This article was downloaded by: On: 21 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Combustion Theory and Modelling Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713665226 Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame S. B. Dworkin a; J. A. Cooke a; B. A. V. Bennett a; B. C. Connelly a; M. B. Long a; M. D. Smooke a; R. J. Hall b; M. B. Colket b a Department of Mechanical Engineering, Yale University, New Haven, CT, USA b United Technologies Research Center, East Hartford, CT, USA Online publication date: 30 November 2009 To cite this Article Dworkin, S. B., Cooke, J. A., Bennett, B. A. V., Connelly, B. C., Long, M. B., Smooke, M. D., Hall, R. J. and Colket, M. B.(2009) 'Distributed-memory parallel computation of a forced, time-dependent, sooting, ethylene/air coflow diffusion flame', Combustion Theory and Modelling, 13: 5, 795 — 822 To link to this Article: DOI: 10.1080/13647830903159293 URL: http://dx.doi.org/10.1080/13647830903159293 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. CombustionTheoryandModelling Vol.13,No.5, 2009,795–822 Distributed-memoryparallelcomputationofaforced,time-dependent, sooting,ethylene/aircoflowdiffusionflame S.B.Dworkin,aJ.A.Cooke,a B.A.V.Bennett,a B.C.Connelly,a M.B.Long,a M.D.Smooke,a∗ R.J.HallbandM.B.Colketb aDepartmentofMechanicalEngineering,YaleUniversity,NewHaven,CT06520-8284,USA; bUnitedTechnologiesResearchCenter,EastHartford,CT06108,USA (Received19April2009;finalversionreceived16June2009) Forced,time-varyinglaminarflameshelpbridgethegapbetweenlaminarandturbulent combustionastheyresideinanever-changingflowenvironment.Adistributed-memory parallelcomputationofatime-dependentsootingethylene/aircoflowdiffusionflame, inwhichaperiodicfluctuation(20Hz)isimposedonthefuelvelocityforfourdifferent amplitudesofmodulation,ispresented.Thechemicalmechanisminvolves66species, 10 andasootsectionalmodelisemployedwith20sootsections.Thegoverningequations 0 2 arediscretisedusingfinitedifferencesandsolvedimplicitlyusingadampedmodified ry Newton’smethod.Thesolutionproceedsinparallelusingstripdomaindecomposition a nu over 40 central processing units (CPUs) until full periodicity is attained. For forcing a J amplitudesof30%,50%,70%and90%,acompletecycleofnumericalpredictionsof 1 2 thetime-resolvedsootvolumefractionispresented.The50%,70%and90%forcing 53 cases display stretching and pinching off of the sooting region into an isolated oval : 18 shape.Inthe90%forcingcase,awell-definedhollowshell-likestructureofthesoot t: volumefractioncontoursoccurs,inwhichtheinterioroftheisolatedsootyregionhas A significantlylowersootconcentrationsthantheshell.Preliminarycomparisonsaremade d e d withexperimentalmeasurementsofthesootvolumefractionforthe50%forcingcase. a lo Theexperimentalresultsarequalitativelyconsistentwiththemodelpredictions. n w o D Keywords:diffusionflame;time-varying;parallelcomputation;sootformation;ethy- lene 1. Introduction Most practical combustion systems are turbulent, and thus inherently time-dependent in nature, and many involve soot, which is either emitted or else temporarily formed and later oxidised. In the field of computational combustion, soot modelling and transient flame modelling have generally proceeded separately, yielding valuable insight into both phenomena. Many practical combustion devices, however, are both time-dependent and sooting,andthusafurthersteptowardthemodellingofsuchdevicesisthesimulationof systemsthatincorporatebothparticulateformationandtimedependence. A number of researchers have studied forced, time-varying laminar diffusion flames (see, for example, [1–13]). These investigations have been experimental [4, 6, 7], com- putational[1,5,9,10],orhavecombinedbothexperimentalandnumericaltechniquesin ∗Correspondingauthor.Email:[email protected] R.J.HallisaconsultanttoUTRC. ISSN:1364-7830print/1741-3559online (cid:2)C 2009Taylor&Francis DOI:10.1080/13647830903159293 http://www.informaworld.com 796 S.B.Dworkinetal. theirapproach[10,13].AsignificantbodyofworkisattributabletoSmythandcoworkers. Usinglaser-inducedfluorescence(LIF),Smythetal.[2]haveshownthatsootproduction is greatly enhanced in a flickering methane/air coflow diffusion flame, as compared to a steady-stateflamewiththesamemeanflowvelocity.Theyalsodemonstratedthatintegrated sootconcentrationsare10timeshigherthanintheequivalentsteadysystem.Kaplanetal. [3] used a two-equation soot model to verify these results numerically. Their predictions fortheincreaseinpeaksootvolumefractionagreedwithexperiment,butprimaryparticle diametersandnumberdensitieswerenotwellreproduced.Inastudysimilarto[2],Shaddix and Smyth [4] showed using laser-induced incandescence (LII) that modulating the fuel flowrategreatlyenhances sootproductioninmethane,propaneandethyleneflames.Ex- tending this research, Smyth et al. [7] measured polycyclic aromatic hydrocarbon (PAH) fluorescencesignalsinflickeringmethane,propaneandethyleneflamesandcomparedtheir relativesignalintensitytosootconcentrationsintheseflames. Among some key numerical studies, Mahalingam et al. [1] used a second-order ex- plicit time marching scheme with a single-step chemistry model to simulate steady and forced coflow laminar diffusion flames. They demonstrated that flamelet modelling as- sumptions that hold true for steady flames break down when applied to an equivalent time-dependent system. Egolfopoulos and Campbell [5] simulated time-dependent coun- terflow methane/oxygen/nitrogen diffusion flames with a sinusoidal perturbation of the 0 01 reactantvelocity.Theytestedtheresponseoftheflametotheperturbationasafunctionof 2 y frequencyandshowedthatathighfrequencies,theflamenolongerrespondstooscillations r a u inthefluidfield.In[13],someofthepresentwork’sauthorsexploredthestart-uptransient n a J behaviourofnonsootingcoflowlaminardiffusionflames,aswellassimulationtechniques 1 2 fortime-dependentproblems. 3 5 : Thetime-dependentmethane/airdiffusionflamesimulatedin[13]contained20inde- 8 1 : pendentvariablespergridpoint(16speciesandfourthermophysicalvariables)andrequired t A severalweeksofcomputationonasingle2.0GHzAMDOpteronprocessorwith5GBRAM d e d toreachafully-periodicstate.Inthecurrentpaper,weconsidersootingethylene/airflames, a o nl withamodelthatemploys66species,20sootsections,andfourthermophysicalvariables. w Do As central processing unit (CPU) time tends to scale with the square of the number of variables,theimplicitsolutionof90unknownswithtimedependencewouldrequireyears of computation to reach full periodicity on a 2.0 GHz AMD Opteron processor. Hence, parallelisationisnecessary. Parallel solution of coflow laminar diffusion flames has been a developing field for nearlytwodecades.SmookeandGiovangigli[14]solvedalaminarmethane/airdiffusion flame in parallel using strip domain decomposition over six processors with a stream function–vorticity formulation. That early work was extended by Ern et al. in [15] and [16], and by Ern in [17], to examine a two-dimensional flame-sheet problem (simplified chemicalkinetics)inparallelusingstripdecomposition.Thesestudies[15–17]employed a Bi-CGSTAB linear algebra solver [18] coupled to a multi-domain, block-line Gauss– Seidelpreconditioner,aswillbedoneinthepresentwork.MorerecentresearchbyCo`nsul etal.[19]andClaramuntetal.[20]appliedblockdomaindecompositiontosteadycoflow laminar methane/air diffusion and partially-premixed flames using an operator-splitting methodwithcomplexchemicalkineticsanddetailedtransportmodels.In2006,Cooke[21] employedBi-CGSTABcoupledtoamulti-domain,block-lineGauss–Seidelpreconditioner and strip decomposition to solve a steady coflow ethylene/air diffusion flame, similar to the one used as the initial condition for the time-dependent simulations of the present study. Recently, Zhang et al. [22] used a parallelised semi-implicit (SIMPLE) algorithm to model a steady sooting laminar ethylene/air coflow diffusion flame, incorporating a CombustionTheoryandModelling 797 two-equations-per-section soot model and a chemical kinetic mechanism with over 100 species. In the present work, the algorithms developed by Cooke [21], which were based on those of [14–17], have been modified to compute implicitly time-accurate solutions of a periodically-forcedsootinglaminarcoflowdiffusionflame,withethyleneasthefuel.The periodicforcingisofthesamenatureasthatimposedonthemethane/airdiffusionflames studiedin[13]:asinusoidalperturbationofthefuelvelocity.Section2ofthispaperout- linestheproblemformulation,governingequations,boundaryconditions(BCs),andsoot sectional model to be used, and section 3 describes the numerical solver, parallel imple- mentationstrategy,andsolutionmethodologytobeemployed.Insection4,computational resultsforthesootvolumefractionarepresentedfortheperiodically-forced,sooting,ethy- lene/air coflow diffusion flame at four different forcing levels. This section also contains ananalysisofthetime-dependentsootstructurebasedonfluidresidencetimes,inception, surfacegrowth,andoxidationrates,aswellaspreliminaryexperimentalmeasurementsfor the50%forcingcase.Finally,section5summarisesthework. 2. Problemformulation 2.1. Burnerandflameconfiguration 0 1 20 The flow configuration to be studied is that of an axisymmetric laminar diffusion flame. ry Figure 1 illustrates a schematic representation of the burner and flame geometry, with a u n thecomputationaldomainsuperimposedontheimage.Thefuel(ethylene)ismixedwith a J 1 nitrogengasandflowsthroughtheinnertube,whilethecoflowairflowsthroughtheouter 2 3 tube;quiescentairsurroundstheoutertube.Forthefuel-to-oxidiserratiousedinthepresent 5 : 8 work,thisconfigurationgeneratesastableliftedflamewithminimalheattransferbackto 1 t: theburner.Becausetheflowisaxisymmetric,thecomputationaldomainistwo-dimensional A d (i.e., the right side of Figure 1), bounded by the inflow plane, the outflow plane, the far e ad field,andtheaxisofsymmetry.Thefarfieldboundaryislocatedatr =7.5cm,andthe o max l n w o D Figure1. Schematicrepresentationofacoflowflame,includingcoordinateorientationandcompu- tationaldomainboundaries(notdrawntoscale).Theinnertubehasinnerandouterradiiofr =0.2 1 cmandr =0.238cm,respectively,andtheoutertubehasaninnerradiusofr =3.7cm. 2 3 798 S.B.Dworkinetal. outflowplaneisatz =40cm.TheBCs,whicharedefinedtoemulateaburnerwitha max speakerinthefuelplenumthatmodulatesthefuelflow,willbediscussedinmoredetailin thenextsection. 2.2. Governingequationsandboundaryconditions Thegoalofthecalculationsistopredictthetemperature,speciesmassfractions,andsoot volumefractionasfunctionsofspaceandtime.Ahybridvorticity–velocityfluid-dynamic formulationissolvedwiththetransientequationsfortheconservationofchemicalspecies, energy,andsoot.Althoughthemodifiedvorticity–velocityformulationusedsuccessfully in[13]and[23]ensuresmassconservationtowithinanacceptabletolerance,extracarein thisregardisnecessaryinthepresentwork,asthesootvolumefractionscouldbesensitive tosmallerrorsinthevelocityfieldowingtodensityvariationsbroughtaboutbythelackof massconservation.Therefore,oneofthePoissonequations,typicallyemployedwithinthe vorticity–velocityformulation,isnotusedinthepresentstudy;itisreplacedinsteadwith thecontinuityequation,followingthehybridformulationusedbyDennisandHudson[24], Wen-Zhong and Ta-Phuoc [25], Amantini [26] and Amantini et al. [27]. The continuity equationisemployedinthedominant(axial)flowdirectionasin[26,27].Althoughtheuse ofthecontinuityequationcanincreaseconvergencedifficultieswhenNewton’smethodis 0 1 appliedtothesteadyformofthegoverningequations,weexpectalesspronouncedeffect 0 2 y as each timestep’s solution serves as an excellent starting estimate for the next step. The r ua governingequationsarestatedbelow. n a J 1 Poissonradialvelocityequation 2 3 :5 (cid:1) (cid:2) (cid:3) (cid:4) (cid:1) (cid:2) 18 ∂ 1∂ρ ∂2v ∂2v ∂ω ∂ v ∂ v¯·∇ρ : =− r − r + − r − (1) At ∂r ρ ∂t ∂r2 ∂z2 ∂z ∂r r ∂r ρ d e d a lo Continuityequation n w o D ∂ρ ∂ ∂ r =− (rρv )− (rρv ) (2) r z ∂t ∂r ∂z Modifiedvorticitytransportequation (cid:5) (cid:1) (cid:2)(cid:6) ∂ω ∂2(µω) ∂2(µω) ∂ µ ∂v ∂v ρ =− − − r − z ∂t ∂r2 ∂z2 ∂r r ∂z ∂r (cid:1) (cid:2) (cid:1) (cid:2) ∂ω ∂ω ρv ∂v ∂v v¯·v¯ +ρv +ρv − r r − z +∇¯ρ·∇ r z ∂r ∂z r ∂z ∂r 2 (cid:1) (cid:2) ∂µ ∂µ −∇¯ρ·g¯+2 ∇¯ (div(v¯))·∇µ−∇v ·∇¯ −∇v ·∇¯ (3) r z ∂r ∂z Speciesequationforallreactingspecies(fork=1,2,...,N −1) sp (cid:1) (cid:2) ∂Y ∂Y ∂Y 1 ∂ ∂ ρ k =−ρ v k +v k − (rρY v¯ )− (ρY v¯ )+W ω˙ (4) r z k k,r k k,z k k ∂t ∂r ∂z r ∂r ∂z CombustionTheoryandModelling 799 Excessspeciesequationforinertspecies(k=N ) sp N(cid:7)sp−1 Y =1− Y (5) Nsp k k=1 Energyequation (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) ∂T ∂T ∂T 1 ∂ ∂T ∂ ∂T ρc =−ρc v +v + rλ + λ p p r z ∂t ∂r ∂z r ∂r ∂r ∂z ∂z (cid:5) (cid:1) (cid:2)(cid:6) (cid:7)Nsp ∂T ∂T (cid:7)Nsp − ρc Y v¯ +v¯ − h W ω˙ −∇·q¯ p,k k k,r k,z k k k r ∂r ∂z k=1 k=1 (cid:8) (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) (cid:9) ∂v 2 v 2 ∂v 2 ∂v ∂v 2 2 +µ 2 r +2 r +2 z + r + z + (div(v¯))2 (6) ∂r r ∂z ∂z ∂r 3 Sootsectionalmassequation(forl=1,2,...,N ) 10 sec 0 2 (cid:1) (cid:2) y Januar ρ∂∂Ytl =−ρ vr∂∂Yrl +vz∂∂Yzl − 1r ∂∂r (rρYlv¯l,r)− ∂∂z(ρYlv¯l,z)+Q˙l (7) 1 2 3 8:5 Here, vr and vz represent the radial and axial components of velocity, respectively; ω 1 the vorticity; ρ the density of the mixture; v¯ the velocity vector; t time; µ the dynamic : t d A viscosity; g¯ the gravitational acceleration; Yk the mass fraction of the kth species; v¯k,r ade and v¯k,z the radial and axial components of diffusion velocity of the kth species; Wk the lo molecular weight of the kth species; ω˙ the molar production rate of the kth species due n k w o tochemicalreaction;T thetemperature;c theconstant-pressurespecificheatcapacityof D p themixture;λthethermalconductivityofthemixture;c theconstant-pressurespecific p,k heatcapacityofthekthspecies;h thespecificenthalpyofthekthspecies;andq¯ thenet k r radiativeflux.(Wepointoutthatthesignofthedivergenceofthenetradiativefluxinthe energyequationinpreviouspublicationswasprintedincorrectly.)Inthesootsectionalmass equation(Equation(7)),Y representsthesectionalmassfractionwithinthelthsootsection; l v¯ andv¯ theparticlediffusionvelocitiesintheradialandaxialdirections,respectively, l,r l,z containingboththermophoreticandconcentration-drivencomponents;andQ˙ therateof l change of sectional mass due to inception, coalescence, surface growth, and oxidation. Further details on these equations, including the derivation of the vorticity transport and Poissonvelocityequations,canbefoundin[23]. ThetransientgoverningequationsaresolvedwithasetofBCsthatincludesthesame transient inflow BC used for the time-dependent methane/air diffusion flame in [13] and thecontinuityequationatthefarfieldboundary.TheBCsarestatedbelow: Inflow ∂v ∂v v =0, v =v , ω= r − z, Y =Y , T =298K, Y =0, (8) r z z,inlet k k,inlet l ∂z ∂r 800 S.B.Dworkinetal. where (cid:8) (cid:1) (cid:2) (cid:9) 2vz(cid:5),avg(1+α(cid:1)sin(cid:14)2πft)(cid:14)(cid:2)1− rr1(cid:1)2 (cid:14) (cid:14)(cid:2)(cid:6)for r ≤r1 vz,inlet =vzo 1−exp −(cid:14)(cid:14)(cid:14)r −(cid:7)r2(cid:14)(cid:14)(cid:14) −exp −(cid:14)(cid:14)(cid:14)r −(cid:7)r3(cid:14)(cid:14)(cid:14) for r2 ≤r ≤r3 0 otherwise, v is the average (spatial and temporal) velocity in the fuel tube, v is the maximum z,avg zo velocityintheoxidisertube,andαandf aretheamplitudeandfrequencyofmodulation, respectively. The symbol (cid:7) represents an oxidiser boundary layer thickness and is set to 0.02cmasin[13]. Axisofsymmetry ∂v ∂Y ∂T ∂Y v =0, z =0, ω=0, k =0, =0, l =0 (9) r ∂r ∂r ∂r ∂r Outflow 0 1 0 2 y ∂v ∂v ∂ω ∂Y ∂T ∂Y ar r =0, z =0, =0, k =0, =0, l =0 (10) nu ∂z ∂z ∂z ∂z ∂z ∂z a J 1 2 Farfield 3 5 : 8 At: 1 ∂∂ρt =−1r ∂∂r (rρvr)− ∂∂z(ρvz), ∂∂vrz =0, d e load ω = ∂vr, ∂Yk =0, ∂T =0, ∂Yl =0 (11) wn ∂z ∂r ∂r ∂r o D TheaboveBCsareimposedwiththefollowingparameters: α =0.3,0.5,0.7,or0.9,f =20Hz, (12) v =35cm/s,v =35cm/s,andY =0forallspeciesotherthanN ,C H ,andO . z,avg zo k,inlet 2 2 4 2 Inthefuelstream,thespeciesmassfractionsofN ,C H ,andO areimposedas 2 2 4 2 Y =0.68, Y =0.32, andY =0. (13) N2,inlet C2H4,inlet O2,inlet Intheoxidiserstream,themassfractionsareset(appropriateforair)as Y =0.768, Y =0.0, andY =0.232. (14) N2,inlet C2H4,inlet O2,inlet ThechemicalmechanismconsidersC H chemistryandincludesreactionspertaining 2 4 to small aromatic species [28], but nitrogen chemistry has been removed. The reaction set involves 66 species and 476 reversible reactions. The Soret and Dufour effects are neglected,andamodelforFickiandiffusionisused.Thediffusionmodelemploysmixture averagingandacorrectionvelocitythatsatisfiesamassconservationconstraint[29].All thermodynamic,chemical,andtransportpropertiesareevaluatedusingCHEMKIN[30,31] CombustionTheoryandModelling 801 andTPLIB[32,33]subroutinelibraries,partsofwhichhavebeenrewrittenandrestructured forgreaterspeed[34]. 2.3. Sootsectionalmodel The sectional representation is discussed in greater detail in [35, 36] and has been em- ployed in a number of flame studies (e.g., [37–40]). It assumes that soot particles can be approximated as carbon spheres and that they exist in the free molecular limit (i.e., themean freepath of thegaseous mixtureismuch larger than thelargest soot spheroid). Theapproachspecifiesaminimumandmaximumparticlemassanddividesthespheroid sizeslogarithmicallyintoN binsorsections.Afurtherassumptionisthatwithinagiven sec section, spheroids of varying diameter do not exhibit vastly differing aerosol dynamical qualities.ThisassumptionholdsaslongasN issufficientlylarge.Theremainderofthis sec sectionoutlinesthesootmodel’streatmentofinception,coalescence,surfacegrowth,and oxidation,whichareaccountedforinEquation(7)inQ˙ ,thenetrateofchangeofsectional l mass. Soot inception is considered for the smallest particle mass range only, and the model assumesthatinceptionislimitedbytheformationratesofPAHs.Thisassumptionisfounded ontheexistenceofabottleneckalongtheformationpathwaytosmallsootparticles,which 0 1 0 needstopassthroughPAHspecies[41–43].Inthepresentwork,theparticleinceptionrate 2 ary Si isbasedontheformationratesofnaphthalene(C10H7)andphenanthrene(C14H10)and nu isgivenbytheexpression a J 1 2 d[C H ] d[C H ] 8:53 Si =WC10H7 d1t0 7 +WC14H10 d14t 10 , (15) 1 : t ed A where WC10H7 and WC14H10 are molecular weights. When C10H7 and C14H10 are not in- d cludedinthechemicalkineticmechanismforasimulation(asinthepresentwork),their a o nl formationratescannotbeobtaineddirectlyandmustbeestimatedusingsimplifiedsteady- w Do state expressions as in [39] and [44]. Via the steady-state expressions, inception depends onlocalacetylene(C H ),benzene(C H ),phenyl (C H )andmolecularhydrogen(H ) 2 2 6 6 6 5 2 concentrations[39]. In addition to the inception source term, other phenomena contribute to the rate of changeofsectionalmass.Coalescence,whichisthejoiningtogetheroftwosootparticles whentheycollide,increasessootparticlesize,effectivelyincreasingsootconcentrationin alarger-diametersectionwhiledecreasingsootconcentrationinsmaller-diametersections. Expressions for the coalescence rate are given in [45]. Net surface growth is the combi- nationoftwocompetingeffects:surfacegrowthandsurfaceoxidation.Surfacegrowthby gas-phase interaction with C H increases soot particle size, and oxidation by gas-phase 2 2 interaction with O or OH decreases soot particle size. Surface growth is based on the 2 reactionsofC H withthesurfaceofthesootmolecule[46,47],whileoxidationofsoot 2 2 occursbyOH[48]andO [49].Notethatthismodelforinceptioneffectivelycreatessoot 2 nuclei that are small PAHs. Hence, the model implicitly captures PAH addition to ‘soot’ particlesviacoalescenceaswellassurfacegrowth,althoughitmustbeacknowledgedthat uncertaintiesremainincomputationofthesespecificrates. The soot model considers two particle diffusion velocities: a particle thermophoretic velocityandaconcentration-drivendiffusivevelocity.Thethermophoreticvelocityofgas- phasesootistheportionofthediffusionvelocitythatisdrivenbytemperaturegradients. Unlike gas-phase chemical species, for which temperature-gradient-driven diffusion can 802 S.B.Dworkinetal. often be neglected, the thermophoretic velocity constitutes an important part of the soot diffusionvelocity,asthesootmoleculestendtobelargecomparedwiththeotherspecies presentinthegaseous mixture[50].Thisvelocitydepends ongasproperties,isindepen- dent of particle size in the free-molecular limit, and is evaluated according to [50]. The concentration-driven diffusion velocity for soot is taken in Fickian form, as is done for gas-phasechemicalspecies. Noattempthasbeenmadetomodeltheknowntendencyofoldersootparticlestoform chain-likeaggregatesofsolidprimaryspheroids,whichaffectsthegrowth,transport,and oxidationoftheparticles.Particleageingeffects,inwhichsurfacegrowthslowsforolder primaryparticles,areheuristicallysimulatedbyimposingashut-offdiameterforsurface growth. It is reasonable to expect that our particulate modelling assumptions may have someimpactoncomputedsolutions.Cessationofsurfacegrowthmayleadtoanunusual characteristic of the simulations whereby surface growth will cease, but then reappear downstreamasparticlesdropbelowtheupperlimitduetosurfaceoxidation.Inaddition,our modeldoesnottrackagglomerateformationanddestruction.Thismayaltersometransport properties,butthermophoresis,whichisthestrongestcontributortoperturbationfromthe convectivefield,isindependentofparticlesize.Furthermore,particleoxidationandother surfaceeffectswillbeslightlyunder-predictedowingtolackoftreatmentoflossofparticle surfaceareaintheagglomeratedstructure.However,upondestructionoftheagglomerates 0 01 duetooxidation,surfaceareashouldbesimulatedwell.Coalescence/coagulationrateswill 2 y beenhancedinourmodelastheagglomeratedparticles(andresultantincreaseinparticle r a u mass)arenottracked;however,suchenhancementsshouldbesecondorderassuchrates n a J are dependent on the reduced mass of the collision partners, which is dominated by the 1 2 molecularweightofthesmallerspecies. 3 5 : Sootradiationcanleadtosignificanttemperaturereductionandthusaffectflameprop- 8 1 : erties.Inturn,sootformationitselfisinfluencedbythepresenceofradiation.Inthepresent t A work,sootradiationisconsideredintheopticallythinlimit,withsootparticlesassumedto d e d beRayleighrangeabsorber-emitters[44,51].GasbandradiationfromCO ,H O,andCO a 2 2 o nl isoftensignificantandisaccountedforinthemannerdiscussedin[44].Studiesofoptical w Do thicknesseffectsintheseflameshaveshownthatreabsorptioneffects,whileimportantin capturing thefinedetailoftheflames,arerelatively modest(40–50Ktemperaturevaria- tions)duetothesmalldimensionsoftheflames,sothattheopticallythinapproximation shouldbeadequate [38].Theexpressionfortheradiativefluxdivergence intheoptically thinlimitforgas–sootmixturesisgivenin[44]. Despite the aforementioned assumptions and uncertainties that are part of the overall soot model, we believe that this model provides a useful tool to begin examining the complex interaction of soot formation/oxidation with radiation and combustion in this transientfluiddynamicsfield.Inparticular,inpreviousstudies(see,e.g.,[39])inwhichwe computed steady-state ethylene/air coflow diffusion flames, predicted and measured soot volume fractions agreed to within 30% at high fuel (low dilution) levels and to within a factorofthreeatlowfuel(highdilution)levels. 3. Numericalmethods 3.1. Numericalsolver Adiscretesolutionissoughtonahighlynonuniformtwo-dimensional(2D)tensor-product grid,describedinmoredetailinsection3.3.TheproblemcontainsatotalofN dependent dep variablesateachgridpoint,whereN =4+N +N (v ,v ,ω,T,Y ,fork =1,..., dep sp sec r z k CombustionTheoryandModelling 803 N ,andY,forl =1,...,N ).ThetotalnumberofequationstobesolvedisequaltoN , sp l sec eq where N =N ×N . The coupled, nonlinear system of governing equations and eq dep points BCsisdiscretisedusingsecond-ordercentreddifferencesfordiffusivetermsandfirst-order upwinding for convective terms. To discretise the continuity equation (Equation (2)), a second-order centred difference is used for the radial velocity derivative and a first-order backwarddifferenceisusedfortheaxialvelocityderivative.Thetime-dependenttermsin Equations(1)–(7)arediscretisedusingasecond-orderbackwarddifferenceinvolvingthe solutionatthecurrenttimestepandprevioustwotimesteps. Thefullycoupledsystemofdiscretisedequationsiscastinresidualformasfollows (cid:15) (cid:16) F S¯ =0, (16) whereS¯isanN -elementcolumnvectorofalltheunknownsatallthegridpoints.Storage eq ofthesolutionvectorS¯ usesnaturalordering,whereallofthedependentvariablesatthe first grid point are followed by all of the variables at the second grid point, and so on, throughoutthedomain.ThesystemissolvedimplicitlyusingadampedmodifiedNewton’s 0 method,whichhasbeenusedsuccessfullyinvariousflamestudies(see,forexample,[23, 1 0 2 52–54]).TheKthiterationtakestheform y r a u n a J 21 J(S¯K)(S¯K+1−S¯K)=−λKF(S¯K). (17) 3 5 : 8 1 : t A Here, λK is the Kth damping parameter [55], and the Jacobian matrix J(S¯K) is block-9- d e d diagonalowingtotheuseofa9-pointcomputationalstencil.Globalconvergencecriteria a o nl areimposedsuchthatthetwo-normofascaledNewtonupdatevectorisbelowaspecified w Do toleranceof10−4,andsuchthatnocomponentoftheNewtonupdatevector,relativetothe corresponding solution component’s magnitude, exceeds unity. Use of the latter criterion prevents ‘rogue’ variables at isolated locations in the computational domain from being under-resolved,particularlywhentherearealargenumberofunknownsandtime-dependent BCsareimposed,asinthepresentcase.Usingacriterioninvolvingonlyatwo-norm-based average(asdoneinpreviousstudiessuchas[13,14,23,39,40,56,57])wouldbesufficient ifastrictenoughtolerancewereimposed,butthatapproachwouldbemorecomputationally expensivethanthemultiple-criteriaapproachusedhere.Ifthesolutionisconvergingquickly enoughatagivenNewtoniteration,asdeterminedbytheoreticalestimates[58],thenJ(S¯K) canbereusedforthenextiteration.If,inthecurrentNewtoniteration,theJacobianmatrix is being reused from a previous iteration and damping is necessary to the extent that λK fallsbelowaspecifiedvalue,thenthealgorithmwillexitmodifiedNewton’smethod,form anewJacobian,andreattempttheNewtoniteration. WithineachiterationofNewton’smethod,thelinearsysteminEquation(17)issolved usingBi-CGSTAB[18]withablock-rowGauss–Seidelpreconditioner.TheBi-CGSTAB iterative solver converges when the two-norm of the scaled linear system residual vector is less than one tenth the convergence tolerance of Newton’s method. This combined Bi- CGSTAB and block-row Gauss–Seidel technique, first examined in [15, 17], has been applied successfully for many 2D reacting flow simulations for over a decade (see, for example,[13,16,59–61]).
Description: