ebook img

Reviews of Physiology, Biochemistry and Pharmacology PDF

92 Pages·2006·4.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reviews of Physiology, Biochemistry and Pharmacology

ReviewsofPhysiology,BiochemistryandPharmacology156 Reviewsof 156 Physiology Biochemistry and Pharmacology Editors S.G.Amara,Pittsburgh•E.Bamberg,Frankfurt S.Grinstein,Toronto(cid:127)S.C.Hebert,NewHaven R.Jahn,Göttingen(cid:127)W.J.Lederer,Baltimore R.Lill,Marburg(cid:127)A.Miyajima,Tokyo H.Murer,Zürich(cid:127)S.Offermanns,Heidelberg G.Schultz,Berlin(cid:127)M.Schweiger,Berlin With15Figuresand3Tables 123 LibraryofCongress-Catalog-CardNumber74-3674 ISSN030-4240 ISBN-103-540-31123-8SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-31123-2SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindata banks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermission forusemustalwaysbeobtainedfromSpringer.Violationsareliableforprosecutionunder theGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c SpringerBerlinHeidelberg2006 PrintedintheNetherlands Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply,eveninthe absenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Productliability:Thepublishercannotguaranteetheaccuracyofanyinformationabout dosageandapplicationcontainedinthisbook.Ineveryindividualcasetheusermustcheck suchinformationbyconsultingtherelevantliterature. Editor:SimonRallison,London DeskEditor:AnneClauss,Heidelberg ProductionEditor:PatrickWaltemate,Leipzig TypesettingandProduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Cover:design&production,Heidelberg Printedonacid-freepaper 14/3150YL–543210 RevPhysiolBiochemPharmacol(2006) DOI10.1007/s10254-005-0001-0 E.A.Craig·P.Huang·R.Aron·A.Andrew The diverse roles of J-proteins, the obligate Hsp70 co-chaperone Publishedonline:20January2006 ©Springer-Verlag2006 Abstract Hsp70s and J-proteins, which constitute one of the most ubiquitous types of molecularchaperonemachineries,functioninawidevarietyofcellularprocesses.J-proteins playacentralrolebystimulatinganHsp70’sATPaseactivity,therebystabilizingitsinter- actionwithclientproteins.However,whileallJ-proteinsservethiscorepurpose,individual proteinsarebothstructurallyandfunctionallydiverse.Some,butnotall,J-proteinsinteract withclientpolypeptidesthemselves,facilitatingtheirbindingtoanHsp70.SomeJ-proteins havemanyclientproteins,othersonlyone.CertainJ-proteins,whilenotothers,aretethered toparticularlocationswithinacellularcompartment,thus“recruiting”Hsp70stothevicin- ityoftheirclients.HerewereviewrecentworkonthediversefamilyofJ-proteins,outlining emergingthemesconcerningtheirfunction. Introductoryremarks Molecular chaperones are a ubiquitous class of proteins that interact with short stretches ofhydrophobicaminoacidstypicallyexposedinpartiallyunfoldedproteins.Throughsuch interactions, chaperones function in a broad range of physiological processes, facilitating proteinfolding,proteintranslocationacrossmembranes,andremodelingofmultimericpro- teincomplexes.Hsp70sandJ-proteins(oftenalsoreferredtocollectivelyasDnaJ-likepro- teins or Hsp40s), which form obligate partnerships, areamong themost ubiquitous of the chaperones.Infact,mosteukaryoticandprokaryoticgenomesencodebothmultipleHsp70s andmultipleJ-proteins,reflectingthefactthattheyhaveevolvedtofunctioninsuchawide variety of processes. The number of J-proteins, particularly, has expanded with the com- E.A.Craig((cid:1))·P.Huang·R.Aron·A.Andrew UniversityofWisconsin-Madison,441EBiochemistryAddition,DepartmentofBiochemistry, 433BabcockDrive,Madison,53706WI,USA e-mail:[email protected]·Tel.:+1-608-263-7105·Fax:+1-608-262-3453 R.Aron·A.Andrew UniversityofWisconsin-Madison,GraduatePrograminBiomolecularChemistry, Madison,53706WI,USA 2 RevPhysiolBiochemPharmacol(2006) plexityoftheorganisminwhichtheyarefound.Forexample,theEscherichiacoligenome has6J-proteins, theyeastSaccharomyces cerevisiaegenome, 22,andthehuman genome, approximately32. Over the years most research has focused on the Hsp70 component of this chaperone machinery (Bukau and Horwich 1998; Erbse et al. 2004; Slepenkov and Witt 2002). The structure and amino acid sequence of Hsp70s from different organisms and different or- ganellesareremarkablysimilar.AllarecomposedofahighlyconservedN-terminalATPase domain, followedbyaless-conservedpeptide-binding domain having acleft inwhichhy- drophobic stretchesofapproximately fiveamino acids interact. Bindingand hydrolysis of ATPintheN-terminusregulatestheinteractionoftheC-terminuswithunfoldedorpartially unfoldedclientpolypeptides.ATPhydrolysisstabilizestheinteractionwiththesepolypep- tidesubstrates. Theessenceof allJ-protein function is theabilitytostimulatetheATPase activity of Hsp70 upon the transient interaction of their highly conserved J-domains with Hsp70’sATPasedomain. Inthisreview,meanttocomplementearlierreviewsthatalsofocusedonJ-proteinfunc- tion (Cheethamand Caplan1998; Fanet al.2003; Walshet al.2004), wefirstdiscuss the J-domain that is obligatory for the in vivo function of all J-proteins. However, since all J-proteinshavedomainsinadditiontotheirJ-domain,theremainderofthereviewconcen- trates on recent work aimed at understanding the diverse roles played by these different regions. Some,but notall,ofthesedomains bindclientproteins whosetransfertoHsp70s is facilitated by the J-domain. Other domains of J-proteins serve to target the J-protein to aparticularlocationwithinthecellularcompartmentinwhichtheyfunction.Belowweout- line what is known about theseadditional domains, focusing on theyeast S. cerevisiae as amodelbecauseoftheavailabilityofextensivegenomicandgeneticanalyses. TheJ-domain:thecommondenominator J-proteins,bydefinition,containaconserved, roughly 70-amino-acid signatureregion, the J-domain, namedafterthewell-studiedE.coliprotein, DnaJ.TheDnaJJ-domaincontains four α helices, with helices II and III forming a coiled-coil motif around a hydrophobic core(Pellecchiaetal.1996;Fig.1a).TheJ-domainsoftwomammalianJ-proteins,human Hdj1(Qianetal.1996)andmurinepolyomavirustumorantigen(Berjanskiietal.2000),are remarkably similar. Even the more divergent auxilin J-domain possesses these conserved J-domainfeatures,whilealsohavinganN-terminalhelixandalongloopinsertedbetween helicesIandII(Jiangetal.2003). The most highly conserved amino acids of J-domains, the histidine-proline-aspartate (HPD)tripeptidelocatedintheloopbetweenhelixIIandIII,hasbeenshowntobecritical for ATPasestimulationinmany systems,and thus invivo function (Feldheim et al. 1992; TsaiandDouglas1996;Voisineetal.2001;Walletal.1994;Yanetal.1998).However,ad- ditionalresidues,bothwithinhelicesIIandIIIandwithintheinterveningloop,arerequired fortheinvivofunctionofDnaJ(Genevauxetal.2002).Thesidechainsoftheseresiduesand thoseoftheHPDtripeptidearesolvent-exposedandorientedinthesamedirection,andthus possibly form an Hsp70 interaction surface. Indeed, nuclear magnetic resonance (NMR) perturbation mapping of the J-domain of DnaJ in the presence of DnaK indicated a simi- lar negatively charged surface around helix II as the region involved in DnaK interaction (Greeneetal.1998;Fig.1b). RevPhysiolBiochemPharmacol(2006) 3 Fig.1a,b Theinteraction betweentheJ-domainandtheHsp70ATPasedomain.Ribbondiagram(a)and surface map(b)ofthe J-domain ofDnaJ (PDBfile: 1XBL)(Pellecchia et al. 1996), onthe left, and the ATPasedomainofDnaK (PDBfile:1DKG)(Harrison etal.1997), ontheright. Basedonthestudies of DnaK–DnaJ(Genevauxetal.2002;Greeneetal.1998;Gässleretal.1998;Suhetal.1998)andSsb-Zuo1 systems(Huangetal.2005),theresidues(oranalogousresiduesinthecaseoftheSsb-Zuo1system)found tobeimportant fortheinteraction between aJ-domainandanATPasedomain arehighlighted inorange withthemostcriticalHPDtripeptidehighlightedinred.ThestructuresarepreparedusingPyMOLsoftware (http://pymol.sourceforge.net/). HighlightedresiduesinDnaKincludeR167,I169,N170,andT215(Suhet al.1998);Y145,N147,D148,E217,andV218(Gässleretal.1998),andanalogousresiduesR76,P113,I168, N170,V192,andF200(Huangetal.2005),allofwhichwereisolatedfromgeneticmutagenesisstudies.The residueshighlightedinDnaJincludeY25,R26,H33,P34,D35,R36,N37,F47(underlinedistheHPDmo- tif),fromthemutagenesisstudy(Genevauxetal.2002);andV12,S13,R19,E20,R22,A24,Y25,K26,R27, L28,M30,Y32,H33,D35,Y54,andT58thatshowedashiftgreater than10HzinNMRanalysis when DnaKwaspresent(Greeneetal.1998) ConsistentwithitsabilitytostimulateHsp70’s ATPaseactivity,theJ-domain ofDnaJ interacts with the ATPasedomain of DnaK in the presence of ATP (Wittung-Stafshede et al.2003). However,asisthecasewithmostJ-domain:Hsp70 interactions,thisassociation isquitetransient(Misselwitzetal.1999;Suhetal.1999).Althoughtheexactcontactsites between any J-protein and Hsp70 are not known, a region of Hsp70 has been implicated in J-domain interaction in studies of E. coli and S. cerevisiae. Allele-specific suppressors of the phenotype of dnaJ-D35N, which encodes an alteration of the HPD signature motif initsJ-domain,wereidentifiedindnaK.Threesuppressorsencoding alterationsinsubdo- mainIAofDnaK’sATPasedomainwereisolated(Suhetal.1998). Inasimilarapproach, suppressors ofamutationinZUO1(zuo1-H128Q), whichencodes theJ-proteinpartnerof Ssb,theyeastribosomeassociatedHsp70,wereisolated.Again,alterationswereclustered in the AI subdomain (Huang et al. 2005). In addition, site-directed dnaK mutant proteins havingaminoacidalterationsinthisregionwerefoundtohavedefectsinDnaJinteraction (Gässleretal.1998). Collectively,theseresiduesformasurfaceontheATPasedomainof Hsp70(Fig.1b)withagroovenearthenucleotidebindingcleft,makingiteasytoenvision bindingofaJ-domaincausingstimulationofATPhydrolysisbyHsp70. 4 RevPhysiolBiochemPharmacol(2006) J-proteinsingeneralproteinfolding:classIandII DnaJwasthefirstJ-proteinidentifiedandanalyzedandstillservesasastandardtowhich other J-proteins are compared. Analysis of its sequence led to the grouping of other J- proteins that containedaglycine-rich andcysteine-richregionadjacent totheJ-domain as classIJ-proteins,andthosethathadaglycine-richregion,butlackedthecysteine-richregion asclassII(CheethamandCaplan1998).Thisdefinitionwasbasedonobvioussequencesim- ilarities,withlittleunderstanding ofthefunctionoftheglycine-andcysteine-richregions. BelowwediscussthecurrentstateofunderstandingoftheroleofthesedomainsinJ-protein function.RecentdataalsosuggestthatatleastsomeJ-proteinsgroupedasclassIandIIhave averysimilarclientprotein-binding domain,aseventhoughverylowinsequenceconser- vation, they possess a very similar fold. This fold may be common to J-proteins that are involvedingeneralproteinfoldingwithinthecell,andthusinteractwithawidevarietyof clientpolypeptides. Substratebinding:acommonfoldforgeneralproteinfolding? J-proteins,withtheirHsp70partners,areinvolvedingeneralfoldingofbothnewlysynthe- sizedandpartiallyunfolded proteins.Evidence existsforsuchageneral functionnot only forDnaJworking withDnaKintheE.colicytosol,but alsoforJ-proteins inseveralcom- partments of eukaryotic cells.For example, Ydj1 and Sis1of the yeast cytosol work with theSsaHsp70s(Aronetal.2005; Kimetal.1998; LuandCyr1998a); Mdj1ofthemito- chondrialmatrixworkswiththemajorHsp70,Ssc1(Hermannetal.1994;Krzewskaetal. 2001;Rowleyetal.1994);Scj1ofthelumenoftheendoplasmicreticulumworkswithKar2 (Schlenstedt etal.1995; Silbersteinetal.1998). Consistentwithageneral protein-folding role,Ydj1,Sis1,andMdj1,incooperationwiththeirHsp70partner,arecompetenttofacil- itaterefoldingofdenaturedsubstratessuchasluciferaseinvitro.Orthologsofeachofthese yeastproteinsexistinhighereukaryotes,suggestingthatrolesinproteinfoldinghavebeen conserved, although as discussedthroughout this article, significant functional differences existamongdifferentJ-proteins. Recently the structure of the 25-kDa and 19-kDa C-terminal regions of the class I Ydj1 and class II Sis1 J-proteins, respectively, have been determined (Li et al. 2003; Sha et al. 2000). Although having very limited sequence similarity, the two fragments are remarkably alike in structure. Each contains two domains formed by a sandwich of two β-sheets and a short α-helix, the second of which is followed by sequences important for dimerization (Fig. 2a). Ydj1 was co-crystallized with the peptide GWLYEIS bound in ashallowhydrophobic groove intheN-terminal β-sheet domain(domain I).Sis1contains a hydrophobic groove at the analogous position in the structure that had been predicted to be the substrate-binding site prior to the determination of the Ydj1 structure (Sha et al. 2000). Despite the similarities between the adjacent β-sheet domains, it is argued that the more C-terminal one is not involved in interaction with client proteins, in part because in the crystal structure the hydrophobic groove of this domain is occupied by a residue from an adjacent β-strand, and thus not available for interactions with client proteins. RevPhysiolBiochemPharmacol(2006) 5 Fig.2a–cStructuralcomparisonofthesubstratebindingdomainsofdifferentJ-proteins.aRibbondiagrams oftheC-terminalregionsofyeastYdj1(PDBfile:1NLT)(Lietal.2003),Sis1(PDBfile:1C3G)(Shaetal. 2000),andfull-lengthE.coliHscB(PDBfile:1FPO)(Cupp-VickeryandVickery2000)preparedinPyMOL (http://pymol.sourceforge.net/).ThecrystalstructureofYdj1containstheboundsubstratepeptidehighlighted inred.Theproposedsubstratebindingdomainsofalltheproteinsareindicatedwiththeyellowbrackets.The dashedbluebracketindicatesYdj1’scysteine-richregion;thedashedorangebracketindicatestheJ-domain ofHscB.TheC-terminalend(C)oftheshownstructuresofYdj1andSis1areimmediatelyadjacenttotheir dimerizationdomainsthatarenotshown.bThelow-resolutionsmall-angleX-rayscattering(SAXS)mod- elsofmonomeric(left)anddimeric(right)humanDjA1,theclassIJ-proteinorthologofyeastYdj1.The cysteine-richdomainindicatedbythearrowcanhavedifferentanglestowardstheotherdomainsasshownby theasymmetricpackinginthedimer.cThelow-resolutionSAXSmodelofdimerichumanDjB4,theclassII J-proteinorthologofyeastSis1(bandcarereprintedfromBorgesetal.2005).J-domainshighlightedinred, theanalogoussubstratebindingdomainindicatedwithbracketsandglycine-richregionsindicatedbydashed lines.(RepublishedwithpermissionofTheJournalofBiologicalChemistry) 6 RevPhysiolBiochemPharmacol(2006) Fig.3RibbondiagramoftheCys-richdomainsofDnaJ(PDBfile:1EXK)(Martinez-Yamout etal.2000) andYdj1(PDBfile:1NLT)(Lietal.2003).Thecysteine-richdomainsofDnaJandYdj1containtwozinc centers.Coordinatedzincatomsarehighlighted inred.Thecysteineresiduesinvolvedinthecoordination withthezincatomsarehighlightedingreen Thecysteine-richzinccenter,glycine-rich,anddimerizationdomains While Sis1and Ydj1 show structural similarity, they alsodiffer significantly. Ydj1 has an additional subdomain containing two zinc centers that protrudes from domain I of the C- terminus (Lietal.2003), suchthatitispredictedtoproject intothecleftbetweenthetwo subunits(Wuetal.2005)(Figs.2and3).Thiscysteine-richdomain,whichisalsopresentin Scj1andMdj1,aswellasDnaJ,isthedefiningfeature,alongwithaglycine-richregionde- scribedbelow,ofJ-proteinsclassifiedastypeI(CheethamandCaplan1998).Inallofthese proteins, this region includes four repeats of CXXCXGXG,suggesting a similar fold. In- deed,thestructureoftheDnaJsubdomainisverysimilartothatofYdj1(Martinez-Yamout etal.2000).Inbothcases,twocentersareformed,withrepeats1and4,andrepeats2and 3,eachcoordinatingazincion,formingcenterIandcenterII,respectively(Fig.3). Themostquantitativeandthoroughanalysisoftheimportanceofthecysteine-richzinc binding domains has been carried out with DnaJ (Linke et al. 2003), leading to the view thatthesezinccentersplaydifferent roles:centerIinbindingtoclientproteinsandcenter IIinfacilitatingtheassociationofclientproteinswithDnaK.DisruptionofcenterIbysub- stitutionofcysteinesbyserinesdramaticallyaffectedbindingtoaclientprotein,denatured luciferase,buthadlittleeffectoninvivofunction. DisruptionofcenterIIdidnotsubstan- tiallyaffectluciferasebinding orstimulationofDnaK’sATPaseactivity,but haddramatic effectsontheabilityofDnaKtobindluciferaseandwascriticalforinvivofunction.Sim- ilarly, inYdj1,centerIIwas moreimportant invivo thancenterI, especiallyfor substrate transfertoHsp70(Fanetal.2005). Whilethefunction(s)ofthecysteine-richregionisbecomingclearer,thatoftheglycine- richregion isstillenigmatic, eventhough itspresenceisrequired for classificationofaJ- proteinasamemberofclassIorII.Typicallytheglycine-richregionalsohasapreponder- anceofphenylalanineresiduesandthusoftenreferredtoastheG/Fregion.AlltheJ-proteins discussedabovecontainG/Fregions.NMRstudiesdemonstratethattheG/FregionofDnaJ (Huang et al. 1999) is very flexible, capable of occupying many different conformational states.However,itdoesnotsimplyserveasaflexiblelinkerbecause,asdescribedbelow,it canincludeimportantdeterminantsinthespecificityoffunctionofcertainJ-proteins. Both Ydj1 and Sis1 are dimers, and in both cases the extreme C-termini are critical for interaction. In thecaseof Sis1, dimerization occurs via hydrophobic interactions (Sha

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.