ebook img

Review of Antibacterial Activity of Titanium-Based Implants' Surfaces Fabricated by Micro-Arc ... PDF

22 Pages·2017·15.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review of Antibacterial Activity of Titanium-Based Implants' Surfaces Fabricated by Micro-Arc ...

coatings Review Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation XiaojingHe,XiangyuZhang*,XinWangandLinQin CollegeofMaterialsScienceandEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China; [email protected](X.H.);[email protected](X.W.);[email protected](L.Q.) * Correspondence:[email protected];Tel.:+86-351-601-0540 AcademicEditor:YuelianLiu Received:28November2016;Accepted:14March2017;Published:22March2017 Abstract: Ti and its alloys are the most commonly-used materials for biomedical applications. However, bacterial infection after implant placement is still one of the significant rising complications.Therefore,theapplicationoftheantimicrobialagentsintoimplantsurfacestoprevent implant-associated infection has attracted much attention. Scientific papers have shown that inorganicantibacterialmetalelements(e.g., Ag, Cu, Zn)canbeintroducedintoimplantsurfaces with theaddition of metalnanoparticles or metalliccompounds intoan electrolyte via micro-arc oxidation (MAO) technology. In this review, the effects of the composition and concentration of electrolyteandprocessparameters(e.g.,voltage,currentdensity,oxidationtime)onthemorphological characteristics(e.g.,surfacemorphology,bondingstrength),antibacterialabilityandbiocompatibility of MAO antimicrobial coatings are discussed in detail. Anti-infection and osseointegration can be simultaneously accomplished with the selection of the proper antibacterial elements and operating parameters. Besides, MAO assisted by magnetron sputtering (MS) to endow Ti-based implantmaterialswithsuperiorantibacterialabilityandbiocompatibilityisalsodiscussed.Finally, thedevelopmenttrendofMAOtechnologyinthefutureisforecasted. Keywords: micro-arcoxidation;antibacterialability;Ag;Cu;Zn 1. Introduction Biomedicaltitanium(Ti)anditsalloyshavebeenwidelyusedinbloodvessels,artificialjoints, dentalimplantationsandbonescrews[1–3]onaccountoftheirexcellentmechanicalproperties,good corrosion resistance and favorable biocompatibility. However, implant-associated infection (IAI) remainsoneofthemostdevastatingpostoperativecomplications[4,5]despitestrictsterilizationand systemic antibiotic prophylaxis prior to surgery. IAI often commences with bacterial adhesion to theimplantandcolonizationontheimplantsurface, followedbybiofilmformation. Thebiofilms are extraordinarily resistant to antibiotics and the host immunity defensive system [6–8], leading to further complications. Once the biofilm is formed, it is often not effectively treated except for prosthesisremovalandre-implantation[9,10]. Thisdevastatingcomplicationmayresultinchronic sufferingandextremelyhugemedicalexpenses[11,12]. Therefore,itishighlydesirabletointroduce antimicrobialagentsintoimplantsurfacestoprovideantibacterialactivitiesandpreventperi-implant infections [13–17]. In comparison with organic antibiotics, inorganic antibacterial metal elements (e.g.,silver(Ag)[18–22],copper(Cu)[23–26]andzinc(Zn)[27–29])haveattractedgreatattentiondue totheirperfectstabilities,superiorbroad-spectrumantibacterialproperties,relativelylowtoxicityto humancellsandlowriskofproducingresistantstrains[30,31]. Dizajetal.[32]havereviewedtheantimicrobialactivityofmetalandmetaloxidenanoparticles togetherwiththeirantimicrobialmechanismsandhaveindicatedthattheparticlesizedetermined theantimicrobialeffectivenessofthemetalnanoparticles. Raietal.[33]haveextensivelyreviewed Coatings2017,7,45;doi:10.3390/coatings7030045 www.mdpi.com/journal/coatings Coatings2017,7,45 2of22 theantibacterial,antifungalandantiviralpropertiesofAgions,AgcompoundsandAgnanoparticles, butthereisnodiscussionabouttheantibacterialpropertiesofCuorZn. Inaddition,thetoxicities ofmetalandmetaloxidenanoparticlestoapplyasproperalternativesforantibioticsinbiomedical applications were not discussed in the reviews. In order to obtain antibacterial metallic surfaces, numeroussurfacemodificationshavebeenperformed. Ferrarisetal.[34]havereportedthesurface modification technologies, such as ion implantation [35,36], ion beam-assisted deposition [37], electrochemicaltechniques[38],ionexchange[39],sol-gel[40],sputtering[41,42],plasmaspray[43] andchemicalvapordeposition[44]. However,micro-arcoxidation(MAO)isnotfullydescribed. MAO,whichcanproduceporous,adhesiveandbioactivecoatingsforimplantation,hasaroused considerable attention [45–47]. On the one hand, a porous bioactive calcium phosphate-based compositelayercanbedepositedonTi-basedimplantsurfacesaccordingtotheselectedelectrolyte, whichwouldenhancethebiocompatibility[48,49]andthebondingstrengthofthecoatedlayer[50]. Ontheotherhand,antibacterialmetalelementscanbeincorporatedintoimplantsurfacestoinhibit initialadhesionofbacteriaandpreventpost-surgerycomplications,thusenhancingtheantibacterial property[34]. Furthermore,thecontentofbioactiveelementsandantibacterialmetalelementsonthe MAOcoatingsurfacecanbetunedbycontrollingvoltage,electrolytecomponentsandMAOtime[51]. Toourbestknowledge,thisspecifictopichasnotbeenreviewedintherecentliterature. Theaimofthe reviewistocollectandcomparetherecentscientificpapersconcerningsurfacemodificationofTiwith theincorporationofantibacterialmetalelements(e.g.,Ag,Cu,Zn)toendowantibacterialproperties byMAO.Thereviewfocusesmainlyontheeffectsofthecompositionandconcentrationofelectrolyte andprocessparameters(voltage,currentdensity,oxidationtime)onthemorphologicalcharacteristics, antibacterialabilityandbiocompatibilityofMAOcoating. MAOassistedbymagnetronsputtering (MS)toachieveasuperiorantibacterialpropertyandbiocompatibilityisalsodiscussed,followingthe forecastofthedevelopmenttrendofMAOinthefuture. 2. Micro-ArcOxidationMethod MAO, which is also referred to as plasma electrolyte oxidation (PEO), is a high voltage plasma-assisted anodic oxidation process. MAO is a relatively convenient technique for forming firmlyadherentoxideceramiclayersonthesurfacesofvalvemetal,suchasTi,Al,Mg,Zr,Taand theiralloys. AsshowninFigure1,theMAOprocesswascontrolledbyanMAOpowersupply. Before MAO,thenon-workingsideofthespecimenwasconnectedwithacopperconductorandcoatedwith acrylateadhesive. DuringtheMAOprocess,thespecimenwastreatedastheanode,andthestainless steel electrolytic bath was regarded as the cathode to fill with electrolyte. The stirrer was applied tokeeptheelectrolyteuniform,andthecirculatingwatertreatmentsystemwasusedtosustainthe temperatureoftheelectrolytebelow30◦C. TheprincipleofMAOisexplainedinFigure2. AttheinitialstageofMAOtreatment,assoonas thespecimenisexposedtotheelectrolyte,thevoltageincreasesrapidlyandlinearlywithtime,andan anodicbarrierfilm,alsocalledapassivatingfilm(Figure2a),isinitiallyformedonthesurfaceofthe specimen. Soonafterwards,withtheincreaseofvoltage,sometinyoxygenbubblescanbeobserved, andaporousinsulatingoxidelayer,whichusuallygrowsunderconditionsofdielectricbreakdown, formsonthesurfaceofthespecimen[52]. Atthisstage,thevoltageandcurrentflowfollowFaraday’s law,whichcorrespondstotheconventionalanodizingstage(Figure2b). Whentheappliedvoltageon thespecimensurpassesthedielectricbreakdownoftheinsulatingoxidecoating,dielectricbreakdown takesplace,leadingtotheformationofsparkdischarges(Figure2c).Thecurrentflowonlyconcentrates onregionsofbreakdown,andtheCaandPelementsfromtheelectrolyteandtheotherelementsfrom thespecimenenterintoregionsofbreakdownbydiffusionandelectrophoresisatintenselocalhigh temperatures, resulting in localized forming and thickening of the porous structure oxide coating. The discharge sparks gradually grow bigger, and the micro-arcs’ discharges are transformed into powerfularcdischarges(Figure2d). Whenthenewgeneratedoxidecoating(Figure2e)iscapableof resistingcurrentflow,theotherregionsarevulnerabletobreakdownduetothesmallerresistance,and Coatings 2017, 7, 45   3 of 22  CoCatoiantginsg2s0 21071,77,, 74,5 45   3 o3f 2o2f 22 generated oxide coating (Figure 2e) is capable of resisting current flow, the other regions are  generated oxide coating (Figure 2e) is capable of resisting current flow, the other regions are  vulnerable to breakdown due to the smaller resistance, and finally, the chemical reaction interface  finvaulllny,etrhaeblceh teom birceaalkrdeaocwtino nduinet etorf tahcee swmoaulllderm reosvisetatonwcea, radnsdt hfienaelnlyti,r ethseu crhfaecmei[c5a3l] r.eBarcetaioknd oinwtenrfoafceth e would move towards the entire surface [53]. Breakdown of the coating occurs at a vulnerable spot of  cowatoinugldo mccouvres taotwaavrdusl ntherea ebnlteirsep soutrofafcteh [e5g3]r.o Bwreinagkdooxwidne ofif ltmhe. Mcoaetainnwg ohcilceu,rtsh aet nae vwulpnoerraobulse sstproutc touf re the growing oxide film. Meanwhile, the new porous structure oxide coating might also be formed  oxtihdee gcrooawtiinngg moxiigdhet faillmso. Mbeefaonrwmheidle,a tnhde tnheiwck penoerodubs ysttrhuecteumrei sosxioidneo cfogaatisngd umeigtohti natleson sbeel ofocramlhedig h and thickened by the emission of gas due to intense local high temperatures at the sites of  teamnpde rtahtiuckreesneadt thbye stihtees eomfbisrseiaoknd oofw gna[s5 4d]u.eW tioth itnhteenpsreo llooncagli nhgigohf otxeimdpateiroantutriems ea,tl atrhgee dsiitsecsh aorfg e breakdown [54]. With the prolonging of oxidation time, large discharge channels with intense  chbarnenaekldsowwinth [5in4t]e. nWseitshp atrhkei npgroalnodnggiansgb uofb bolxeisdwatoiounld teimmee,r glaeragte thdeisscuhrafragcee ,clehaadninneglst owtihthe fionrtmenasteio n sparking and gas bubbles would emerge at the surface, leading to the formation of larger protruding  sparking and gas bubbles would emerge at the surface, leading to the formation of larger protruding  oflargerprotrudingpores,evenaspongyinterconnectedmicrostructure(Figure2f). Thecontinuous pores, even a spongy interconnected microstructure (Figure 2f). The continuous formation and  pores, even a spongy interconnected microstructure (Figure 2f). The continuous formation and  forbmreaatkiodnowannd ofb rtheaek odxoidwen cooafttihneg o(Fxiigduerceo 2agt)i ncgau(Fseigs uthree 2pgo)tecnatuiasle tsot hfleucptoutaetne.t iBaolttho tflhuec dtuisastoel.uBtiootnh otfh e breakdown of the oxide coating (Figure 2g) causes the potential to fluctuate. Both the dissolution of  disthsoel buatisoen moaftethriealb aansed mgaastiefirciaatlioann dofg tahsei fiecleacttiroonlyotfe tehneaeblleec tthroe lfyotremeantaiobnle otfh tehefo promroautiso nceorafmthiec opxoirdoeu s the base material and gasification of the electrolyte enable the formation of the porous ceramic oxide  cercaomatiicngo x(Fidigeucroea 2thin).g  (Figure2h). coating (Figure 2h).      Figure 1. Schematic diagram of the micro‐arc oxidation (MAO) experimental device.  FiFgiugurere1 1..S Scchheemmaattiicc ddiiaaggrraamm ooff tthhee mmiiccrroo‐-aarrcc ooxxiiddaattiioonn ((MMAAOO) )eexxppereirmimenetnatla dledveivceic. e.         Figure 2. Schematic of the formation process of MAO porous coating. The passivating film (a), and  FiFgiugruere2 .2. SScchheemmaattiicc ooff tthhee foformrmataiotino nprporcoecsse sosf oMfAMOA pOorpoourso cuosatcinoga.t iTnhge. pTahsseivpaatisnsgiv failtmin g(afi), lamnd( a), porous insulating oxide film (b) is initially formed. Then under the action of the spark discharges (c)  anpdorpoourso uinssiunlsautilnagti noxgidoxe ifdilemfi (lmb) (isb )inisitiianliltyia flolyrmfoerdm. Tehde.nT huenndeurn tdheer atchtieoanc otifo tnheo fspthaerks pdaisrckhdarisgcehsa (rcg) es and, powerful arc discharges (d), the new generated oxide coating (e) is formed and thicken. Finally,  and, powerful arc discharges (d), the new generated oxide coating (e) is formed and thicken. Finally,  (c)and,powerfularcdischarges(d),thenewgeneratedoxidecoating(e)isformedandthicken.Finally, the porous ceramic oxide coating is formed (h) with the continuous formation and breakdown of the  the porous ceramic oxide coating is formed (h) with the continuous formation and breakdown of the  theoxpiodreo cuosactienrga m(gi)c aot xthidee lacrogaet idnigscihsafrogrem cehdan(hne)lws (ifth). thecontinuousformationandbreakdownofthe oxide coating (g) at the large discharge channels (f).  oxidecoating(g)atthelargedischargechannels(f). The  composition  of  the  MAO  electrolytes  has  a  dramatic  effect  on  the  morphological  The  composition  of  the  MAO  electrolytes  has  a  dramatic  effect  on  the  morphological  chaTrhacetecriosmticpso, ssuitciohn aso tfhet hpeoroMsiAtyO anedl etchtircoklnyetesss ohf aMsAaO dcroaamtinagtisc. Heeffneccet, tohne ptrhoepemr oserlpehctoiolong oicfa l characteristics, such as the porosity and thickness of MAO coatings. Hence, the proper selection of  chtahrea cetleercitsrtoiclyst,es ucochmpasostihtieonp oisr oismitpyeraantdiveth tioc konbetsasino fsaMtisAfaOctocroya tpinegrfso.rmHaennccee. ,Gtheeneprraollpye, rdsifefleercetniot n the electrolyte composition is imperative to obtain satisfactory performance. Generally, different  ofatnhteibealectcetrrioally mteectaolm elpeomseitniotsn misixiemdp weritahti cvaelctioumob atacientastae t(iCsfAac) taonrdy pgleyrcfeorrompahnocspe.hGateen deirsaoldlyiu,mdi f(fGerPe)n t antibacterial metal elements mixed with calcium acetate (CA) and glycerophosphate disodium (GP)  are used as the base electrolyte in the MAO process to enhance the antibacterial property of the  anatrieb aucsteedri aalsm theeta blaeslee meleencttrsomlyitxee idn wthiteh McaAlcOiu pmroacceestsa tteo (eCnAha)nacned tghley caenrtoibpahcotesrpiahla pterodpiseortdyi uomf th(Ge P) implant materials. The characteristics of the fabricated antibacterial coating prepared by MAO  ariemupsleadnat smthaetebraiasles.e lTehcter oclhyateraicntethriestMicsA Oof ptrhoec efsasbtroiceantehda nacnetitbhaecatenrtiiabla cctoeartiianlgp rporpeepratyreodf tbhye iMmApOla nt techniques are briefly summarized in Table 1, and the details are reviewed according to the difference  mtaetcehrinailqsu.eTsh aerec hbarireafclyte sruismticmsaorfiztehde ifna bTraibclaet e1d, aanndt itbhaec dteertiaaillsc aoraet irnegvipewreepda arecdcobrdyiMngA toO thteec dhinffieqrueenscea re of the doping method of the antibacterial metal elements.  broief flthyes duompminagr mizeedthiondT oafb tlhee1 a,natnibdatchteeridael tmaielstaal reelermeveinetws.e daccordingtothedifferenceofthedoping m ethodoftheantibacterialmetalelements. Coatings2017,7,45 4of22 Table1.SummaryofthecharacteristicsofantibacterialcoatingbyMAO. ElectricalParameter Release SurfaceContent TiAlloy Electrolyte Vo(lVta)ge (ADC·uednrmrsei−ntyt2) OTxiimdeat(iso)n Surfa(PceorTeoSpiozger)aphy XRDPDhaesteected ofA(wg/tC%u)/Zn AAmg(/poCupunb/t)Zonf BTaecstteerdia Biocompatibility References 0.02MCa-GP,0.15MCA, Porousstructures(<3µm) Ti,rutileand Ti-6Al-7Nb and3.0g·L−1AgNPs <250 20 300 withAgNPof37nm anatase 0.03 – S.aureus – [55] 0.02MCa-GP,0.15MCA, Porousstructures(<5µm) Ti-6Al-7Nb and3.0g·L−1AgNPs <250 20 0–300 withAgNPof7–25nm – – – – – [56] 0.02MCa-GP,0.15MCA, Human Ti-6Al-7Nb and0.3g·L−1AgNPs 234±3 20 300 Porousstructures(<5µm) – – 12 S.aureus osteoblasticcell [38] 0.02MCa-GP,0.15MCA, Human Ti-6Al-7Nb and3.0g·L−1AgNPs 237±2 20 300 Porousstructures(<5µm) – – 89 S.aureus osteoblasticcell [38] 2g·L−1NaOH,15g·L−1 Porousstructures(<5µm) Escherichia Cp-Ti NaH2PO4and3.0g·L−1CuNPs – 20 300 withCuNPof60nm – – – S.acuolrie,us – [57] Human 0.04Mβ-GP,0.4MCAand Ti,rutile,and Cp-Ti 250–350 – 180 Sphericalpores(<3µm) – – S.aureus osteosarcoma [58] 0.004MAgNO3 anatase (HOS)cell Irregularandroughpores Rutile, Human 0.04Mβ-GP,0.4MCAand Cp-Ti 0.004MAgNO3 420 – 180 withspahnedricflaalkpearticles α-βT-CCPa2aPn2dOH7,A 0.21–0.45 – S.aureus os(tHeoOsSa)rccoemlla [58] Irregularandroughpores Rutile, Human 0.04Mβ-GP,0.4MCAand Cp-Ti 0.00006MAgNO3 420 – 180 withspahnedricflaalkpearticles α-βT-CCPa2aPn2dOH7,A 0.1 – S.aureus os(tHeoOsSa)rccoemlla [58] Granular Ti,rutile, Ti6Al4V β-GP,CAand0.1g·L−1AgNO3 400 – 300 morphologywithAgNPs anatase, 0.6 2500 E.coli – [59] of20–30nm CaTiO3andHA Ti,rutile, Ti6Al4V β-GP,CAand0.4g·L−1AgNO3 400 – 300 wNiethedAleg-lNikPesmoofr2p0h–3o0longmy anatase, 2.1 8000 E.coli – [59] CaTiO3andHA Flake-likemorphology Ti,rutile, Cp-Ti Na2HPO4,CA,and0.0025M 380 – 300 withregionalAgparticles anatase, 4.6 – E.coli, – [60] CH3COOAg lessthan200nm CaTiO3andHA S.aureus Highlyorderednanopores Newbornmouse Cp-Ti 0.5–1.0g·L−1AgNO3 – 65 5–240 withAgNPsof10–30nm – – 200–450 S.aureus pre-osteoblast [61] withinmicropits cells Cp-Ti Ca7(.N6gO·3L)−21anNda31P.0Og4·,L9−.41gA·gLN−1O3 – 65 240 HwiigthhwlAyigtohrNidnPemrseoidcfrn1oa0pn–iot3s0ponrmes – – – S.aureus Nperwe-boocsertnlelosmbloaustse [61] Coatings2017,7,45 5of22 Table1.Cont. ElectricalParameter Release SurfaceContent TiAlloy Electrolyte Vo(lVta)ge (ADC·uednrmrsei−ntyt2) OTxiimdeat(iso)n Surfa(PceorTeoSpiozger)aphy XRDPDhaesteected ofA(wg/tC%u)/Zn AAmg(/poCupunb/t)Zonf BTaecstteerdia Biocompatibility References Cp-Ti 1.0~8.0g·L−1Cu(NO3)2 – 65 240 Mewsoitphoirnems(i2c0ro–4p0itsnm) Ti – – – Osteoblastcells [62] Cp-Ti 3.8~17.0.6gg·L·L−−11CNua(N3POO34)2and – 65 240 Mewsoitphoirnems(i2c0ro–4p0itsnm) Ti – – – Osteoblastcells [62] Microporesorcrater 0.05Mβ-GP,0.1MCAand Human Cp-Ti – 16.5 240 structures(3–5µm)with Tiandanatase 1.43 – S.aureus [63] 0.05M(CH3COO)2Cu nano-grainsof30–50nm osteosarcomacell 0.02Mβ-GP,0.2MCAand Microporestructures Rutileand Mousefibroblast Cp-Ti 0.00125~0.005MCu 450 – 90 0.67–1.93 2.8–60.2 S.aureus [64] (1–4µm) anatase cell (CH3COO)2 0.15MCa-GP,0.02MCAand Ti,rutileand E.coli,S. Cp-Ti – 30 300 Porousstructures(<5µm) 8.7 – Osteoblastcells [65] 0.06MZA anatase aureus Ratbone 0.05Mβ-GP,0.1MCAand Microporousstructures E.coli,S. Cp-Ti – 16.5 240 – 4.6–9.3 1000–3620 mesenchymal [10] 0.02~0.06ZA (<5µm) aureus stemcells 0.02Mβ-GP,0.1MCA,0.1M Microporousstructures Anataseand 1.06–1.42(Ag), Cp-Ti ZA,and6g·L−1AgNPs 390 – 30–90 (1–4µm) rutile 22.19–26.93(Zn) – S.aureus – [66] Microporousstructures 0.02Mβ-GP,0.1MCA,0.1M Anatase,rutile 1.56(Ag),29.38 684(Ag), Cp-Ti ZA,and6g·L−1AgNPs 390 – 120 (1–4µm)withAgNPsof andZnO (Zn) 6880(Zn) S.aureus – [66] 5–10nm Microporousstructures Anatase,rutile, 0.02Mβ-GP,0.1MCA,0.1M 1.58(Ag),31.27 Cp-Ti ZA,and6g·L−1AgNPs 390 – 240 (1–4µm)with ZnOand (Zn) – S.aureus – [66] somedeposits Zn2TiO4 Notes:GP:Glycerophosphate;CA:Calciumacetate;α-TCP:Ca3(PO4)2;HA:Ca10(PO4)6(OH)2. Coatings2017,7,45 6of22 2.1. IntroductionofMetalNanoparticlesintoMAOElectrolyte NPspresentagreaterchemicalactivitythanthebulkmaterialfortheadvantageoftheirlarger ratioofCsouatrinfgasc 2e01a7,r 7e,a 45t o  volume[67]. AgNPsarethemostpopularinorganicantimicrobialN6P osf 2[26 8]and canbeincorporatedintoimplantsbydirectdispersionofsolidAgNPsintheelectrolyteduringMAO. Theant2i.b1.a Icntterordiaulctmione cofh Manetiaslm Nsanaosparretipcloesr tinetdo MarAeOth EaletctAroglytNe Pscandirectlyinteractwiththemicrobial cells,leadinNgPtso ptrheseenint car geraesaeteor fchmememicablr aacntieviptye rthmane athbeil bituylk[ 6m9a],tetrhiael dfoerg trhaed aadtviaonntaogfe loipf tohpeiorl lyasragecrc haride molecurlaetsiow ofi tshurtfhacee faorrema taot ivoonlumofe p[6i7ts]. aAngd NgPas parse itnhet hmeosbta pcotperuilaalr imnoermgabnrica nanetiamnidcrotbhieal dNaPms a[6g8e] of the bacteriaalndo ucatner bme ienmcorbproarnaeted[7 i0n,t7o1 i]m.pAlagntNs bPys dciarencta dlsisopepresinoent oraf tseoltidh eAbg aNcPtes riina tlhcee ellleectnrovleyltoe pdeurainngd  cause MAO. The antibacterial mechanisms as reported are that Ag NPs can directly interact with the  DNA damage and protein oxidation by producing secondary products, such as reactive oxygen microbial  cells,  leading  to  the  increase  of  membrane  permeability  [69],  the  degradation  of  species[72]. IthasalsobeendemonstratedthattheantimicrobialactivityofAgNPsishigherthanthat lipopolysaccharide molecules with the formation of pits and gaps in the bacterial membrane and the  ofAgion[73]. TheuseofAgNPswillleadtoanti-bacterialeffectsmaximizedduetotheincreased damage of the bacterial outer membrane [70,71]. Ag NPs can also penetrate the bacterial cell envelope  numberasndo fcapuasret iDclNesAp dearmuangiet aanrde apr[o6t7e]i.n oxidation by producing secondary products, such as reactive  Neocxuylgaene tspale.c[ie5s5 []7h2]a. vIte hsaus caclseos sbfeuelnly defambornicstartaetdedA thga-tb tehaer ainntgimTiicOrobciaola atcintivgistyw oift Ahgd NiffPesr iesn htigchoenrt entsof 2 AgNPsthbayn MthaAt Oof Aing tihoen e[7l3e]c. tTrohley utese, ionf cAlug dNinPsg wCiAll l,ecaadl ctoiu amntig‐blayccteerrioapl ehfofescptsh mataexi(mCiaz-eGd Pd)uew tiot hthAe gNPs. increased numbers of particles per unit area [67].  ThemorphologyofmetallicAgNPsissimilartothatoftheparticlesintheelectrolyte[56]. Theaverage sizeofAgNNPecsuwlaa est mal.e [a5s5u] hreadvet soubccees3s7fu±lly6 fanbmric.aUtendd Aegr‐tbheaerainsgs iTsitOan2 ccoeaotifngesle wctirtho pdhiffoerreesnits cdonutreinntgs MAO, of Ag NPs by MAO in the electrolyte, including CA, calcium glycerophosphate (Ca‐GP) with Ag NPs.  AgNPswerehomogeneouslyabsorbedontheporoussurface(Figure3a,d)[38],transmittedtothe The morphology of metallic Ag NPs is similar to that of the particles in the electrolyte [56].   innerpTohree wavaelrlasgoe fsitzhee otfi tAagn iNuPms woxasid meeaalsounregdt thoe bseh 3o7r ±t- c6i nrcmu.i Utpndatehr sth(eF iagssuisrtean3cbe, eo)f [e5l5ec,5tr6o]pohroreemsisb edded in the ddeunrisneg oMxAidOe, lAagy eNrP(sF iwgeurree h3ocm,fo)g[e5n6e]o.usTlyh eabisnocrboerdp oorna ttihoen poorfoAusg suNrfPascei n(Ftighueret it3aan,di)u [m38]d, ioxide (TiO )mtraantsrmixithteads tnoo theef fiencntero npotrhee wsaullrsf aocf ethme toitrapnhiuomlo ogxyidoef atlhoengc othaet isnhgosrt.‐cAirlcluoitf pthatehsla (yFiegrusrwe 3ebr,ee)p  orous 2 withwe[5l5l-,5d6e]fi onr eedmbpeodrdeesdr iann tghien dgeinnses iozxeidfer olamyear (fFeiwgurnea 3nco,fm) [5e6te].r Tshuep intcoor5pµormati[o3n8 o],f wAgh iNchPsi sint hthee typical titanium dioxide (TiO2) matrix has no effect on the surface morphology of the coatings. All of the  morphologyofMAO.Moreover,thecontentsofAgNPsonthesurfacewentupwiththeincreased layers were porous with well‐defined pores ranging in size from a few nanometers up to 5 μm [38],  amountofAgNPsintheelectrolyte. TheyfoundthatAgNPsdisplayedgoodantibacterialactivity which is the typical morphology of MAO. Moreover, the contents of Ag NPs on the surface went up  againstwmiteht hthiec iilnlicnre-aresesdis atamnotuSntta opfh Aylgo cNocPcsu isn atuhree eulsec(tSro.layuter.e uTsh)e,yo fnoeunodf tthhaet mAog sNtPpsr odbislpelmayaetdic gpooadth ogens fororthaonptibeadcitceriimal palcatinvtitsy, waghaiinlests mhoetwhiicnilglinli‐trtelseisctayntto Stotaxpihcyiltoycotcocuas hauurmeusa n(So. asutereoubs)l,a ostniec ocfe ltlheli nmeowst iththe adjustmperonbtleomfathtice cpoanthtoegnetnos ffAorg oNrtPhospoendiTc iOimp/lAangts,c owahtiinleg sbhyowdiencgr eliatstlien gcytthoteocxoicnitcye ntot raa tihounmoafn theAg 2 NPsinothsteeoeblleacsttirco cleyltle li[n7e4 w].itHh othwe eavdjeurs,ttmheenct ooaf tthine gcsonpterenpt oafr eAdg bNyPst hoins TmiOe2t/hAogd coaarteinegx bpye dnescirveeasdinuge  tothe the concentration of the Ag NPs in the electrolyte [74]. However, the coatings prepared by this  highpriceofAgNPs. method are expensive due to the high price of Ag NPs.    Figure 3. Low and high magnification surface SEM images (a,d); bright field TEM images (b,e), and  Figure 3. Low and high magnification surface SEM images (a,d); bright field TEM images (b,e), cross‐sectional SEM images (c,f) of the bactericidal coatings showing that the Ag NPs are distributed  andcross-sectionalSEMimages(c,f)ofthebactericidalcoatingsshowingthattheAgNPsaredistributed on the porous surface, in the micropores or embedded in the dense oxide layer. (Reprinted with  on theppeormroiusssiosnu frrfoamc e[3,8i,n56t]h; Ceompyircirgohpt 2o0r1e2s Eolsreveimerb, Cedopdyerdighint 2t0h1e1 Edlesenvsieer.o) x ide layer. (Reprinted with permissionfrom[38,56];Copyright2012Elsevier,Copyright2011Elsevier.) Coatings2017,7,45 7of22 Cu can inactivate the central catabolic and biosynthetic pathways, namely catalytic clusters of dehydratases [75], which endows Cu with strong antibacterial properties. Yao et al. [57] have Coatings 2017, 7, 45   7 of 22  preparedCu-dopedTiO coatingsbyMAOintheworkingelectrolytecontainingNaOH,NaH PO 2 2 4 and3g·L−1CCuu caNn Pinsa.cTtihvaeter etshue lctesnotrfatl ocpat-asbuorlfica caendm boiorspyhnothloetgici epsarthewveaaysle, dnatmhealty CcautaNlyPtisc cdluissttreirbs uotfe dboth ontheCdue-hdyodpraetdasecso a[7ti5n],g wsuhircfha ceenadnowdsi nCsuid ewitthhe sptroornegs (aFnitgibuarcete4riaa)l. pTrhoepesritziees.o fYmaoo estt oalf. t[h5e7]N hPasvew  asless than60pnremp.arHedi gChu-‐rdeospoeldu tTiioOn2 cXoPatSinsgps ebcyt rMaAinOd iinc athtee dwothrkaitngC eulemctraoilnyltye ceoxnitsatiendingin NtahOeHC, uN2a+H(2fPrOo4m  CuO) and 3 g∙L−1 Cu NPs. The results of top‐surface morphologies revealed that Cu NPs distributed both  state(Figure4b). Cu-dopedTiO coatingsshowedexcellentantibacterialpropertiesattributedtothe 2 on the Cu‐doped coating surface and inside the pores (Figure 4a). The size of most of the NPs was  incorporationofCuNPswithahighsurfaceareatovolumeratio,whichwoulddirectlykillbacteria less than 60 nm. High‐resolution XPS spectra indicated that Cu mainly existed in the Cu2+ (from CuO)  andreleasecopperions. AsimilarmechanismwasreportedbyRaffietal.[76],inwhichthereason state (Figure 4b). Cu‐doped TiO2 coatings showed excellent antibacterial properties attributed to the  fortheainnctoibrpaocrtaetriioanl opfr Coup eNrPtys wofithC ua hNigPhs suwrafascem aareina ltyo avosclurmibee drattioo,t whehiachd hweosuioldn doirfeCctluy NkilPl sbaocntetroiab acteria surfacesa,nnda rmeleealsye dcoirpepcetr cioonnst.a Act s-kimilillianr gm,escihnacneisCmu wNasP rseaproerteodp pbyo sRiateffliy etc ahla. r[7g6e]d, inw withhicrhe sthpee rcetatsoonb acteria. Whenthfoery theen caontuibnatcetrereiaalc phrooptheretry, othf Ceure NdPusc wtiaosn mraeiancltyi oasncrwibieldl otoc cthuer aadthtehseiobna ocft Cerui aNlPcse ollnwtoa blal,ctreersiau ltingin surfaces, namely direct contact‐killing, since Cu NPs are oppositely charged with respect to bacteria.  theformationofcavities/pits. ThoughUsmanetal.[77]havealsotestifiedtotheantimicrobialand When they encounter each other, the reduction reaction will occur at the bacterial cell wall, resulting  antifungalactivitiesofCu-chitosanNPsagainstmethicillin-resistantS.aureus,B.subtilis,C.albicans, in the formation of cavities/pits. Though Usman et al. [77] have also testified to the antimicrobial and  P.aerugiannotsifauanngdal Sacatlimviotineesl loaf cChuo‐lcehriateossuains ,NPPasp aegaeitnastl .m[7e8th]ichiallvine‐rceosinstfiarnmt Se.d autrheauts,t Bh.e suabnttiliibs,a Cct. earlbiaiclaansc,t ivityof CuNPsPw. aaesrusgiignnosiafi acnadn tSlaylmwoenaelklae crhtohlearanestuhisa,t PoafpAe egt aNl.P [7s8.]M haovree ocovnefri,rmCeudN thPast twhee arentribaapcitderliyalo axcitdiviiztye dwhen exposedoft oCua iNrP[7s 9w],alsi msigintiinfigcatnhtleyi rwaepakpelri ctahtaino nth.at of Ag NPs. Moreover, Cu NPs were rapidly oxidized  when exposed to air [79], limiting their application.  WiththeconsiderationofthebaddispersionofNPsinsolutionandtheweakadhesionofNPsonto With the consideration of the bad dispersion of NPs in solution and the weak adhesion of NPs  thecoatingsurface,onlyseveralvaluablestudieshavebeendocumentedinthefieldofantibacterial onto the coating surface, only several valuable studies have been documented in the field of  NPsbyMAOsofar. antibacterial NPs by MAO so far.    Figure 4. SEM micrographs of Cu‐doped coatings revealing the presence of Cu nanoparticles on the  Figure4.SEMmicrographsofCu-dopedcoatingsrevealingthepresenceofCunanoparticlesonthe surface and inside the pores (a); high‐resolution XPS spectra of Cu 2p in TiO2 coating indicated that  surfaceandinsidethepores(a);high-resolutionXPSspectraofCu2pinTiO coatingindicatedthatCu Cu mainly exists in the CuO state (b). (Reprinted with permission from [57]; Cop2yright 2014 Elsevier.)  mainlyexistsintheCuOstate(b).(Reprintedwithpermissionfrom[57];Copyright2014Elsevier.) 2.2. Introduction of Metallic Compounds into MAO Electrolyte  2.2. IntroducFtoiorn thoef MbioemtaeldliiccaCl oimndpuosutrnyd, siti nseteomMs AtoO beE alenc tartotrlayctteive strategy to endow implants’ surfaces  with metallic coatings. Recent studies [45,80,81] have shown that biological or antibacterial elements  Forthebiomedicalindustry,itseemstobeanattractivestrategytoendowimplants’surfaceswith can be incorporated into the coating during the MAO process by the introduction of metallic  metalliccoatings. Recentstudies[45,80,81]haveshownthatbiologicalorantibacterialelementscan compound into the MAO electrolyte. Ag‐containing coatings have occupied the largest share of the  beincorgploobraalt aendtiibnatcotertihael mcoaarkteint. gduringtheMAOprocessbytheintroductionofmetalliccompound into the MASoOnge elet catl.r o[5l8y]t he.aveA ign-ccoorpnotraaitnedin Aggc ionatot iTnig ismphlaavntes obyc cMuApiOe din t0h.0e4 lMar βg‐egsltycsehroaprheoospfhtahtee  global antibactdeirsioadliumma sraklte pt.entahydrate (β‐GP), 0.4 M CA and silver nitrate (AgNO3) or silver acetate (CH3COOAg)  Sonelgecetrtoalyl.ti[c5 s8o]luhtaiovne aitn ac ofirxpeodr aaptepdlieAd gvoilntatogeT riainmgep flraonmts 2b50y tMo A45O0 Vin. T0h.0e 4adMdiβtio-gn loyfc eArgoNpOh3o sphate reduced the required voltage for the formation of calcium phosphate compounds from 450 down to  disodiumsaltpentahydrate(β-GP),0.4MCAandsilvernitrate(AgNO )orsilveracetate(CH COOAg) 400 V [82,83]. When the concentration of AgNO3 was fixed at 0.004 M, the 3oxidized layer was a porou3s  electrolyticsolutionatafixedappliedvoltagerangefrom250to450V.TheadditionofAgNO reduced microstructure with spherical pores at voltages below 350 V (Figure 5a), while the coating surfa3ce  therequbierecadmveo rlotauggeh faonrdt hceovfeorremd awtiiothn sopfhcearilccailu pmarptihcloess pahndat eflackoems paboouvne d3s80fr Vom (F4ig5u0red 5obw) ndutoe t4o0 0thVe [82,83]. Whentheexicsotenncceen otfr caatlicoiunmo fpAhogsNphOatew coamspfioxuenddas t(F0i.g0u0r4e M5c,).t hMeAoOx icdoiaztiendgsla cyoenrtawinainsga 0p.2o1r–o0u.4s5 mwti c%ro osft ructure 3 Ag were cytotoxic to human osteosarcoma MG63 cells, while Chen et al. [84] reported that 2.05 wt %  withsphericalporesatvoltagesbelow350V(Figure5a),whilethecoatingsurfacebecameroughand covered withsphericalparticlesandflakesabove380V(Figure5b)duetotheexistenceofcalcium phosphatecompounds(Figure5c). MAOcoatingscontaining0.21–0.45wt%ofAgwerecytotoxic Coatings2017,7,45 8of22 to human osteosarcoma MG63 cells, while Chen et al. [84] reported that 2.05 wt % Ag displayed Coatings 2017, 7, 45   8 of 22  noosteoblastcytotoxicity. Thecomparisonresultsindicatedthatthecellproliferationnotonlyhas arelatioAngt oditshpelaycoedn tneon otsotefoAblga,stb cuyttoatlosxoicditye.p Tehned csoomnpaortihsoenr rfeascutlotsr si,nsduiccahtedas ththate thsue rcfeallc perrooliufegrhatnioens softhe not only has a relation to the content of Ag, but also depends on other factors, such as the surface  coatings[85]. Therelativelysmoothcoatingoxidizedat400VwithalowercontentofAg(0.00006M roughness of the coatings [85]. The relatively smooth coating oxidized at 400 V with a lower content  AgNO )exhibitednocytotoxicitywithanunreducedantibacterialproperty. 3of Ag (0.00006 M AgNO3) exhibited no cytotoxicity with an unreduced antibacterial property.    Figure 5. Surface morphologies of MAO samples obtained in electrolyte solution containing 0.004 M  Figure5.SurfacemorphologiesofMAOsamplesobtainedinelectrolytesolutioncontaining0.004M AgNO3 for 3 min at 350 V (a), and 400 V (b); (c) the cross‐section view of the specimen in (b) [58].  AgNO3for3minat350V(a),and400V(b);(c)thecross-sectionviewofthespecimenin(b)[58]. (Reprinted with permission from [58], Copyright 2009 John Wiley & Sons.)  (Reprintedwithpermissionfrom[58],Copyright2009JohnWiley&Sons.) Muhaffel et al. [59] have also prepared novel multi‐layer coatings composed mainly of inner  TiO2 layers and outer HA (HA (Ca10(PO4)6(OH)2)) layers via MAO in β‐GP and CA electrolyte with  Muhaffeletal.[59]havealsopreparednovelmulti-layercoatingscomposedmainlyofinnerTiO different addition levels of AgNO3 (0.1 g∙L−1 and 0.4 g∙L−1). Unlike the general surface characteristics  2 layersandouterHA(HA(Ca (PO ) (OH) ))layersviaMAOinβ-GPandCAelectrolytewithdifferent of MAO coatings, micro‐1p0ores w4e6re hard2ly identified owing to the existence of outer granular HA on  additionMlAevOe‐l0s (oFfigAugreN 6Oa)3, M(0A.1Og‐·0L.1− (1Faignudre0 6.4b)g o·Lr −n1e)e.dUle‐nlilkike eHtAhe lagyeenrse roanl sMuArfOac‐0e.4c h(Fairgaucrtee r6ics)t. iTcsheo fMAO coatingsa,dmdiitciorno -opfo AregsNwO3e rceanh sapredeldy uidpe tnhtei fiMeAdOo wprioncgestso atth heigehxeirs tceunrcreenot fdoenustietyr glervaenlsu, leanrhHanAce othneM  AO-0 (Figurec6ray)s,taMlliAniOty -o0f. 1th(eF HigAu lraeye6rb a)nodr pnreeceidpiltea-tiloikne ofH AAg NlaPyse orns othne MHAA lOay-e0r..4 C(oFmigpuarreed6 tco) a.mTohrephaoduds itionof HA, the crystalline HA exhibits better bioactivity in SBF (simulated body fluid) and biointegration  AgNO canspeeduptheMAOprocessathighercurrentdensitylevels,enhancethecrystallinityofthe 3 [86]. Ag NPs with a size of 20–30 nm were deposited on the HA layer of MAO‐0.1 (Figure 6e) and  HAlayerandprecipitationofAgNPsontheHAlayer. ComparedtoamorphousHA,thecrystalline MAO‐0.4 (Figure 6f). The rapid release of Ag+ ions at the initial periods and the subsequent slower  HAexhrieblietasseb ceotntetrribbuioteadc ttoiv loitnyg‐itnerSmB aFnt(isbiamctuerliaatle adctibvoitdy yocflcuurirded).a Mndoreboivoeinr, tceugmrautlaiotinve[ r8e6le].asAe gofN APg+s witha sizeof2io0n–s3 (02.n5 mppmw eforre MdAepOo‐0s.i1t eanddo 8n ptphme fHorA MAlaOy‐e0r.4o) fwMas AloOw-e0r .t1ha(nF itgheu troexi6ce c)oanncedntMratAioOn (-100.4 pp(Fmig) ure6f). The rapoidf Areg lefoars ehuomfaAn gc+elliso [n8s7]a. tOtvheerailnl ictoinaslidpeerraitoiodns, 0a.n1 dg∙Lth−1e AsguNbOse3 qauppeenatresdlo two eerxhriebliet assuefficcoiennttr ibuted tolong-atnetrimbacatenrtiiabl aacctteivriitayl aancdti vniot yrioskc coufr rceydto.toMxiocirtye,o vwehri,lec upmresuelravtiinvge trheel esatrsuectoufraAl gch+airoanctser(i2st.i5csp. pmfor MAO-0.M1uahnadffe8l petp aml. [f6o0r] MhaAveO fu-0rt.4h)erw reapsolrotewde ar mthualnti‐ltahyeert ocxoaictincog nccoennsitsrtaintgio onf (s1u0bnpaptamnt) ToifOA2 lgayfeorrs human cells[87a]n.dO uvpeprearl lbcioo‐nmsiimdeetrica tpiroenci,p0it.1atigo·nL i−n1 dAisogdNiuOm haypdproegaerne dphtoospehxahtieb (iNtas2uHffiPOci4e),n CtAa natnidb a0c.0t0e2r5i aMl activity CH3COOAg electrolyte at 380 V. Incorporation o3f 4.6 wt % Ag into the multi‐layer led to superior  andnoarnistkibaocftecryiatlo etfofixciiecnitcyy, awgahinilset Epsrcehseerircvhiian. gcoltih (Ee. sctorliu) catnudr Sa.l acuhreaursa wctheirlei sctoincsse.rMvinugh tahfef eblioemtiaml.et[i6c 0]have furtherarpeaptoitret perdecaipmitautilotni-. lTahyee rmcuoltailtaiynegr ccoonnsissitsetdin ogf tohfreseu labynearst:a Ant thTiinO c2omlapyaecrt sTiaOn2d lauyeprp aebrovbei oth-em  imetic precipitasutibosntrainte dshisoowdiniugm behttyerd sruobgsetnratpeh boosnpdhinagte, a( NmaiddHleP pOor)o,uCs Aanadn tdhic0k.0 T0i2O52 MlayCerH onC thOeO cAomgpealcetc trolyte 2 4 3 layer and a flake‐like top layer of biocompatible compound incorporated with regional Ag particles  at 380 V. Incorporation of 4.6 wt % Ag into the multi-layer led to superior antibacterial efficiency (Figure 7).  againstEscherichia. coli(E.coli)andS.aureuswhileconservingthebiomimeticapatiteprecipitation. Unlike the common surface micrometer‐sized pores of MAO coatings, highly ordered nanopores  Themultilayerconsistedofthreelayers: AthincompactTiO layerabovethesubstrateshowingbetter (Figure 8b,c) within micropits (Figure 8a) were successfully p2repared by Chang et al. [61] via a novel  substratoeneb‐ostnepd ihniggh,‐acumrreidntd alneopdiozraotiuons (aHnCdAt)h aitc tkheT ciuOrr2enlat ydeenrsoitny otfh 6e5 cAo∙dmmp−2a icnt tlhaey AegrNaOn3d elaecfltraoklyet-el iketop layerofrbaniogceo fmropma t0i.b5–le16c ogm∙L−p1. oTuhne dnainncooporpreo draiatmedetwer itdhecrreegasieodn aalndA gthpe awratilcl ltehsic(kFniegsus rienc7r)e.ased with  Unilnikcreeathsiengc oofm AmgNonO3s cuornfcaecnetrmatiiocnros m(Fiegtuerre- s8idz)e. dDupeo troe sthoe fcoMnAtroOllacbolea tdiinmgesn,shioignsh, ltyheo nrdaneorpedoronuasn opores structure modulated osteoblast functions, accommodating various clinical needs [88–90]. Scratch  (Figure8b,c)withinmicropits(Figure8a)weresuccessfullypreparedbyChangetal.[61]viaanovel tests showed significantly enhanced bonding strength on the HCA treated sample (Figure 8e) in  one-stephigh-currentanodization(HCA)atthecurrentdensityof65A·dm−2intheAgNO electrolyte comparison with flaking on the anodized sample (Figure 8f), even at a small normal load. The 3TEM  rangefraonmd X0R.5D– 1sh6ogw·eLd− t1h.atT Ahge wnaasn eompboerdeddedia imn ecrtyesrtadlleizcerde aTsieOd2 iann tdhet hfoermw oafl lcrtyhsitcakllnizeesds AingOcr eNaPsse dwith increasinwgitho fdAiagmNetOer3s cboentwceenetnr a1t0io nnms( Faingdu r3e0 8ndm).. DTuhee tcorytshteallciozendt roTlilOa2b laelsdo imcoenntrsiibountesd, thtoe ngoaondo porous structure modulated osteoblast functions, accommodating various clinical needs [88–90]. Scratch tests showed significantly enhanced bonding strength on the HCA treated sample (Figure 8e) in comparisonwithflakingontheanodizedsample(Figure8f),evenatasmallnormalload. TheTEM andXRDshowedthatAgwasembeddedincrystallizedTiO intheformofcrystallizedAgONPswith 2 Coatings2017,7,45 9of22 diametersbetween10nmand30nm. ThecrystallizedTiO alsocontributedtogoodbioactivity[49]. 2 Coatings 2017, 7, 45   9 of 22  Gaoetal.[91]reportedthatseveralppbofAgreleasedquantitywerecapableofkillingallthebacteria. Coatings 2017, 7, 45   9 of 22  Thereforbeio,athcteivhitiyg [h49r]e. leGaasoe elte vale. l[o91f]A regp(o>rt2e0d0 tphpatb s)erveevraela plepdb sotfr oAngg raenletaismedic qroubaniatiltyp rwoepreer ctiaepsa,bbleu tofr esulted inseverbCkeioiolacltaiiynncgttgsoi  v2ati0lotl1y 7xt h, [i74ce, 9 i4bt]5ay.  c .GtTearooia ie.m tT haple.rr oe[9fvo1e]r ert,eh tpheoec rhtyeigtdoh tc rhoealmet aspseeav lteeirvbaeli ll piotpfy bAa gon f( d>A2r0ge0 d rpeuplebca)es retedov xeqaiucleaidtnyt si,ttNyro wnageP raenO tciampaiancbrd9ol eobC fi o2aa2fl   (NO ) 3 4 3 2 wereadkpdirleolidpnegirn atitlelo st,ht behu beta ercelteseurciltatre.o dTl hyinetr eseeftvooererie,n t hchyeitb hoititgothxhi rceeitlfyeoa. rsTemo l eiamvteipolr onofv oAef gthn (e>a 2nc0yo0t popcoporbme) spreatvotiebaailleictdey sr attrnaodinn rgee adxnuttceimen ttiocaxroincbdiitaytl,o   lower thereleapbNsiroaoe3apPoceOtfrivt4Ai ieatgsyn, + d[b4 uw9Ct] ah.r (eGiNsleauOolpt3 e)er2dt e w sianele. r rs[eve9 vi1ane]dr gdere etcphdyo etroiinttreotdoax  nittchhtiitaeyb t. ea sTlceeotvce teirrmroiaalplyl rtpoaepv btbeio  lt oihitfney h A.ciygbt iotr ectolhemea spfeoadrt imbqiualtiatinoytn ai tnyod f w rneeadrneuo ccpeao ptroaexbsi lcteio to yaf,    Nkceialrl3tiPaniOgn 4 a elaxl nttehdne t Cb aaanc(Ndte Otroia3 )l.2o T wwheeerrr eetf hoaerd erd,e etlhedae s ihnei tgoohf  t Arhegel+e  eawlsehec iltlereov pleyrl teoesf e tArovg ii n(n>gh2 it0bh0iet p irtph aben)  tfrioebrvamecataelteridioa nsl  tarobofi nlnigtay an.n otpimoriecsr otboi aal   properties, but resulted in severe cytotoxicity. To improve the cytocompatibility and reduce toxicity,  certain extent and to lower the release of Ag+ while preserving their antibacterial ability.  Na3PO4 and Ca(NO3)2 were added into the electrolyte to inhibit the formation of nanopores to a  certain extent and to lower the release of Ag+ while preserving their antibacterial ability.    Figure 6. Low and high magnification SEM micrographs of MAO‐0 (a,d); MAO‐0.1 (b,e) a nd   Figure 6. Low and high magnification SEM micrographs of MAO-0 (a,d); MAO-0.1 (b,e) and FMigAuOre‐0 .64.  (Lc,of)w [ 59a]n. d(R hepigrhin tmeda gwniitfhic pateiromn isSsEioMn  fmroimcr o[5g9r]a,p Chosp oyfr igMhAt 2O0‐106  E(al,sde)v; ieMr.)A O‐0.1 (b,e) and   MAO-0.4(c,f)[59].(Reprintedwithpermissionfrom[59],Copyright2016Elsevier.)   MAO‐0.4 (c,f) [59]. (Reprinted with permission from [59], Copyright 2016 Elsevier.)  Figure 6. Low and high magnification SEM micrographs of MAO‐0 (a,d); MAO‐0.1 (b,e) and   MAO‐0.4 (c,f) [59]. (Reprinted with permission from [59], Copyright 2016 Elsevier.)    Figure 7. Low magnification surface (a) and cross‐sectional SEM (b) micrographs for the MAO‐ Ag  Fsaigmuprele s7 .o Lbotawin meda ginn iefilceacttrioonly steu rsfoalcuet i(oan)  aconndt acirnoisnsg‐s e0c.0ti0o2n5a Ml S ECMH3 C(bO) OmAicgr o(g1:r acpohmsp faocrt  tThieO M2 lAayOe‐rA; 2g:   Figure7. Lowmagnificationsurface(a)andcross-sectionalSEM(b)micrographsforthe MAO-Ag spaomropuless T oiObt2a lianyeedr ;i n3:  eblieocctoromlyptaet isbolleu ctioomn pcoounntadi ncionngt a0i.n0i0n2g5  lMay eCrH); 3(Cc)O hOigAhg m (1a:g cnoifmicpataicotn T siuOr2f alacye eSrE; M2:   samplespFmoiogircbuorutoraegs i r7Tna.i peOLhdo2s wl iainny mdeeiracl; gae3tnc:e tibdfrii ocothaclytoaitmot ernpe gssaouitoirlbnuflaaetcl i ceAoo (ngma )ppc aaoornuntdintc adlceir scno ocsinosn‐tvgsaeeirnc0eti.din0o g0tnh 2laael5  ysSeuMErr)Mf;a (C cc(e)bH  [h)6 3im0gC]hi.O c (mrRoOeagpgArrnaigpinfhitc(es1ad tf: iowocrni ott hhsmu epr peMfaramcAcetiO sSsT‐EiAioMOgn   2 layer; 2:poroumsfsraoimTcmripoO l[ge62rs0a l]opa, bhyCtseoa iripnn;yde3rdi:icg abihntiet o ed2cl 0eto1hcm5tar tEop rllaeysgetteivibo isenloeral.lu)c  Atoiomgn pp acoortunictnaledins cicnoogvn e0tra.e0id0n2 it5nh egM sl uaCryHfae3crCe) O;[6(Oc0)]A. h(gRi g(e1ph: rcmionmtaegdpn awcifiti tTchai pOtei2or lmnayisseusri;ro f2na:  ceSEM microgrfparopormhosu [s6i n0T]di,O Cic2o alpateyyrdeirg;t hh3t:a  b2t0ior1ec5og EmilospneavatiilebrAl.e) g copmaprtoiucnleds ccoonvtaeirneindgt lhaeyesru); r(fca) cheig[h6 0m]a.g(nRiefipcartiinotne sduwrfaicteh SpEeMrm  ission micrographs indicated that regional Ag particles covered the surface [60]. (Reprinted with permission  from[60],Copyright2015Elsevier.) from [60], Copyright 2015 Elsevier.)    Figure 8. Cont.    Figure 8. Cont.    Figure 8. Cont.  Figure8.Cont. Coatings2017,7,45 10of22 Coatings 2017, 7, 45   10 of 22  Coatings 2017, 7, 45   10 of 22    Figure 8. Low‐magnification (a) and high‐magnification (b,c) SEM images of the high‐current  Figure 8. Low-magnification (a) and high-magnification (b,c) SEM images of the high-current aannooddiizzaattiioonn ((HHCCAA))‐-ttrreeaatteedd ssaammppllee iinn AAggNNOO33 eelleeccttrroollyyttee;; ((dd)) vvaarriiaattiioonn ooff tthhee ppoorree ddiiaammeetteerrss  aanndd  tthhiicckknneessss ooff tthhee HHCCAA‐-ttrreeaatteedd ssaammpplleess aass aa ffuunnccttiioonn ooff AAggNNOO3.. SSccrraattcchh SSEEMM iimmaaggeess ooff tthhee ssaammppllee  Figure 8. Low‐magnification (a) and high‐magnification (b,c3) SEM images of the high‐current  aannooddiizzeedd iinn tthhee eelleeccttrroollyyttee wwiitthh tthhee AAggNNOO3 ccoonncceennttrraattiioonn ooff 22 gg·∙LL−−11 ((ee)) aanndd tthhee ssaammppllee aannooddiizzeedd iinn  anodization (HCA)‐treated sample in Ag3NO3 electrolyte; (d) variation of the pore diameters and  eetthhyylleennee ggllyyccooll ssuupppplleemmeenntteedd wwiitthh 00..55 wwtt %% NNHH4FF,, 55..00 vvooll %% HH2OO aanndd 55..00 vvooll %% CCHH3OOHH aatt aann aapppplliieedd  thickness of the HCA‐treated samples as a fun4ction of AgNO32. Scratch SEM images 3of the sample  vvoollttaagganee ooodffi z33e00d VV in ff oothrr e11 .e.55l ehhc taraott lrryooteoo mmw itttehem mthppee eArraagttNuurOree3  ((cffo))n sschheoonwtwraeetddio tnthh oeef s s2iig ggnn∙Liiffi−i1cc (aaenn) ttallnyyd ee ntnhhheaa snnaccmeedpdl beb ooannndoddiinnizgge dsst trirnee nnggtthh  oonn tthheeet HhHyCCleAAne‐-t tgrreleyaacttoeeldd s usspaammpleppmlleee n[[66te11d]]..  w((RRiteehpp 0rr.ii5nn wtteetdd % ww NiiHtthh4 Fpp, ee5rr.0mm viiosssls ii%oo nnH ff2rrOoo mamn d[[66 511.0]],, v CCoool %ppyy CrriHigg3hhOttH 22 00a11t 55a nEE allsspeepvvliiieeedrr.. ))  voltage of 30 V for 1.5 h at room temperature (f) showed the significantly enhanced bonding strength  LLiikkeewwonii sstheee,,  aaH CuuAnn‐iitqqreuuaeete ssdtt rrsuaumccttpuulerr ee[6 w1w].i it(tRhhe apar mimntiieccdrro ow-‐/i/thnn aapnneroom‐-mimssooiorrnpp fhhrooomlloo [gg61yy] ,cc Caaonnp yaarllissgooh tbb 2ee0 1oo5bb Ettalasieinnveieeddr. )ii nn CCuu((NNOO3))2  3 2 eelleeccttrroollyyttee dduuee ttoo fifieelldd-‐aassssiisstteedd cchheemmiiccaall eettcchhiinngg ooff NNOO3−−. .HHuuaanngg eet taal.l .[[6622]] bbeelliieevveedd tthhaatt tthhee uussee ooff  CCuu((NNOO3))2 Liiinnkssettweeaiasdde , ooaff u AAngigqNNuOeO s3t raaussct thtuhereee  wleelicetthcrt oarlo ymltyiectremo m‐a/ynaaaynv oao‐vmidoo3itdrhp ehthopeloo tgpeyon tcteiaannlt aciaylslto oc tbyoetx ooitcboittxayiicnoietfdyh  ieonaf C vhuye(maNvOeyt3 a)m2l ieotnasl.  ions. eAleg3c+t2r owlyatse  edausei ltyo  ofixeildd‐iaz3sesdis tteod  hcihgehmeirc avl aeltecnhcineg ( oAf gN2+O),3 −w. Hhuicahn gw eitl la ll.e [a6d2 ] tboe lsieevveedre t hcaytt othteo xuiscei toyf  [61].  HAbigov+walweiCeovnaunets(srN.Ce,  AaOubsg32ii)+l+v2y  awiinnolaesxstnCie dteau aid(zCsN eiouldyfO2  +Ato3 ox)gi2nihNd ciiOgCazhen3u dean( rsNot ovttOh abhel3iee )gen2fh lceuececrrat tr(nvhAonaelgyloret2tneo+  c)xbme,ie wda( Ayifhz ugaie2crvd+th)oh., iwedwTr ihh tlhleiocelxhre iep adwsodiutizeltlelont dsltesi.aoae ldvfT c eEhtyroDete o sXctreoyevxatseoinucrtedilott yxscX y iocPtofoi Sftth yoceEx[oaDi6vcn1iyXfit]y . rm Ham[e6not1edaw]dl.   eXtvhPeaSrt,  confirmed that toxic elements Cu were not incorporated into the coating surface, so copper will not  toxicHeloewmeevnetrs, Cbiuvawleenrt eCnuo2t+ iinnc oCrup(oNrOat3e)2d cianntnootth beec ofuarttihnegr souxrifdaiczeed,s. oTchoe prpeesurlwts ilolfn EoDtdX iraencdtl yXPcoS ntact directly contact the cells to produce cell toxicity. Cross‐sectional images (Figure 9) also indicated that  thececlolnsftiormperdo dthuacte tocxeilcl etolexmiceintyts. CCuro wsse-rsee nctoito innaclorimpoargateesd( iFnitgou trhee 9c)oaatlisnogi snudrifcaacete, dsot hcoaptpheirg whliyll- noordt ered hniagnhol-dyci‐hroearcndtlneyer celosdnw tnaecartne tohp‐eec crhepalelnsn ntdoei lpcsur owladreurtceoe  ctpheelelr tpsouexbnicsdittiryca.u tCelar,ora snsto‐ds eatchtcieoo nmsaupl biamscttargalaetyes ,e( Fraicngaudnr eab 9 e)c ooalbmssope iranvcdeti dclaabteyedet wrt hecaeat nn tbhee  onbasneorphvioegrdhe lyab‐reortrawdyeesreeandn  dtnhatenh oen‐csahunabonspntorealrset e w.aeBrrreeas yipdse eraspn,etdnhd etichauedl adsriu ttbioos nttrhoaetf esP.u ObBs3et−rsaiidtnee, stha, netdhe elae  cactdormodlipytiatoecntf  ulaoryft ehPre Orcai34mn−   pbierno  vthede  electrooblysetrev feudr tbheetrw iemenp rtohve enda tnhoep coerell ualrarra ypse rafnodr mthaen cseu b[9st2r,a9t3e.] . BMe4soidreeos,v ethre,  Aa dwdeitlilo‐dn eofifn PeOd 3m−  iicnr ot‐h/en ano‐ the cellular performance [92,93]. Moreover, A well-defined micro-/nano-morphology4 can also be morpehleocltorgoyly tcea fnu ratlhseor  bime parcoqvueidr ethde b cyel tluhliasr H peCrAfo rtmecahnnceiq [9u2e,9 i3n] .e Mleocrteroovlyetre, As,  wsuecllh‐d aesf iCneud( NmOicr3o)2‐,/ nZann(oN‐O3)2,  acquiredbythisHCAtechniqueinelectrolytes,suchasCu(NO ) ,Zn(NO ) ,(Na PO +Ca(NO ) + (Na3PmOo4r +p hCoalo(NgyO c3a)n2  +al sNoa b2eS iaOcq3)u iarnedd  b(Ny tah3iPs OH4C +A A tegcNhnOiq3 u+e N ina e2lSeicOtr33o)2l, ywtehs,i cshuc wh3 ial2sl  Cexut(eNn3Od3 )i2t,4s Z anp(NplOic3a)2t, i3on2.  Na SiO )and(Na PO +AgNO +Na SiO ),whichwillextenditsapplication. 2 (Na33PO4 + Ca(N3O3)42 + Na2SiO3)3 and (N2a3PO34 + AgNO3 + Na2SiO3), which will extend its application.      Figure 9. (a) Low and (b,c) high magnification cross‐sectional SEM images of the high‐current  FFiigguurree 99.. ((aa)) LLooww aanndd ((bb,,cc)) hhiigghh mmaaggnniiffiiccaattiioonn ccrroossss‐-sseeccttiioonnaall SSEEMM iimmaaggeess ooff tthhee hhiigghh‐-ccuurrrreenntt  anodization (HCA)‐treated sample in Cu(NO3)2 electrolyte indicated the presence of highly‐ordered  aannooddinizzaaanttoiioo‐cnnh a((HHnnCCeAlAs ))[‐-6tt2rr]ee. aa(Rtteeeddp rssiaanmmtedpp llwee iiitnnh  pCCeuurm((NNisOOsi33o))n22  eferlloeemccttr r[o6ol2ly]y,t teCe oiinpndydriicicgaahttete d2d0 t1thh6e eE plpsrreeevssieeenrn.c)c ee ooff hhiigghhllyy‐-oorrddeerreedd  nnaannoo‐-cchhaannnneellss [[6622]].. ((RReepprriinntteedd wwiitthh ppeerrmmiissssiioonn ffrroomm [[6622]],, CCooppyyrriigghhtt 22001166 EEllsseevviieerr..))  As an essential trace element for living organisms, Cu participates in a variety of metabolic  AAacsst ivaainnti eeesss, ssseeonn itttii aamll itgtrrhaatcc beee  eemlleeommreee nsnutt itffaoobrrl ell iifvvoiirnn aggn tooibrrgagcaatnneriisisamml assp,, pCCliuuc apptiaaornrtt iicccoiimppaapttaeersse diinn t oaa A vvgaa. rrZiieehttuyy  eoot ffa lmm. [ee6tt3aa] bboolliicc  aaccttiivviipttirieeesps,,a ssroeod ii tt pmmoiriggohuhstt  bbaeen dmm oonrraeen ssouu‐siitttraaubbcllteeu rffeoodrr  aaCnnutti‐ibibnaacccottreeprroiiaarall taaepdp pplTliiiccOaat2t iioocnon acctoionmmgspp aabrryee ddM ttooA AOA gg.i. nZZ hahu u neeott vaaelll..   [[6633]]  pprreeppaaCrreuedd‐c ponoptroaoriunoisunasgn  daelnnedcat nroonl-aysnttero u‐ccsotturnurteacidtnuiCnreugd -i 0n.Cc0o5ur ‐piMnor caoβtr‐epGdoPTr, aiOt0e.21dc  oMTat iiOnC2gA s cboaynatMdi nA0g.Os0 5i bnMya  nMcoovApepOleC r uina-cc oeatna ttaeni noivnegl   Celue‐cctor(oCnltuya(tiCenHinc3oCgn OteOali)en2c)i tnartgo 1ly60.t.5e0  A5c∙dMomnt−β2a if-noGrin P4,g m 0i.0n1..0 TM5h eMC reA suβal‐tGn sdPho, 0w0.e0.d15  tMhMat  cCCoupA‐Tp ieOarn2 acdoc aet0tia.n0tge5s  d(MCisup (lcaCoyHpedp CerorO uOgahc) et)ataet  3 2 micropores or crater structures with diameters of 3–5 μm (Figure 10a), and the coatings were fully  (1C6.u5(CAcHo·vd3eCmreO−dO2 w)f2oi)tr ha 4tn 1ma6n.io5n‐ .gArTa∙dihnmes −rw2e fisotuhrl  t4a  smshizoinew . oeTfdh 3et0 h–rae5s0tu Cnltum s- hT(ioFOiwg2uercdeo  ta1ht0aibnt) g Casut d‐aTi sihpOilg2a hyceoerad mtirnaoggunsg idfhiicsamptilioacnry.o epTdho rero eusgohr  mcriactreorpsotrruesc tourr ecsrawteirt hstdruiacmtuerteesr swoitfh3 d–5iaµmmete(Frsig oufr 3e–150 μa)m, a (nFdigtuhree c1o0aat)i,n agnsdw tehree cfoualtlyincgos vwereerde fwuiltlyh  antimicrobial activity of Cu‐TiO2 coatings was improved due to the inhibitory effect of Cu.  cnoavneor-egdra winisthw inthanaos‐igzreaionfs3 0w–i5t0h nam s(iFzieg uorfe 3100–b5)0a tnamh i(gFhigeurrme a1g0nbifi) caatt iao nh.iTghheera nmtiamgincirfoicbaiatiloanc.t iTvihtey  Meanwhile, the osteoblastic adhesion, spreading, early proliferation and late differentiation on   antimicrobial  activity  of  Cu‐TiO2  coatings  was  improved  due  to  the  inhibitory  effect  of  Cu.  Meanwhile, the osteoblastic adhesion, spreading, early proliferation and late differentiation on

Description:
Therefore, the application of the antimicrobial agents into implant surfaces to . Summary of the characteristics of antibacterial coating by MAO. Ti Alloy. Electrolyte. Electrical Parameter .. Recent studies [45,80,81] have shown that biological or antibacterial .. a set of magnets beneath the targ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.