol(2006) J-proteinsingeneralproteinfolding:classIandII DnaJwasthefirstJ-proteinidentifiedandanalyzedandstillservesasastandardtowhich other J-proteins are compared. Analysis of its sequence led to the grouping of other J- proteins that containedaglycine-rich andcysteine-richregionadjacent totheJ-domain as classIJ-proteins,andthosethathadaglycine-richregion,butlackedthecysteine-richregion asclassII(CheethamandCaplan1998).Thisdefinitionwasbasedonobvioussequencesim- ilarities,withlittleunderstanding ofthefunctionoftheglycine-andcysteine-richregions. BelowwediscussthecurrentstateofunderstandingoftheroleofthesedomainsinJ-protein function.RecentdataalsosuggestthatatleastsomeJ-proteinsgroupedasclassIandIIhave averysimilarclientprotein-binding domain,aseventhoughverylowinsequenceconser- vation, they possess a very similar fold. This fold may be common to J-proteins that are involvedingeneralproteinfoldingwithinthecell,andthusinteractwithawidevarietyof clientpolypeptides. Substratebinding:acommonfoldforgeneralproteinfolding? J-proteins,withtheirHsp70partners,areinvolvedingeneralfoldingofbothnewlysynthe- sizedandpartiallyunfolded proteins.Evidence existsforsuchageneral functionnot only forDnaJworking withDnaKintheE.colicytosol,but alsoforJ-proteins inseveralcom- partments of eukaryotic cells.For example, Ydj1 and Sis1of the yeast cytosol work with theSsaHsp70s(Aronetal.2005; Kimetal.1998; LuandCyr1998a); Mdj1ofthemito- chondrialmatrixworkswiththemajorHsp70,Ssc1(Hermannetal.1994;Krzewskaetal. 2001;Rowleyetal.1994);Scj1ofthelumenoftheendoplasmicreticulumworkswithKar2 (Schlenstedt etal.1995; Silbersteinetal.1998). Consistentwithageneral protein-folding role,Ydj1,Sis1,andMdj1,incooperationwiththeirHsp70partner,arecompetenttofacil- itaterefoldingofdenaturedsubstratessuchasluciferaseinvitro.Orthologsofeachofthese yeastproteinsexistinhighereukaryotes,suggestingthatrolesinproteinfoldinghavebeen conserved, although as discussedthroughout this article, significant functional differences existamongdifferentJ-proteins. Recently the structure of the 25-kDa and 19-kDa C-terminal regions of the class I Ydj1 and class II Sis1 J-proteins, respectively, have been determined (Li et al. 2003; Sha et al. 2000). Although having very limited sequence similarity, the two fragments are remarkably alike in structure. Each contains two domains formed by a sandwich of two β-sheets and a short α-helix, the second of which is followed by sequences important for dimerization (Fig. 2a). Ydj1 was co-crystallized with the peptide GWLYEIS bound in ashallowhydrophobic groove intheN-terminal β-sheet domain(domain I).Sis1contains a hydrophobic groove at the analogous position in the structure that had been predicted to be the substrate-binding site prior to the determination of the Ydj1 structure (Sha et al. 2000). Despite the similarities between the adjacent β-sheet domains, it is argued that the more C-terminal one is not involved in interaction with client proteins, in part because in the crystal structure the hydrophobic groove of this domain is occupied by a residue from an adjacent β-strand, and thus not available for interactions with client proteins. RevPhysiolBiochemPharmacol(2006) 5 Fig.2a–cStructuralcomparisonofthesubstratebindingdomainsofdifferentJ-proteins.aRibbondiagrams oftheC-terminalregionsofyeastYdj1(PDBfile:1NLT)(Lietal.2003),Sis1(PDBfile:1C3G)(Shaetal. 2000),andfull-lengthE.coliHscB(PDBfile:1FPO)(Cupp-VickeryandVickery2000)preparedinPyMOL (http://pymol.sourceforge.net/).ThecrystalstructureofYdj1containstheboundsubstratepeptidehighlighted inred.Theproposedsubstratebindingdomainsofalltheproteinsareindicatedwiththeyellowbrackets.The dashedbluebracketindicatesYdj1’scysteine-richregion;thedashedorangebracketindicatestheJ-domain ofHscB.TheC-terminalend(C)oftheshownstructuresofYdj1andSis1areimmediatelyadjacenttotheir dimerizationdomainsthatarenotshown.bThelow-resolutionsmall-angleX-rayscattering(SAXS)mod- elsofmonomeric(left)anddimeric(right)humanDjA1,theclassIJ-proteinorthologofyeastYdj1.The cysteine-richdomainindicatedbythearrowcanhavedifferentanglestowardstheotherdomainsasshownby theasymmetricpackinginthedimer.cThelow-resolutionSAXSmodelofdimerichumanDjB4,theclassII J-proteinorthologofyeastSis1(bandcarereprintedfromBorgesetal.2005).J-domainshighlightedinred, theanalogoussubstratebindingdomainindicatedwithbracketsandglycine-richregionsindicatedbydashed lines.(RepublishedwithpermissionofTheJournalofBiologicalChemistry) 6 RevPhysiolBiochemPharmacol(2006) Fig.3RibbondiagramoftheCys-richdomainsofDnaJ(PDBfile:1EXK)(Martinez-Yamout etal.2000) andYdj1(PDBfile:1NLT)(Lietal.2003).Thecysteine-richdomainsofDnaJandYdj1containtwozinc centers.Coordinatedzincatomsarehighlighted inred.Thecysteineresiduesinvolvedinthecoordination withthezincatomsarehighlightedingreen Thecysteine-richzinccenter,glycine-rich,anddimerizationdomains While Sis1and Ydj1 show structural similarity, they alsodiffer significantly. Ydj1 has an additional subdomain containing two zinc centers that protrudes from domain I of the C- terminus (Lietal.2003), suchthatitispredictedtoproject intothecleftbetweenthetwo subunits(Wuetal.2005)(Figs.2and3).Thiscysteine-richdomain,whichisalsopresentin Scj1andMdj1,aswellasDnaJ,isthedefiningfeature,alongwithaglycine-richregionde- scribedbelow,ofJ-proteinsclassifiedastypeI(CheethamandCaplan1998).Inallofthese proteins, this region includes four repeats of CXXCXGXG,suggesting a similar fold. In- deed,thestructureoftheDnaJsubdomainisverysimilartothatofYdj1(Martinez-Yamout etal.2000).Inbothcases,twocentersareformed,withrepeats1and4,andrepeats2and 3,eachcoordinatingazincion,formingcenterIandcenterII,respectively(Fig.3). Themostquantitativeandthoroughanalysisoftheimportanceofthecysteine-richzinc binding domains has been carried out with DnaJ (Linke et al. 2003), leading to the view thatthesezinccentersplaydifferent roles:centerIinbindingtoclientproteinsandcenter IIinfacilitatingtheassociationofclientproteinswithDnaK.DisruptionofcenterIbysub- stitutionofcysteinesbyserinesdramaticallyaffectedbindingtoaclientprotein,denatured luciferase,buthadlittleeffectoninvivofunction. DisruptionofcenterIIdidnotsubstan- tiallyaffectluciferasebinding orstimulationofDnaK’sATPaseactivity,but haddramatic effectsontheabilityofDnaKtobindluciferaseandwascriticalforinvivofunction.Sim- ilarly, inYdj1,centerIIwas moreimportant invivo thancenterI, especiallyfor substrate transfertoHsp70(Fanetal.2005). Whilethefunction(s)ofthecysteine-richregionisbecomingclearer,thatoftheglycine- richregion isstillenigmatic, eventhough itspresenceisrequired for classificationofaJ- proteinasamemberofclassIorII.Typicallytheglycine-richregionalsohasapreponder- anceofphenylalanineresiduesandthusoftenreferredtoastheG/Fregion.AlltheJ-proteins discussedabovecontainG/Fregions.NMRstudiesdemonstratethattheG/FregionofDnaJ (Huang et al. 1999) is very flexible, capable of occupying many different conformational states.However,itdoesnotsimplyserveasaflexiblelinkerbecause,asdescribedbelow,it canincludeimportantdeterminantsinthespecificityoffunctionofcertainJ-proteins. Both Ydj1 and Sis1 are dimers, and in both cases the extreme C-termini are critical for interaction. In thecaseof Sis1, dimerization occurs via hydrophobic interactions (Sha