This article was downloaded by: On: 24 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Combustion Theory and Modelling Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713665226 Numerical modelling of premixed gaseous combustion by the boundary- domain integral method N. Samec a; L. Škerget a a Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia Online publication date: 01 January 1999 To cite this Article Samec, N. and Škerget, L.(1999) 'Numerical modelling of premixed gaseous combustion by the boundary-domain integral method', Combustion Theory and Modelling, 3: 1, 1 — 12 To link to this Article: DOI: 10.1088/1364-7830/3/1/001 URL: http://dx.doi.org/10.1088/1364-7830/3/1/001 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Combust.TheoryModelling3(1999)1–12.PrintedintheUK PII:S1364-7830(99)88808-1 Numerical modelling of premixed gaseous combustion by the boundary–domain integral method NSamecandLSˇkerget UniversityofMaribor,FacultyofMechanicalEngineering,Smetanova17,SI-62000Maribor, Slovenia Received28October1997,infinalform5October1998 Abstract. Thenumericalprocedureofcombustionmodellingbytheboundary–domainintegral method(BDIM)ispresented,basedondetailedchemicalandphysicalprocessesofthepremixed gaseousfuel. Theboundaryelementmethodisemployedtosolvetheconservationequationsof overallmass,momentum,energyandmassspecies.Thelawofmassactionisappliedtodetermine thechemicalreactionratesrepresentingthebasisofthesourcetermsintheconservationequations for mass species. A freely propagating flame including the forced ignition of a homogenous hydrogen–air mixture is calculated as an example problem of the numerical simulation of the combustionprocesses. 0 1 20 1. Introduction y r a nu In general, the freely propagating premixed flame is a very complex combustion problem a J whichrequiresthesimultaneousconsiderationofbothfluiddynamicsandchemicalkinetics 4 2 5 foritssolution[1,2]. However,itcouldbeofinterestinthetheoreticalstudyoftheinfluential 5 5: factorsoftheinteractionsbetweenchemicalandphysicaltransportprocessesandpollutants 0 : formation. Furthermore, its detailed flame structure may be of great assistance in the better t A understandingofchemicalkineticsinacombustionenvironment. d e ad Forthepurposesofthecombustionmodeldescribedinthispaper,adetailedflamemodel o nl is defined as one in which, in addition to fluid convection, both the chemical kinetics as w o D well as the diffusive transport of the various species involved in the chemical reactions are considered. Diffusivetransportprocessesincludethermalconduction,multispeciesdiffusion andviscosity. Theindividualimportanceoftheseprocessesvariesfromrichtoleanmixtures, anditisespeciallynotableattheignitionandquenchingofpremixedgases. Greatattention is given to solving the diffusion–convective transport processes, because they play a very importantroleinpremixedflames. Simulationofafreelypropagatingflamewithignitioneffectsisintrinsicallyatemporal problem [3], hence, an accurate time-dependent calculation procedure is applied consisting of two computational parts. Fluid dynamic effects of the homogenous combustible mixture are considered only in the first computational part. In the second part the calculation of sourcetermsofthediffusion–convectiontransportequationsisperformedbasedonadetailed transport and reaction mechanism. The ignition simulation is performed for a prescribed ignition temperature for a given combustible mixture at one fixed region of the discretized domain. Thecomputationoftheflamespreadingisbasedonthesimultaneousconsideration ofbothcomputationalpartsbyapplyingaverysmalltimeincrement. 1364-7830/99/010001+12$19.50 ©1999IOPPublishingLtd 1 2 NSamecandLSˇkerget 2. Governingequations In the mathematical model of premixed gaseous flame the Navier–Stokes equations representing a set of nonlinear partial differential equations (PDE) of viscous fluid motion of a chemically reacting flow have been applied which can be written as the conservation equationsof[4] overallmass: @(cid:26) @t + .(cid:26)w /D0 (1) j @t @x j momentum: @w @w @p @(cid:28) (cid:26) i +(cid:26)w i D− + ij +f (2) j (cid:23)i @t @x @x @x j i j energy: @h @q @h (cid:26) + j +(cid:26)w D(cid:6)I +8 (3) j T @t @x @x j j speciesmass: @(cid:24) @j @(cid:24) (cid:26) k + jk +(cid:26)w k D(cid:6)I (4) @t @x j@x (cid:24)k j j wherew istheithvelocitycomponent, x theithcoordinate, (cid:26) thedensity, p thepressure, i i f the body force (e.g. the gravity g ), q the jth component of the heat flux, j the jth (cid:23)i i j jk diffusionfluxofspeciesk,(cid:24) themassfractionofspeciesk,hthespecificenthalpy,I andI(cid:24) k T k aretheheatsourceorsink,andtherateofproductionordestructionofspecieskbychemical 0 reactions,respectively,givenbyfollowingexpressions: 1 0 2 XN y nuar IT D− !k1Hf0k I(cid:24)k DMk!k (5) Ja kD1 24 where !k is the net chemical formation rate of species k involved in the set of chemical 55 reactions,1H0 istheformationenthalpyofcomponentkandM isthemolecularweightof 5: fk k : 0 thekthcomponent. (cid:28)ij istheviscousstresstensorand8istheRayleighviscousdissipation At function,givenbytheexpression d wnloade 8D(cid:28)ij@@wxji: (6) o D The heat and diffusion fluxes are expressed in the form of the Fourier and Fick laws, respectively, @T @(cid:24) q D−(cid:21) j D−(cid:26)D k (7) j @x jk fkm@x j j where(cid:21)isthethermalconductivity,T thetemperature,D themassdiffusivityofspeciesk fkm relatedtothemixturem. Theideal-gasequationofstate XN (cid:24) p D(cid:26)RT k (8) M kD1 k whereRisthegeneralgasconstant,andtheequationrelatingtoallspecies XN (cid:24) D1 (9) k kD1 NumericalmodellingofpremixedgaseouscombustionbyBDIM 3 mustbeaddedtotheprevioussetofequations,toenablethefinalsolutionofamulticomponent reactingsystem. Thenetchemicalformationrateofasinglespecies(! )resultsfromthecompetitionofall k chemicalreactionsinvolvingthatspecies,andaccordingtothesetofstoichiometricequations oftheopposingchemicalreactionsofarbitrarycomplexity: (cid:23)0 X +(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X (cid:29)kf1(cid:23)00 X +(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X 11 1 12 2 1k k 1N N 11 1 12 2 1k k 1N N kb1 (cid:23)0 X +(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X (cid:29)kf2(cid:23)00 X +(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X 21 1 22 2 2k k 2N N 21 1 22 2 2k k 2N N kb2 : : : (cid:23)0 X +(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X (cid:29)kfl(cid:23)00X +(cid:23)00X +(cid:1)(cid:1)(cid:1)+(cid:23)00X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X (10) l1 1 l2 2 lk k lN N l1 1 l2 2 lk k lN N kbl : : : (cid:23)0 X +(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X +(cid:1)(cid:1)(cid:1)+(cid:23)0 X M1 1 M2 2 Mk k MN N k(cid:29)fM(cid:23)00 X +(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X +(cid:1)(cid:1)(cid:1)+(cid:23)00 X : M1 1 M2 2 Mk k MN N kbM Itcanbeexpressedinthefollowingform[4]: d[X ] XM YN XM YN !k D dtk D .(cid:23)k00l −(cid:23)k0l/kfl [Xk](cid:23)k0l + .(cid:23)k0l −(cid:23)k00l/kbl [Xk](cid:23)k00l (11) 10 lD1 kD1 lD1 kD1 20 where(cid:23)0 arethestoichiometriccoefficientsoftheleft-handsidespecies,(cid:23)00 thestoichiometric y kl kl uar coefficients of the right-hand side species, Xk is the arbitrary specification of all chemical n a species,NbeingthetotalnumberofcompoundsinvolvedandMbeingthenumberofchemical J 24 reactions,[Xk]themolarconcentrationofanarbitrarycomponentofthereactiveflow,kfl and :55 kbl are, respectively, the forward and backward reaction rate coefficient of reaction l. If the 05 species represented by X does not occur as the left-hand side species, then (cid:23)0 D 0; if the At: speciesdoesnotoccurasktheright-handsidespecies,then(cid:23)k00l D 0. Itispresumkledthateach ed reaction proceeds according to the law of mass action and the expressions of forward and d a o backwardreactionratecoefficientsareinthemodifiedArrheniusform: l (cid:18) (cid:19) n Dow k DATnexp −Ea : fl;bl RT Usingmolarfractionsofchemicalspecies,equation(11)canberewrittenasfollows: (cid:20) (cid:21)(cid:18) (cid:19) ! DXM .(cid:23)00 −(cid:23)0 /k YN (cid:23)k0l +.(cid:23)0 −(cid:23)00/YN (cid:23)k00l p ml (12) k kl kl fl k kl kl k RT lD1 kD1 kD1 where isthemolarfractionofspeciesk andm theorderofchemicalreactionsgivenby k l record(10). 3. Transportmodelandreactionmechanismrequirements To allow a detailed description of a complex reactive flow emphasizing the physical and chemical processes, a detailed transport as well as a detailed reaction model are used. In general, the transport coefficients depend nonlinearly on temperature and on mixture composition. 4 NSamecandLSˇkerget Binary diffusion coefficients of each component of reactive flow are calculated from molecular parameters, following the kinetic theory of gases and using the Hirschfelder approximation [5]. To obtain mixture diffusion coefficients the method suggested by Wilke and Stewart [5] is applied. Viscosity coefficients are computed by applying the method of Chang et al [6], based on Chapman–Enskog theory. The temperature dependence of heat conductivitiesaresimplyconsideredbythecorrespondingpolynomialfitssuggestedbyMiller et al [6]. Thermochemical properties, namely specific enthalpies and heat capacities, both dependontemperatureandarecomputedfrompolynomialfitsofdatafromtheCHEMKIN thermodynamicdatabase[7]. Hereithastobenotedthatthepresentedcodeisfullycoupled with the CHEMKIN software package only in the case of the thermochemical properties calculation. Thechemicalreactionmechanism(10)usedfornumericalsimulationofcomplexphysical andchemicalprocessesveryoftenconsistsofmanyelementaryreactions. Detailedreaction models lead to better accuracy of the simulation, but because of their differing time scales, they introduce stiffness into the system of PDEs. Therefore, the simple dumped-relaxation methodbetweeneachiterationstepisappliedinourcase. 4. Numericalmodel 4.1. Boundary–domainintegralequations Byusingthevelocity–vorticityformulationofthefluidmotioncomputationalscheme[8],all PDE transport may be treated in the same manner. Therefore, the general time-dependent nonlinear diffusive–convective transport equation of an arbitrary scalar quantity u.x ;t) [8] 0 j 01 canbeconsidered: 2 (cid:18) (cid:19) y r @u @ @ @u ua + .w u/− a −S D0 (13) n j u a @t @x @x @x J j j j 4 2 whereucanbeequatedwiththevorticityinthetwo-dimensionalproblem, temperatureand 5 5 5: mass species of each component, a denotes an arbitrary transport coefficient (kinematics 0 t: viscosity,thermaldiffusivityandspeciesmassdiffusivity)andSuthesourceofscalarugiven A bytheexpression d e d Downloa Su D (cid:26)Iuu formassspeciestransportequationswhereuisequatedwith(cid:24) and k I S D u u (cid:26) c u p fortheenergytransportequationwhereuisequatedwithtemperatureT. Thegeneraltransportcoefficienta.x ;u/isthespace-andpotential-dependentfunction. j Substitutingtheexpressionfortransportcoefficientvariationintheformofconstantparta 0 andvariableparta .x ;u/ N j a.x ;u/Da +a .x u/ j 0 N j equation(13)canbepartitionedintoalinearandnonlinearpartinthefollowingmanner: (cid:18) (cid:19) @u @ @2u @ @u + .w u/−a − a −S D0: (14) @t @x j 0@x2 @x N@x u j j j j NumericalmodellingofpremixedgaseouscombustionbyBDIM 5 Equation(14)representsaparabolicinitial-boundaryvalueproblemwithknownboundaryand initialconditions,e.g.aDirichlet-orNewman-typeboundaryconditionhastobeprescribed onthepartoftheboundary0 and0 ,respectively, 1 2 uDuN on0 t >t 1 0 @u @u n D on0 t >t j 2 0 @x @n j whiletheinitialconditionsare uDuN in(cid:127) att Dt : 0 0 Analternativeintegralstatementcanbeformulatedbyusingthefinite-differenceexpression toapproximatethetimederivativeinequation(14)[10],e.g. @u D uF −uF−1 @t 1t enablingustorewriteequation(14)inanonhomogenousmodifiedHelmholtzPDEform @2u −(cid:12)u+bD0 inthe(cid:127)domain (15) @x2 j wheretheparameter(cid:12) D1=a 1tisapositivenumberandthenonhomogenoustermbdenotes 0 pseudo-bodyforce. The corresponding boundary–domain integral representation to equation (15) can be derivedbyapplyingaweightedresidualtechniqueinspaceorsimplybyGreen’stheoremsfor scalarfunctions[8],resultinginthefollowingintegralexpression: Z Z Z 2010 c.(cid:16)/u.(cid:16)/+ u@u(cid:3) d0 D @uu(cid:3)+ bu(cid:3)d(cid:127) (16) ary 0 @n 0 @n (cid:127) anu whereu(cid:3)isthemodifiedHelmholtzfundamentalsolution,i.e.thesolutionofequation J 5 24 @2u(cid:3) −(cid:12)u(cid:3)+(cid:14).(cid:16);s/D0 (17) 5 05: @xj2 : t where(cid:16) andsarethesourceandreferencefieldpoints,respectively. Thefundamentalsolution A ed fortheplanecaseisgivenbythefollowingexpression: d Downloa u(cid:3) D 21(cid:25)K0(cid:0)rp(cid:12)(cid:1) (18) whereK isthemodifiedBesselfunctionofsecondorder. Thepseudo-bodyforcetermbinequation(15)nowstandsfortheconvection,nonlinear partofthetransportcoefficient,sourcetermandinitialconditions,e.g. (cid:20) (cid:18) (cid:19) (cid:21) 1 @ @u bD − wju−aN +Su +(cid:12)uF−1 (19) a @x @x 0 j j enablingustorewritetheintegralstatement(16) Z Z (cid:18) (cid:19) @u(cid:3) 1 @u c.(cid:16)/u.(cid:16)/+ u d0 D a −uw u(cid:3)d0 n @n a @n 0 Z (cid:18) 0 0 (cid:19) Z Z 1 @u @u(cid:3) 1 + uwj −aN d(cid:127)+ Suu(cid:3)d(cid:127)+(cid:12) uF−1u(cid:3)d(cid:127): (20) a @x @x a 0 (cid:127) j j 0 (cid:127) (cid:127) The boundary–domain integral presentation (20) describes the time-dependent transport of anarbitraryscalarfunctionu,whichmaybe,respectively,vorticityinthecaseofneglecting 6 NSamecandLSˇkerget buoyancyforces,temperatureandmassfractionsofeachcomponentinvolvedinthereacting flow. Considering that both velocity components w (i D 1;2) satisfy the non-homogenous i modifiedHelmholtzequation(15) @2w i −(cid:12)w +b D0 inthe(cid:127)domain (21) @x2 i i j andtakingintoaccountthecorrespondingboundaryconditions,wherenowtheb termisbeing i representedbytheexpression @! bi Deij +(cid:12)wi;F−1 (22) @x j thefollowingintegralrepresentationoftwo-dimensionalkinematicsmaybewrittenas Z Z (cid:18) (cid:19) @u(cid:3) @w c.(cid:16)/w .(cid:16)/+ w d0 D i +e !n u(cid:3)d0 i i ij j @n @n 0 Z 0 Z @u(cid:3) − eij! d(cid:127)+(cid:12) wi;F−1u(cid:3)d(cid:127) (23) @x (cid:127) j (cid:127) wheree isthetwo-dimensionalpermutationindexand!thevorticity. ij Ingeneral,equation(23)presentstheconnectionorthecompatibilitybetweenthevelocity andthevorticityfield. 4.2. Numericaldiscretizationofintegralequations 0 1 0 2 Theboundary–domainintegralequationsaresolvednumerically,approximatingtheboundary y r ua and the domain integrals by a sum of integrals over E individual boundary elements and C n Ja internal cells, respectively. All field functions, their products and derivatives within each 4 2 boundaryelementandinternalcellareapproximatedbytheuseofinterpolationpolynomials 5 :5 8 or (cid:30) with respect to boundary or domain and nodal function values. Thus the following 5 0 integralsareinvolvedinthediscretizedequationsrepresentingtheintegrationoverindividual : t A boundaryelementandinternalcell[8]: ed Z Z load hn D 8n@u(cid:3) d0 gn D 8nu(cid:3)d0 Down e Z0e @@nu(cid:3) e Z0e (24) dm D (cid:30)m d(cid:127) bm D (cid:30)mu(cid:3)d(cid:127) ci @x c (cid:127)c i (cid:127)c where n and m denote the number of nodes of each boundary element and domain cell, respectively. Using these integrals, which are functions of the geometry, time increment and material properties, the discretization of integral presentations of vorticity, velocity, temperatureandmassfractionscanbederivedforthetwo-dimensionalcasefromcorresponding integralequations(20)and(23)asfollows: forvorticity: (cid:26) (cid:27) XE XE 1 @! n c.(cid:16)/!.(cid:16)/+ fhgTf!gn D fggT (cid:23) −!w n (cid:23) @n eD1 eD1 0 (cid:26) (cid:27) XC 1 @! n XC + fd gT !w −(cid:23) +(cid:12) fbgTf!gn (25) (cid:23) i i N@x F−1 cD1 0 j cD1 NumericalmodellingofpremixedgaseouscombustionbyBDIM 7 forvelocity: (cid:26) (cid:27) XE XE @! n c.(cid:16)/w .(cid:16)/+ fhgTfw gn D fggT +e !n i i ij j @n eD1 eD1 XC XC −e fd gTf!gn+(cid:12) fbgTfw gn (26) ij j i F−1 cD1 cD1 fortemperature: (cid:26) (cid:27) XE XE 1 @T n c.(cid:16)/T.(cid:16)/+ fhgTfTgn D fggT a −Tw T n a @n eD1 eD1 T0 (cid:26) (cid:27) (cid:26) (cid:27) XC 1 @T n XC S n + fdigT Twi −aTN + fbgT T +(cid:12)TF−1 (27) a @x a cD1 T0 j cD1 T0 forthemassfractionofthekthcomponent: (cid:26) (cid:27) XE XE 1 @(cid:24) n c.(cid:16)/(cid:24) .(cid:16)/+ fhgTf(cid:24) gn D fggT D k −(cid:24) w k k D fk @n k n eD1 eD1 fk0 (cid:26) (cid:27) (cid:26) (cid:27) XC 1 @(cid:24) n XC S n + fd gT (cid:24) w −D k + fbgT (cid:24)k +(cid:12)(cid:24) : (28) D i k i fkN@x D kF−1 cD1 fk0 j cD1 fk0 Equations(25)–(28),writtenforallboundaryanddomainnodesformthefollowingimplicit matrixsystems: 0 201 forvorticity: (cid:26) (cid:27) (cid:26) (cid:27) January [H]!f!gD[N][G]! (cid:23)@@!n −!wn +[N][Di]! !wi −(cid:23)N@@x!j +(cid:12)[B]!f!gF−1 (29) 4 temperature: 2 (cid:26) (cid:27) (cid:26) (cid:27) 55 @T @T : 05: [H]TfTgD[A][G]T (cid:26)aT @n −Twn(cid:27) +[A][Di]T Twi −aTN@xj t oaded A +[B]T aSTT0 +(cid:12)TF−1 (30) l wn kthmassfractions: (cid:26) (cid:27) (cid:26) (cid:27) o D @(cid:24) @(cid:24) [H] f(cid:24) gD[D][G] D k −(cid:24) w +[D][D ] (cid:24) w −D k (cid:24)k k (cid:24)k fk @n k n i (cid:24)k k i fkN @n (cid:26) (cid:27) S +[B](cid:24)k D(cid:24)k +(cid:12)(cid:24)F−1 (31) fk0 velocity: (cid:26) (cid:27) @w [H]wifwigD[G]wi @ni +eij!nj −eij[Dj]wif!g+(cid:12)[B]wifwigF−1 (32) wherematrices[G] and[H] consistofboundaryintegralsoffundamentalsolutionu(cid:3)andits u u normalderivative,respectively. Domainintegralsoffundamentalsolutionu(cid:3)anditscoordinate derivativeareinvolved,respectively,inmatrices[B] and[D ] . Matrices[N];[A]and[D] u i u involve the transport coefficients: kinematics viscosity (cid:23), thermal diffusivity a and mass T species diffusivity D , computed as functions of temperature and mixture composition in fk eachboundaryanddomainnode. 8 NSamecandLSˇkerget 4.3. Solutionprocedure To simulate the freely propagating flame including the ignition processes, the special time- splitting algorithm consisting of two computation parts is applied. Fluid dynamic effects of the homogenous combustible mixture are considered only in the first computational part. Kinematicrelations,vorticity,temperatureandmassspecieskineticequationsarecoupledin thesetofnonlinearequations. Toobtainthesolutionofthefluiddynamicproblem,onehasto performthefollowingiterativesteps. (a) Startwithsomeinitialvaluesforthevorticitydistribution. (b) Kinematiccomputationalpart: (cid:15) solves the implicit sets for boundary velocity or velocity normal flux values, equation(32); (cid:15) transformsnewfunctionvaluesfromelementnodestocellnodes; (cid:15) computesthegradientofthevelocitycomponents; (cid:15) determinesnewboundaryvorticityvalues. (c) Energykineticcomputationalpart: (cid:15) solvesimplicitsetforboundaryanddomainvalues,equation(30); (cid:15) transformsnewtemperaturevaluesfromelementnodestocellnodes. (d) Massspecieskineticcomputationalpart: (cid:15) solvesimplicitsetforboundaryanddomainvalues,equation(31); (cid:15) transformsnewmassspeciesvaluesfromelementnodestocellnodes. (e) Vorticitykineticcomputationalpart: 0 1 20 (cid:15) solvesimplicitsetforunknownboundaryvorticityfluxandinternaldomainvorticity ry values,equation(29); a anu (cid:15) transformsnewfunctionvaluesfromelementnodestocellnodes. J 24 (f) Relaxationofallnewvaluesandtheconvergencyexamination. Iftheconvergencycriterion 55 issatisfied,thenstop,otherwisegotostep(b). : 5 0 : In the second part the calculation of source terms of diffusion–convection transport t A equationsisperformed,basedonadetailedtransportandreactionmechanism. Thecalculation d e ad procedure is based on different small time increments, which selection is dependent on o nl temperature-conditioned time scales of the most important physical and chemical processes w o D oftheflamebehaviour. Theignitionsimulationisperformedbytheprescribedignitiontemperatureforagiven combustible mixture in one fixed region of the discretized domain. Boundary and domain integrals (24), which are functions of geometry, time increment and material properties are calculatedseparatelyforeachscalarfunctionateverynewcalculationtimestep. However, the final computation of the flame spreading is based on simultaneous consideration of both computational parts applying a corresponding iterative numerical scheme. Ingeneral,thesourceofdiffusive–convectiveequation(14)isdependentonscalarfield functions (temperature, species mass fractions), time and physical properties. Relating to chemicalkinetics,thisrepresentsahigh-ordernonlinearitywithrespecttothefieldfunction. The most severe nonlinearities in chemical kinetics come from the exponential dependence of the reaction rates on temperature. The consequence of this is a very unstable numerical scheme,connectedwiththeconvergencedifficulties. Thereforethesimpledumpedmethodis usedwhereonlyapartofthesolutionfromthepreviousiterationisusedinthenextiteration NumericalmodellingofpremixedgaseouscombustionbyBDIM 9 step. The share of the solution considered in the next iteration step depends on the size of solutiondifferencebetweenthetwoiterationsteps. The developed numerical approach is based on the subdomain technique [9]. Namely, thetransportcoefficientsandsourcetermvalueschangefromonepointtoanother,sothatthe variablepartinequations(29)–(32)becomespredominantforthewholedomain. Thisproblem isovercomebydecompositionoftheinterestingdomainintosubdomains,whichallowconstant materialpropertiesandvelocityvectorlocally. However, byusingthesubdomaintechnique thecomputationtimeisalsoreducedbecausethesamediscretizednumericalprocedurecan be applied for each subdomain. The final system of equations for the entire domain is then obtainedbyaddingthesetsofequationsforeachsubdomainconsideringthecompatibilityand equilibrium conditions between their interfaces, resulting in a much sparser matrix system, suitable to being solved by iterative techniques. For instance, the following conditions may beappliedontheinterfaceindicatedwith0 betweensubdomains(cid:127) and(cid:127) : I 1 2 (cid:12) (cid:12) uj1 Duj2 @u(cid:12)(cid:12)(cid:12)1 D−@u(cid:12)(cid:12)(cid:12)2: (33) I I @n @n I I 5. Exampleproblem Theignitionofpremixedhydrogenandair,consideringflamepropagationthroughasteady- state mixture, has been calculated as an example problem of the numerical simulation of premixedgaseousfuelcombustion. Asquare-shapedcombustionregion, showninfigure1, isconsidered,discretizedwithameshof25(cid:2)25equallyspacedgeometricnodes. Fromthe 10 BEMnumericaldiscretizationpointofviewthemeshconsistsof625subdomainsformedwith 0 2 one constant cell and four constant elements, which means 3125 nodes with 11 unknowns. y r ua Thediscretizeddomainissurroundedbyimpassableadiabaticwallsexcepttheentireboundary n Ja wheretheconstantscalarfunctionvaluesareprescribed: theunburntreactantmassfractions 24 (cid:24) D0:011;(cid:24) D0:23;(cid:24) D0:759;constantmixturetemperatureT D293. Thegeometry, 5 H2 O2 N2 :5 theboundaryconditionsandtheignitionregionarerepresentedinfigure1. 5 0 Thecalculationhasbeenperformedwiththeinitialtimeincrement1t D 10−6 s. Later, : t A becauseoftherapidlyrisingtemperaturegradients,thetimeincrementhasbeenreduced. d e d a o l n w o D Figure1.Geometry,boundaryconditionsandignitionregion.
Description: