This article was downloaded by: On: 24 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Combustion Theory and Modelling Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713665226 Heterogeneously catalysed combustion in a continuously stirred tank reactor—low-temperature reactions M. Nelson a; G. Wake b; X. Chen c a Department of Fuel and Energy, The University of Leeds, Leeds, LS2 9JT, UK. b Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. c Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand. To cite this Article Nelson, M., Wake, G. and Chen, X.(2000) 'Heterogeneously catalysed combustion in a continuously stirred tank reactor—low-temperature reactions', Combustion Theory and Modelling, 4: 1, 1 — 27 To link to this Article: DOI: 10.1088/1364-7830/4/1/301 URL: http://dx.doi.org/10.1088/1364-7830/4/1/301 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Combust.TheoryModelling4(2000)1–27.PrintedintheUK PII:S1364-7830(00)02914-4 Heterogeneously catalysed combustion in a continuously stirred tank reactor—low-temperature reactions MINelson†,GCWake‡andXDChen§ †DepartmentofFuelandEnergy,TheUniversityofLeeds,LeedsLS29JT,UK ‡DepartmentofMathematicsandStatistics,UniversityofCanterbury,PrivateBag4800, Christchurch,NewZealand §DepartmentofChemicalandMaterialsEngineering,TheUniversityofAuckland, PrivateBag92019,Auckland,NewZealand Received19March1999,infinalform22November1999 Abstract. Inthispaperamodelfortheheterogeneouslycatalysedreactionofagaseousspecies undergoingasingle-stepexothermicreactioninawellmixeddiabaticcontinuouslystirredtank reactorisdevelopedandanalysed. Low-temperaturereactionconditionsareassumed,sothatthe degradationoftheinflowspeciesinthegasphaseisnegligible. Theadsorptionanddesorptionof theactivespeciesontoasolidcatalystlayerisexplicitlymodelled. Undertheconditionsused,theclassiccombustionS-shapesteady-statecurveisnotexhibited. 0 01 Insteadthesteady-statediagramconsistsoftwodisjointsolutioncurves:asolutioncurvecontaining 2 y asteady-statebranchcorrespondingtofullcoverageofthecatalystwithnoconversion;and,an r a isolacontainingasteady-statebranchthatcorrespondstolowcoverageofthecatalystwithahigh u an conversionoftheinflowspecies. Thesteady-statecurvecontainsoneextinctionpointandno J 4 ignitionpoints. Consequentlytheinitialconditionsdetermineontowhichsteadystatethesystem 2 evolves. Largevariationsinthecriticalcatalyticsurfaceareaarefoundastheinitialtemperature 0 :5 ofthereactorisvaried.Thisisexpectedtohavesignificantpracticalimplications. 5 0 : t A d e d a o nl Nomenclature w o D The subscripts g and s refer to properties of the gas and solid phases, respectively. The subscriptsc;d andr refertochemisorption,desorptionandcatalyticreaction. Thesubscript j cantakethevaluescandex. A(cid:3)d Non-d(cid:18)imensionalizedp(cid:19)re-exponentialfactorfordesorption (—) A(cid:3) D LkbTrMAcpg d h(cid:31) s:g A Thegas-phasereactant (—) A Pre-exponentialfactorofthegas-phasereaction (s−1) g A(cid:3) Non-dimensionalizedpre-exponentialfactorforthe g gas-ph(cid:18)asereactio(cid:19)n (—) c V (cid:26) A(cid:3) D pg g g A g (cid:31) S g g:s in Ar Pre-exponential(cid:20)factor(cid:21)ofthecatalyticreaction (s−1) E H E A D r exp r r RT2 RT c c 1364-7830/00/010001+27$30.00 ©2000IOPPublishingLtd 1 2 MINelsonetal A(cid:3) Non-dimensionalizedpre-exponentialfactorofthe r catalyt(cid:18)icreaction (cid:19) (—) A(cid:3) D LMAcpgH r (cid:31) T s:g r [A−M] Theconcentrationofspecies.A−M/ onthe s s catalystsurface (molm−2) B Theproductoftheirreversibleexothermicreactionof speciesA (—) CR Conversion(cid:18)ratioof(cid:19)theinflowspecies (—) a(cid:3) CRD100 1− a(cid:3) 0 D(cid:3) Anon-dimensionalizedvariable (—) R D(cid:3) D cpgMA E Activationenergy (Jmol−1) i E(cid:3) Non-dimensionalizedactivationenergy (—) i E(cid:3) DE =.RT / i i r G(cid:3) Miscellaneousnon-dimensionalizedvariable (—) (cid:26) V G(cid:3) D g g LMASin H Hypotheticalrampingrateatwhichthecharacteristic 10 temperatureofthecatalyticreactionisdetermined (Ks−1) 0 2 L Densityofactivecatalystsites,perunitsurfaceareaofthe y uar catalyst,attimet D0 (molm−2) n Ja MA ThemolecularweightofspeciesA (kgmol−1) 0 24 [M]s TheconcentrationofspeciesMs onthecatalystsurface (molm−2) 5:5 M(cid:3)s Thenon-dimensionalizedconcentrationofspeciesMs onthe 0 catalystsurface (—) : d At M(cid:3)s D[M]s=LD1−(cid:18)A de Q Exothermicityofchemisorption (Jmol−1) a c wnlo Qc D−1Hc Do Q Gasphasereactionexothermicity (Jmol−1) g Q D−1H g g Q(cid:3) Non-dimensionalizedreactionexothermicity (—) i Q(cid:3) DQ =.RT / i i r Q Exothermicityofthecatalyticreaction (Jmol−1) r Q DQ +Q g c r R Theidealgasconstant (JK−1mol−1) S Activesurfaceareaofthecatalyst (m2) c S Theexternalsurfaceareaofthereactionvessel (m2) ex S Internalsurfaceareaofthereactionvessel (—) in S(cid:3) Non-dimensionalizedsurfacearea (—) j S(cid:3) DS =S j j in T(cid:3) Non-dimensionalizedtemperature (—) i T(cid:3) DT =T i i r T(cid:3).0/ Thetemperatureattimet(cid:3) D0 (—) i T Thetemperatureofthecoolantsurroundingthereactorvessel (K) a Heterogeneouslycatalysedcombustion 3 T(cid:3) Thenon-dimensionalizedcoolanttemperature (—) a T(cid:3) DT =T a a r T Temperature (K) i T Areferencetemperature (K) r T Temperatureoftheinflow (K) 0 V Volume (m3) i a ConcentrationofspeciesAinthereactorvessel (molm−3) a(cid:3) Non-dimensionalizedconcentrationofspeciesAinthe reactorvessel (—) a(cid:3) Da.MA=(cid:26)g/ a TheconcentrationofspeciesAinthefeed (molm−3) 0 a(cid:3) Thenon-dimensionalizedconcentrationofspeciesA 0 inthefe(cid:0)ed (cid:1) (—) a0(cid:3) Da0 MA=(cid:26)g a(cid:3).0/ Thenon-dimensionalizedconcentrationofspeciesAin 0 thereactorattimet(cid:3) D0 (—) c Heatcapacity (JK−1kg−1) cp(cid:3)i Theratiooftotalheatcapacityofthesolidphasetothe t totalheatcapacityofthegasphase (—) c (cid:26) V c(cid:3) D ps s s t c (cid:26) V pg g g 0 h Planck’sconstant (Js) 1 20 k Boltzmann’sconstant (JK−1) b uary ki Rateconstant (mols−1) Jan nb ThenumberofmolesofspeciesBproducedbythereaction 4 ofonemoleofspeciesAorthereactionofonemoleof 2 :50 species.A−M/s (—) 05 q Feedflowrate (m3s−1) At: q(cid:3) Non-dim(cid:18)ensiona(cid:19)lizedfeedflowrate (—) d c (cid:26) ade q(cid:3) Dq pg g nlo (cid:31)s:gSin Dow s Thestickin(cid:20)gprob(cid:21)ability (–) −E s Ds exp c 0 RT s s Maximumstickingprobability (—) 0 t Time (s) t(cid:3) Non-dimensionalizedtimescale,baseduponthetimescale ofNewtoniancooling (—) (cid:31) S t(cid:3) D g:s in t c (cid:26) V pg g g t Theresidencetimeoftheflowinthereactor (s) res t DV =q res g v(cid:3) Non-dimensionalizedmeanmolecularvelocityofspeciesA A (cid:18) (cid:19)(cid:26) (cid:27) c (cid:26) RT 1=2 v(cid:3) D pg g r A (cid:31) 2(cid:25)M s:g A 1H Enthalpyofchemisorption (Jmol−1) c 1H Gasphasereactionenthalpy (Jmol−1) g 4 MINelsonetal (cid:18) Thenon-dimensionalizedconcentrationofspecies[A−M] A s onthecatalystsurface (—) (cid:18) D[A−M] =L A s (cid:18) .0/ Thenon-dimensionalizedconcentrationofspecies[A−M] A s onthecatalystsurfaceattimet(cid:3) D0 (—) (cid:26) Density (kgm−3) i (cid:31) Heattransfercoefficientbetweenthegasphaseandthe g:s reactorvessel (Js−1m−2 K−1) (cid:31) Heattransfercoefficientbetweenthereactorvesseland s:a thecoolant (Js−1m−2 K−1) (cid:31)(cid:3) Non-dimensionalizedheattransfercoefficientbetweenthe s:a reactorvesselandthecoolant (—) (cid:31)(cid:3) D(cid:31) =(cid:31) s:a s:a g:s Unlessotherwisespecifiedwetakethefollowingtypicalparametervalues: E D 0Jmol−1, c L D 1019 molecules=m2 D 0:166 (cid:2) 10−4 mol m−2, MA D 0:1 kg mol−1, Qc D 60(cid:2)103 J mol−1, S D S , S D S , S D 5(cid:2)10−2 m−2, T D 298 K, T D 298 K, c in ex in in a r V D 10−3 m3, V D 2:5(cid:2)10−6 m3, b D 0 mol m−3, c D 1040 J kg−1 K−1, c D g s 0 pg ps 400Jkg−1K−1,q D0:125(cid:2)10−3m3s−1,s D1,(cid:26) D1:1kgm−3,(cid:26) D8:0(cid:2)103kgm−3, 0 g s (cid:31) D(cid:31) D30. g:s s:a The appropriate values for physical constants are: h D 6:63 (cid:2) 10−34 J s, k D b 010 1:380622(cid:2)10−23JK−1,R D8:31441JKmol−1. 2 y r a u an 1. Introduction J 4 2 0 A catalyst is a substance that increases the rate at which a chemical system approaches 5 5: equilibrium, without being consumed in the process. The catalyst does this by providing 0 : an alternative reaction pathway that significantly changes the kinetic parameters (activation t A d energy,orderofreaction,ratecoefficient)ofthesystem. Thishastwoimportantconsequences. e ad Firstly,thecatalystincreasestherateofreaction,favourablereactionratesbeingachievedat o l n muchlowerreactiontemperatures. Thiseffectoftenappearstobeabsoluteratherthanrelative: w o D under the conditions concerned the presence of the catalyst is essential for the achievement of a significant rate of reaction. Secondly, a particular catalyst may promote one reaction pathwaywhereseveralchannelsmayotherwisebeaccessible,resultinginasubstantialyield ofspecificproductswhichwouldotherwisebeobtainedininsignificantamounts. Thisfeature ofcatalysis,wherebythereactionisdirectlyalongaspecificroute,greatlyenhancesitsvalue; andisutilizedinthemajorityofcatalyticprocessesusedindustrially. The distinguishing feature of a heterogeneous catalysed reaction is the involvement of asurface. Thissurfaceisneitherfedintothereactor, norwithdrawnfromit, norconsumed duringthecourseofthereaction,uponwhichthecatalyticreactionoccurs. Itisdesirablein heterogeneouscatalysistohavealargesurfaceareaforreaction. Inpracticethesurfacearea of the catalyst is frequently many orders of magnitude greater than the surface area of the reactoruponwhichitisdispersed. Thebasicphysicalchemistryofheterogeneouscatalystsis wellunderstoodintermsoftheadsorptionanddesorptionofactivespeciesuponthecatalyst’s surface[1–3]. Inthispaperweconsiderthesimplestmodelforthenon-isothermalcatalyticconversion ofagaseouschemicalspeciesundergoingasinglestepexothermicreactioninacontinuously stirred tank reactor (CSTR). We explicitly model adsorption and desorption processes on Heterogeneouslycatalysedcombustion 5 the catalyst. As the steady-state solutions drive the dynamics our approach is to identify thebifurcationalstructureofourmodelandsubsequentlytoinvestigatehowexperimentally controllableparametersaffectthebehaviourofthereactor. Althoughourmodelcontainsboth thehomogeneousandheterogeneousreactions,inthispaperweassumethatthetemperature ofthevesselremainssufficientlylowthatthehomogeneousreaction,thatis,thereactioninthe bulkgas, isnotinitiated. Consequently, weinvestigatewhichmultiplicitiesandoscillations arepurelyduetothecatalyticsurface. Themodelthatwedevelopisanaturalcounterpointtotheclassicsituationofasingle-step exothermicreactioninaCSTR.Anexcellentintroductiontothemathematicalmodellingof theseproblemsisthebookbyGrayandScott[4]whichreviewsthebehaviourofisothermaland non-isothermalsystems,includinghomogeneouscombustioninaCSTRandheterogeneously catalysed reactions. We discuss experimental and theoretical results for heterogeneously catalysedreactionsinsection1.1. 1.1. HeterogeneouscombustioninaCSTR Heterogeneous catalytic systems have been widely studied, both experimentally and theoretically. Mathematical modelling of such processes can be classified depending upon theapproachtakentoaddressthreeissues. (cid:15) The reactor system: for example, assemblages of catalyst particles in a gradientless environment,CSTRmodels,differentialreactormodels,plugflowreactormodels,porous 0 catalystparticles/pelletsandtubularreactors. 1 20 (cid:15) Themodellingofphysicalandchemicalprocesses,isothermalornon-isothermaloperating y ar conditions,theassumptionofaconstantpartialpressureoftheactivegas-phasespecies, u n a the formulation of the catalytic rate constant, the dependence of the activation energy J 24 foradsorptionuponsurfacecoverageandnon-uniformdistributionofadsorbatesonthe 50 catalyticsurface. : 05 (cid:15) Themodellingtechniqueemployed: spatiallystructuredmodels,non-spatiallystructured : At models,MonteCarlo-typesimulationsandcellularautomatamodels. d e ad Models for heterogeneous catalysis were comprehensively reviewed by Razon and o l n Schmitz [5]. Recently, very detailed models for heat-transfer processes in heterogeneously w o D catalysed reactions have been developed [6]. Catalytic combustion models combining multistepsurface-chemistrymechanismswithmassandheattransferhavebeenpresentedatthe ‘catalyticcombustion’sessionsatthe1996[7–9]and1998[10–12]internationalsymposiums oncombustion(Naples,Boulder). Homogeneous combustion in a CSTR has been extensively studied by considering a prototype model in which the combustion process is represented as a single-step reaction. The archetype for heterogeneous combustion is a single-step reaction on a catalyst combined with absorption and desorption processes: the fundamental chemical processes in catalytic combustion. The aim of this paper is to investigate such a model. IsothermalheterogeneouslycatalysedreactionsinaCSTR,assumingLangmuir–Hinshelwood kinetics, were comprehensively treated by Chang and Aluko [15,16] who showed that even simple Langmuir–Hinshelwood mechanisms for bi-molecular reactions can have oscillatory behaviour. Therearesurprisinglyfewexamplesofthenon-isothermalversionofthisparadigm in the literature. In fact, most models in the mathematics literature treat heterogeneous catalysedreactionsasasingle-stepexothermicreaction,ignoringtheadsorptionanddesorption processes. TheporouscatalystparticlemodeldevelopedbyElnashaieandCresswell[13,14] appearstobetheonlysimplemodelthatexplicitlymodelsadsorptionanddesorptionprocesses, 6 MINelsonetal ratherthanmodellingtheseastheproductofamasstransportcoefficientandadifferenceof concentration levels. They considered the case when the active species is weakly adsorbed ontothecatalystsurface. Subramanian and Balakotaiah [17] have classified the steady-state solutions and the dynamic behaviour of a well mixed two-phase heterogeneous catalytic reactor model. In additiontoassumingadiabaticconditionstheyrepresentadsorptionanddesorptionprocesses by a simple mass transfer process and assume that the heat of adsorption is negligible. In a latter paper Christoforatou et al [18] develop a runaway criterion for adiabatic catalytic reactors, considering both plug flow and CSTR reactors. Although the latter paper uses the modeldevelopedinSubramanianandBalakotaiah[17]itiscuriousthatneitherpaperrefers totheother. Christoforatouetal[18]implythatiftheresidencetimeiskeptbelowacritical levelcorrespondingtoanignitionlimitpoint,thenthetemperatureofthereactorcannotrise to an undesirable level. This is only true if perturbations on the reactor parameters cannot occur,asthehigh-temperatureignitionsteadystatecoexistswiththelow-temperaturesteady state over a range of residence times between those corresponding to the extinction limit pointandtheignitionlimitpoint. Furthermore, theresultsofSubramanianandBalakotaiah [17] show that there are some operating conditions in which perturbations on the reactor conditionscancausethetemperaturetoreachtheignitionstateforarbitrarysmallresidence times. WebelievethatthisisthefirstexemplarmodelforheterogeneouscatalysisinaCSTRto includenon-isothermaladsorption,desorptionandcatalyticreactionsteps. 0 1 0 2 2. Descriptionofthemodel y r a anu Wemodelagaseouschemicalspecies(A)flowingthroughadiabaticcontinuouslystirredtank J 4 reactor. Thefluidandsolidphasesareassumedtobeinaperfectlymixedsystem, i.e.there 2 0 isnospatialvariationofboththetemperatureandthereactantconcentrationinthesolidand 5 : 05 fluidphases. t: The active species (A) undergoes a single, irreversible, exothermic reaction, producing A d n moles of an inert product (B). This reaction can take place either in the gas phase, the e b d a homogeneousreactionoronasolidcatalystthatisdispersedonthewallsofthereactorvessel, o l wn theheterogeneouscatalysedreaction. Inbothcasesweassumethatthedecompositionreaction o D canbemodelledusingArrheniuskineticsandtheproductsofeachreactionarethesame. The dynamics of the chemical and physical processes are modelled by considering the interactionbetweenthreezones: thewallsofthereactor,uponwhichthecatalystisdispersed; the gaseous reaction zone within the reactor; and the coolant surrounding the reactor. For simplicityeachzoneisassumedtobewellmixed. Theresultingmodelcontainsequationsfor solid- and gas-phase processes which are coupled through inter-phase heat (convective) and mass(adsorptionanddesorption)transfer. 2.1. Physicsofthereactormodel TheCSTRisassumedtobecontainedwithinacoolingsysteminwhichtheflowrateofthe coolantcanbequicklymanipulatedtoobtaintightcontrolofthecoolanttemperature. Wedo notfollowRussoandBequette[19,20]andmodelthecoolantdynamics. The reactor walls are assumed to be thermally thin, by which it is meant that there is no temperature gradient across them. Heat transfer between the reactor walls and the coolant/reactorinterioraremodelledbyNewtoniancooling. Theassumptionthatthereactor walls are thermally thin is standard in the literature for simplicity. We use the standard Heterogeneouslycatalysedcombustion 7 Figure1.Schematicrepresentationofthemodelgeometry. hypothesesthatthereactorvesselhasconstantvolume,perfectmixingandconstantphysical 0 parameters. Thegeometryofthemodelisshowninfigure1. 1 0 2 y r a u 2.2. Theheterogeneousmodel n a J 24 Thecatalystisassumedtobedispersedalongthewallsofthereactor. Itshouldbenotedthat 50 the surface area of the catalyst is not in general that of the reactor but is many times larger; : 05 typically the surface area is (cid:24)300 m2 per gram of catalyst. We assume that heat transfer : At betweenthedispersedcatalystandthesurfaceofthereactorwallsissuchthattheyareatthe ed sametemperature. d a o Wemodelthecatalyticchemistrybythereactionscheme l n w Do A +M (cid:10).A−M/ (1) g s s .A−M/ !n B +M (2) s b g s where M is the concentration of unoccupied active sites (mol m−2) and .A−M/ is the s s concentrationofactivesitesoccupiedfollowingadsorptionofA(molm−2). Weassumethat theproductspecies(B )isnotadsorbedbythecatalyst. g Thisschemecomprisesthreesteps: non-dissociativechemisorptionofspeciesAontothe surfaceofthecatalyst,reaction(1);removalofspeciesAfromthesurfaceofthecatalystby desorption, reaction (1); and the degradation of the absorbed species in a surface reaction, reaction(2). Weassumethattheproductsofreaction(2)arethesameasforthehomogeneous reaction and that they are not adsorbed by the catalyst. We use the subscripts c;d and r to refertokineticpropertiesofthechemisorption,desorptionandsurfacereaction,respectively. Notethatthereisaconservationrelationshipfortheconcentrationofactivesites M .t/+.A−M/ .t/DM .t D0/DL (3) s s s whereListhedensityofactivecatalyticsites. 8 MINelsonetal 2.2.1. Adsorptionkinetics. Therateofnon-dissociativeunimolecularadsorption A +M !.A−M/ (4) g s s isgivenbytheproductoftheimpingementrateatthesurface(theKnudsencollisionfactor), thestickingprobability(s)andatermrepresentingtheprobabilitythatasiteisempty. Thislast termismodelledusingLangmuir’ssiteexclusionprinciple. Therateofadsorption(mols−1) is[3] (cid:26)(cid:18) (cid:19) (cid:27) RT 1=2 [M] k DS g a s s: (5) a c 2(cid:25)MA L Thestickingcoefficient(s)iswrittenintheform (cid:20) (cid:21) −E s Ds exp c : (6) 0 RT s HereE canbeinterpretedeitherasanactivationenergyforstickingorasanactivationenergy c forconvertingtrappedimpingedspeciesintotheirfinalstate. FrequentlyE isnegligible. c Adsorption is almost invariably an exothermic reaction. We denote by Q the c exothermicityofchemisorption(Q D−1H ). c c 2.2.2. Desorptionkinetics. Thedesorptionreaction 010 .A−M/s !Ag+Ms (7) 2 y r ismodelledusingtransitionstatetheory,inwhichitisassumedthatdesorptionproceedsvia a u an anenergeticallyactivatedtransitionstatethatisintermediateinstructurebetweenthereactant J 24 (.A−M/s)andproducts(Ag andMs). Itisassumedthattheactivatedcomplexexistsinlow 0 concentrationinequilibriumwiththereactants,therebyenablingtheapplicationofstatistical 5 : 05 theory. In addition we assume that the standard entropy of activation of the transition state t: is zero, which implies that there is no change in molecular structure between the adsorbed A d species and the transition state, and that the desorption activation energy is the sum of the e ad bindingenergyandactivationenergyforadsorption(−1H +E ). lo c c wn Therateofdesorptionisthengivenby[21] o D (cid:20) (cid:21) k T −.Q +E / k DS b s exp c c [A−M] : (8) d c s h RT s Theheatofdesorptionis−Q . c 2.2.3. Thecatalyticreaction. TheArrheniusratecoefficientforthecatalyticreaction .A−M/ !n B +M (9) s b g s isgivenby (cid:20) (cid:21) −E k DA exp r [A−M] : (10) r r s RT s Wewishtoinvestigatehowthedynamicsofourmodeldependsuponthekineticsofthis reaction. However,itisnotsensibletocarryoutsuchaninvestigationusingthisformulation; duetotheexponentialdependenceoftherateconstant,smallchangesintheactivationenergy (E )havealargeeffectonthereactionrate. r Heterogeneouslycatalysedcombustion 9 Wethereforeuseanapproachwhichhasbeenuseful,bothexperimentallyandinmodelling, inthepyrolysisofpolymersandusetheconceptofa‘characteristicreactiontemperature’and writetherateconstantintheform (cid:20) (cid:18) (cid:19)(cid:21) HE E 1 1 k D r exp r − .A−M/ (11) r RT2 R T T s c c s whereT isthecharacteristictemperatureofthereaction,HisanominalheatingrateandE c r remainstheactivationenergy. Thecharacteristictemperatureofapolymerismeasured,ata givenheatingrate,byusingthemethodologyofthermogravimetricanalysis[22]. Thebasic conceptofthermogravimetricanalysis,heatingasmallsampleatauniformheatingrate,isthe sameasfortemperatureprogrammeddesorption,whichisastandardtechniqueinthefieldof catalysisformeasuringthedesorptionkinetics. Wearenotsuggestingthatthereactionkinetics forcatalyticreactionscanbeexperimentallydeterminedusingsuchatechnique. Wearewriting therateconstantintheformofequation(11),ratherthanequation(10),fortheoreticalreasons. Note that these formulations are equivalent with the pre-exponential factor in equation (10) definedby (cid:20) (cid:21) HE E A D r exp r : (12) r RT2 RT c c Note that if the pre-exponential factor and activation energy for a catalytic reaction are knownthenatheoreticalcharacteristictemperaturecanbecalculated,assumingaheatingrate. 10 TheoverallreactionenthalpyfortheconversionofonemoleofAtonb molesofBisthe 20 same,regardlessofwhetherthisoccursinthegasphaseorviatheheterogeneousroute. Hence y r wehavetherelationship a u n 4 Ja Qg DQc+Qr: (13) 2 :50 InwhatfollowswefixQg andvaryQc,definingQr bytherelationshipinequation(13). 5 0 : t A 3. Modelequations d e d a o l 3.1. Dimensionalizedequations n w o D Ourmodelis (cid:20) (cid:21) (cid:20) (cid:21) da −E k T −.Q +E / V Dq.a −a/−V A exp g a+S b s exp c c [A−M] g 0 g g c s dt RT h RT g s (cid:26)(cid:18) (cid:19) (cid:27) RT 1=2 [M] −S s g a s (14) c 2(cid:25)MA L (cid:20) (cid:21) (cid:26)(cid:18) (cid:19) (cid:27) d[M ] k T −.Q +E / RT 1=2 [M] S s DS b s exp c c [A−M] −S s g a s c c s c dt h RTs 2(cid:25)MA L (cid:20) (cid:18) (cid:19)(cid:21) HE E 1 1 +S r exp r − [A−M] (15) cRT2 R T T s c c s (cid:20) (cid:21) (cid:26)(cid:18) (cid:19) (cid:27) d[A−M] k T −.Q +E / RT 1=2 [M] S s D−S b s exp c c [A−M] +S s g a s c c s c dt h RTs 2(cid:25)MA L (cid:20) (cid:18) (cid:19)(cid:21) HE E 1 1 −S r exp r − [A−M] (16) cRT2 R T T s c c s
Description: