This article was downloaded by: On: 23 January 2010 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Combustion Theory and Modelling Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713665226 Mechanism analysis with ILDMs for H combustion on Pd catalysts 2 S. -A. S. Reihani a; G. S. Jackson a a Department of Mechanical Engineering, University of Maryland College Park, MD, USA To cite this Article Reihani, S. -A. S. and Jackson, G. S.(2006) 'Mechanism analysis with ILDMs for H combustion on Pd 2 catalysts', Combustion Theory and Modelling, 10: 1, 1 — 20 To link to this Article: DOI: 10.1080/14685240500260596 URL: http://dx.doi.org/10.1080/14685240500260596 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. CombustionTheoryandModelling Vol.10,No. 1,February2006,1–20 Mechanism analysis with ILDMs for H combustion 2 on Pd catalysts S.-A.S.REIHANIand G.S.JACKSON∗ DepartmentofMechanicalEngineering,UniversityofMarylandCollegePark,MD20742,USA (Received30June2004;infinalform13December2004) Thispaperexplorestheusefulnessofintrinsiclow-dimensionalmanifolds(ILDMs)forinterpreting complexbehaviorofcatalyticcombustionchemistry.Thermodynamicallyconsistentsurfacechem- istrywithrepulsiveinteractionpotentialsforsomesurfacespeciesisincorporatedwithameanfield approachandvalidatedagainstearlierexperimentalstudiesforlowtemperaturecombustionofH2over supportedPd-basedcatalysts.Twosimilarsurfacechemistrymechanisms,modifiedfromanearlier study,capturethenegativeinfluenceofgas-phaseH2OonH2conversionandthenonlinearbehaviorof 0 H2conversionwithrespecttoH2concentration.Tofurtheranalyzethesemechanismsandtheirdiffer- 01 ences,thedynamicalresponseofadifferentialuniformporouswashcoattofixedgas-phaseflowover 2 theexternalwashcoatsurfaceisstudied.Theinteractionpotentialsbetweensurfacespeciesresultin y ar complexbehaviorincludingstrongoscillationsforsomeconditionsandrapiddecompositionofstates u n duringapproachtosteady-stateconversion.ThedifferentialreactorsimulationsrevealILDMswith a 3 J slowmodesinthetransientcatalyticcombustion.H2Oconcentrationintheexternalflowdoesnot 2 significantlyaltertheslowestmodes,butdoesimpacttherateorprogressalongtheILDMtrajectories. 51 Thesystemeigenvaluesandeigenvectorsidentifycriticalaspectsofthethermochemistrythatcan : 7 guidefurtherexperimentalandcomputationalstudiesformechanismrefinementorreduction. 0 : t A Keywords: Catalyticcombustion;Palladium;Hydrogen;Surfacechemistry;ILDM d e d a o l n w o D 1. Introduction Uncertainties inthethermodynamicsandrateparametersgoverningsurfacechemistrylimit theeffectivenessofmanysurfacemechanismstoanarrowrangeofconditions.Thethermo- chemistryofsurfacespeciesincatalyticcombustioncanbeinfluencedbystronginteraction potentialsbetweenadsorbedspecies.Interactionpotentialscanleadtosegregationofsurface species, as illustrated in CO and H oxidation on Pt using Monte-Carlo simulations [1, 2]. 2 However, under conditions where surface adsorbates are small and relatively mobile, mean fieldapproximationsmayprovideacomputationallyefficientapproachformodelingcomplex phenomenaoncatalystsurfaces,suchasoscillatory[3]orhystereticreactionrates[4]observed incombustiononPd-basedcatalysts. NumerousapplicationsofPd-basedcatalyticcombustionhavemotivatedrecentstudiesto buildsurfacechemistrymechanismswithspeciesinteractionpotentialsforPd-basedcatalysts. ArecentreviewofPd-basedcatalyticcombustion[5]providesathoroughdiscussionofthe ∗Correspondingauthor.E-mail:[email protected] CombustionTheoryandModelling ISSN:1364-7830(print),1741-3559(online)(cid:2)c 2006Taylor&Francis http://www.tandf.co.uk/journals DOI:10.1080/14685240500260596 2 S.-A.S.ReihaniandG.S.Jackson outstandingquestionsraisedbyexperimentalstudiesregardingcomplexinteractionsofO,H andC speciesonPd/PdO surfaces.Recentstudieshavedevelopedmean-fieldapproaches 1 x tosimulatehysteresisinoxidation/reductioncyclesofPd/PdO catalysts[6]andtheimpact x ofstoichiometryonlowtemperatureoxidationofH overPd-basedcatalysts[7].Developing 2 therequisitesurfacethermochemistryforcatalyticcombustionofhydrocarbonsonPd-based catalysts will be predicated by the identification of the critical processes and equilibria in smaller subset mechanisms for Pd/O /H [7] as well as Pd/O /CO [3]. This paper uses in- 2 2 2 trinsiclow-dimensionalmanifold(ILDM)analysistoinvestigatethecomplexinteractionsof Pd/O /H inproposedcatalyticcombustionmechanismstogainunderstandingforvalidating 2 2 themechanisms. The application of ILDMs has been well studied for gas-phase chemistry as introduced byMaasandPope[8].However,limitedworkhasbeenpresentedontheuseofILDMsfor complex surface chemistry with one notable exception [9] where ILDMs were applied to reduce a surface mechanism for CH oxidation over Pt. The current paper employs ILDMs 4 for interpreting surface chemistry mechanisms for low temperature combustion of H over 2 supportedPd-catalysts.Twoalternativemechanismsaremodifiedfromapreviouslypublished mechanism[7],anddowellatcapturingtheeffectsofH OonH conversionunderconditions 2 2 of excess O . A model problem based on a uniform porous washcoat-supported catalyst is 2 established as a dynamical system for capturing the coupling of surface chemistry with the 0 1 0 gas-phaseinadifferentialreactor.ILDMsassociatedwiththesurfacechemistryareidentified 2 ry andassociatedwiththecatalystbehaviorinthedifferentialreactor. a u n a J 3 2 2. Surfacechemistrymechanismandvalidation 1 5 : 7 0 : Theefforttodevelopadetailedmechanismforlow-temperatureH oxidationonsupported t 2 A Pd-basedcatalystbuildsontwopreviousstudies.ThefirstisanextensivestudywithTGA/MS d e oad experiments of supported polycrystalline Pd oxidation and reduction to validate a Pd/PdOx nl mechanism[6].ThesecondstudyinvolvesexperimentalinvestigationsofH oxidationover w 2 Do supportedPdcatalystsattemperatureslessthan250◦C[7].Thisstudyusedaγ-Al O washcoat 2 3 to support a Pd catalyst in a configuration similar to that reported earlier [4] and focused on low equivalence ratio (ϕ) conditions where the catalyst maintains an oxidized state. A thermodynamicallyconsistentH oxidationmechanismwasproposed,whichusedthesurface 2 energies for Pd–O species on a fully oxidized PdO sub-surface from the validated Pd–O 2 mechanism.Thepreliminarymechanismcapturedlight-offtrendsbutfailedtoaccountforthe inhibitionofH Oandtheimpactofϕonlowtemperatureconversion(lessthan150◦C).Some 2 experimentalresultsfromthatstudyareplottedinfigure1(both(a)and(b)),whichshowsnear steady-stateconversionforϕ =0.05and0.1,inletmolefractionratiosofXN2,in/XO2,in =20, andaninletvelocityu =10m/sfora2.0cmlongbed.Thiscorrespondstoaspacevelocity in of 500 s−1. Simulation parameters relevant to the experimental characterization include a washcoatthicknessδ of30µm,washcoatporosityεof0.5,andanannularchannelheight wc aroundthewashcoatof0.068cm. These experimental results are compared to predictions from a catalytic channel model, which was used both in its original form with a radially uniform washcoat [7], indicated by the schematic of an axial slice of the model in figure 2(a), and in a more refined form with a radially discretized washcoat as described in detail elsewhere [9], and illustrated by the schematic in figure 2(b). Parametric studies with the axially-discretized channel model wereemployedtoassesshowthesurfaceadsorptionenthalpiesandexpectedsurfacespecies interaction potentials can be adjusted within constraints of experimental observations from previousliteraturetosimulateaswellaspossibletheobservedtrendsinH conversionwith 2 MechanismanalysiswithILDMsforH2combustiononPdcatalysts 3 0 1 0 2 y r a u n a J 3 2 1 5 : 7 0 : t A d e d a o l n w o D Figure1. Comparisonofexperimentalconversion(after20minofruntime)vs.Tinandcatalyticchannelmodel predictions:(a)withMechanismAusinguniformanddiscretizedwashcoatmodels;and(b)withMechanismB usinguniformanddiscretizedwashcoatmodels.DryconditionsreferstoXH2O,in=0.00andwetconditionsrefers toXH2O,in=0.022. respecttoϕ and XH2O,ext.Detailsofthesimulationsarereportedelsewhere[7,10]andwill notbediscussedindetailhere. Thecomparisonsinfigure1betweencatalyticchannelmodelpredictionswithexperimen- tal observations illustrate the strengths and deficiencies of the mechanisms in capturing the kinetically controlled phenomena observed in the low temperature H catalytic combustion 2 overthePd-basedcatalysts.Theexperimentalresultsshowthatbeforemass-transfer-limited 4 S.-A.S.ReihaniandG.S.Jackson Figure2. Schematicillustratinganaxialslicefromthechannelflowmodel(orthedifferentialreactorfortheILDM analysis):(a)withauniformporouscatalyticwashcoatmodel;and(b)witharadiallydiscretizedwashcoatmodel. conversions are reached for T ≥150◦C, H O inthe inlet reduces conversion substantially in 2 except at T =50◦C where conversion is very low. For ϕ =0.1, both mechanisms capture in thistransitiontohighmass-transferlimitedconversionandmodeltheimpactofH Oonthe 2 kineticallycontrolledconversionatlowerT .However,simulationwithbothmechanismsat in ϕ =0.05andT ≥150◦Cunder-predictthehighH conversionobservedintheexperiments. in 2 0 Analysis of results indicates that inaccuracies in the channel-to-washcoat diffusion model 1 0 2 basedonSherwoodnumbercorrelations[11]canonlyplayaminorroleinthesediscrepancies y ar asanimposed50%increaseintheSherwoodnumbersleadstoonlya10%riseinpredicted u Jan H2conversionforthekineticallysensitiveconditions.Thus,theunder-predictionisprimarily 3 drivenbythekinetics,andtheexternalchanneltowashcoattransportplaysonlyasecondary 2 51 roleinthemodelingresults.Thissuggestsroomforimprovingthemechanisms.Nonetheless, : 07 thequantitativeagreementforϕ =0.1andatlowTin forϕ =0.05combinedwiththequal- t: itative agreement for the rise in conversion between T =125◦C and 150◦C for ϕ =0.05 A in ded indicatesthatthemechanismsprovideaframeworkforimprovingmodelingpredictionsofH2 loa catalyticcombustionforkineticallysensitiveconditionsatlowϕandTin. n w It is noted that both the discretized (15 radial slices) and the uniform washcoat models o D predict similar trends. The higher conversion from the channel model with the discretized washcoatincomparisontotheuniformwashcoatcanbeattributedtothevariationsthrough thedepthofthewashcoatallowingforhigherreactionratesintheouterregionofthewashcoat wherethecatalystismosteffectivelyutilized[10]. Forthemodelpredictionsinfigure1,mechanismmodificationsweremadefromaprevious Pd–H oxidation mechanism [7], particularly in the thermochemistry of the H-containing 2 surface species. The only changes to the previously validated Pd–O subset [6] of the H 2 2 combustion mechanism arise from additional interaction potentials between H-containing species and the original Pd–O species. Changes in the surface species’ enthalpies h and k their interaction potentials εjk lead to changes in the activation energy barriers Eact,i and their coverage dependencies that arise when reversibility of the reactions are enforced for thermodynamicconsistency.Thesecoveragedependenciesaregovernedbytherelationship between Eact,i forreversiblesurfacereactionsasgivenhere: (cid:4) (cid:4) (cid:5)(cid:5) (cid:1)(cid:2) (cid:3) (cid:1) (cid:1) Eact,i,r = Eact,i,f − νkih0k − νki h0k + (εkjθj) forithreaction (1) k,g k,s j,s Inequation1,h0 aretheenthalpiesofspeciesexcludingallinteractionpotentialsε .ν k jk ki arethestoichiometriccoefficientsfortheithreaction.Thesummationsrepresenttheheatof reactionderivedfromameanfieldapproximation,whichincludesinteractionpotentials. MechanismanalysiswithILDMsforH2combustiononPdcatalysts 5 Table 1. Surfacethermodynamicsrelativetostandardgasphaseenthalpies.Speciesdescriptions givenin[7]. H0forMechanismA h0forMechanismB k k Species (inkJ/gmol) (inkJ/gmol) Pd(s) 0.0 0.0 Pd–O(s) −115.0+57.5θO(s)+29.0θOH(s) −115.0+57.5θO(s)+29.0θOH(s) Pd–O(sb) −115.0 −115.0 Pd(sb) −35.0+208θPd(sb)+147θH2O(sb)+ −35.0+208θPd(sb)+208θH2O(sb) 208θH(sb)+104θOH(sb) +104θH(sb)+104θOH(sb) Pd–O2(sb) −105.0 −105.0 Pd–H(s) −42.0+8.θH(s) −42.0+8.θH(s) Pd–OH(s) −214.0+29.0θO(s)+14.5θOH(s) −214.0+29.0θO(s)+14.5θOH(s) Pd–H2O(s) −302.0 −302.0 Pd–H(sb) −57.0+208θPd(sb)+147θH2O(sb)+ –52.0+104θPd(sb)+104θH2O(sb)+ 208θH(sb)+104θOH(sb) 52θH(sb)+52θOH(sb) Pd–OH(sb) −229.0+104θPd(sb)+ −224.0+104θPd(sb)+104θH2O(sb) 73.5θH2O(sb)+104θH(sb)+ +52θH(sb)+52θOH(sb) 52θOH(sb) Pd–H2O(sb) −332.0+147θPd(sb)+104θH2O(sb) –322.0+208θPd(sb)+208θH2O(sb) +147θH(sb)+73.5θOH(sb) +104θH(sb)+104θOH(sb) 0 1 0 ThesurfacechemistrymechanismsincludedifferentsurfacePd–Oatominteractions[12]: 2 ry (1)surfacePdoxide(O(sb))and(2)chemisorbedOatomonPdmetal(O(s)).Theinclusion a nu ofdifferentPd–OspeciesalsoforcesthemechanismtoincorporatetwoPd–Hsurfacespecies a J inagreementwithpastexperimentalstudies[13]:(1)H(sb),whichisaHatomrestingina 3 2 1 Pdoxidevacancyand(2)chemisorbedH(s).SimilarlydifferentPd–OHsurfacespeciesand 5 07: Pd–H2O species are incorporated. Surface species enthalpies relative to zero energy levels : (defined by standard gas-phase enthalpies and pure Pd metal) are presented in table 1. The t A surface thermodynamics for the two mechanisms (A and B) are derived from a parametric d e ad study for tuning the mechanisms, where uncertain interaction potentials were varied within o nl reasonablelimits.Thetwomechanismsrepresentsomevariationthatcanbetoleratedwithin w o D theuncertainsurfacethermochemistrywithoutsignificantlyalteringthechannelflowmodel predictions. The difference between the two thermochemistries are the decreased stability of OH(sb) and H O(sb) in Mechanism B and changes in the repulsive energies of H(sb) 2 andH O(sb).Theself-repulsionsforchemisorbedO(s)andH(s)arewelldocumentedinthe 2 literature [14]. Repulsions associated with the (sb) species are associated with the electron deficiencyoftheunsatisfiedoxidevacancy,andtheirrelativestrengthsarenotreadilyfound withoutdetailedatomisticmodelingwhichisanareaofongoingresearch[15].Thecurrent mechanismsassumethatrepulsiveinteractionsfor(sb)speciesdependupontheextentthatthe adsorbatesalleviatethelocallyelectron-richconfigurationofPd(sb).Inthisregard,asingle OH(sb)isgivenhalftherepulsiveforceofPd(sb).TherepulsiveenergiesassociatedwithH(sb) andH O(sb)areuncertainandwerevariedbetweenthetwomechanismsasindicatedintable1. 2 The two surface reaction mechanisms, presented in table 2, have the highest sensitivity for H conversion toward adsorption/desorption reaction rates. Reversible surface reactions 2 help establish the equilibrium surface site fractions, which influence adsorption rates. The mechanisms differ from the previously reported mechanism [7] in two ways. Firstly, the increasedstabilityoftheH O(sb)andOH(sb)speciesonisolatedvacanciesresultsinahigher 2 desorptionbarrierforH Ofromtheoxidesurface.Secondly,repulsiveinteractionsforH O(sb) 2 2 andOH(sb)areincluded. StickingcoefficientsforbothO andH wereassumedtodecaywithT−0.5 tocapturethe 2 2 observeddropinO stickingcoefficientwithT [16].Predictedconversiondependsstrongly 2 on the ratio of H adsorption to O adsorption on both oxide vacancies and metallic sites. 2 2 6 S.-A.S.ReihaniandG.S.Jackson Table 2. Pd–O2–H2surfacechemistrymechanismusedinnumericalmodel. Aorstick Eact(kJ/mol) Eact(kJ/mol) Reactions coefficient forMechanismA forMechanismB Adsorption/desorptionreactions 1f)O2+2Pd(s)⇒2O(s) 0.8∗T−0.5 0.0 0.0 1r)2O(s)⇒O2+2Pd(s) 5.7∗1021 230–115θO(s) 230–115θO(s) 2f)O2+Pd(sb)⇒O2(sb) 1.0∗T–0.5 0.0 0.0 2r)O2(sb)⇒O2+Pd(sb) 1.0∗1013 70 70 3f)H2+2Pd(s)⇒2H(s) 6.4∗T–0.5 0.0 0.0 3r)2H(s)⇒H2+2Pd(s) 5.7∗1021 84–16θH(s) 84–16θH(s) 4f)H2+Pd(sb)+O(sb)⇒H(sb)+OH(sb) 8.0∗T–0.5 0.0 0.0 4r)OH(sb)+H(sb)⇒H2+Pd(sb)+O(sb) 5.7∗1021 136+Ca4r 126 5f)H2O+Pd(s)⇒H2O(s) 0.50 0.0 0.0 5r)H2O(s)⇒H2O+Pd(s) 1.0∗1013 60.2 60.2 6f)H2O+Pd(sb)⇒H2O(sb) 0.50 0.0 0.0 6r)H2O(sb)⇒H2O+Pd(sb) 1.0∗1013 55.2+Ca6r 45.2 Reversiblesurfacereactions 7)O(s)⇔O(sb) 5.0∗1011 90 90 8)O2(sb)+Pd(sb)⇔2O(sb) 5.7∗1021 0.0 0.0 9)O2(sb)+Pd(s)⇔O(sb)+O(s) 5.7∗1021 185–57.5θO(s) 185–57.5θO(s) 10)H(s)+Pd(sb)⇔H(sb)+Pd(s) 5.7∗1021 50 50 11)H(s)+O(s)⇔OH(s)+Pd(s) 5.7∗1021 45 45 0 y 201 1123))HO(Hs)(s+)+OHOH(s)(s⇔)⇔H2HO2(Os)(s+)+PdO(s(s)) 55..77∗∗11002211 15052 15052 uar 14)OH(sb)+Pd(s)⇔H(s)+O(sb) 5.7∗1021 102+8θH(s) 97+8θH(s) Jan 1165))OHH(s()s+b)O+HP(sdb(s)b⇔)⇔H2HO((ssbb))++OP(ds(bs)) 55..77∗∗11002211 401+22Ca15f 14202 3 1 2 17)H2O(sb)+Pd(sb)⇔H(sb)+OH(sb) 5.7∗1021 121 121 7:5 18)OH(sb)+OH(sb)⇔H2O(sb)+O(sb) 5.7∗1021 81 81 0 d At: a4C3θoHv2eOr(asgb)e+d6ep1eθnHd(seb)nc+ie3s0.f5oθrOMH(sebc),hC.1A5:f=C44r3=θP−d(s1b)04+θP3d0(s.b5)θ−H2O7(s3b.)5+θH42O3(θsbH)(s−b)+10241θ.H5(θsOb)H(−sb)5.2θOH(sb) C6r=61θPd(sb) + e d a o l n w o DissociativeH adsorptionismodeledtooccurbothonmetallicPd(s)pairs(reaction3f)and D 2 onvacancy/oxidepairs(reaction4f)inordertoachieveadequatelowtemperatureconversion. ExperimentalstudieshaveshownthatstickingcoefficientsofH onPdshouldbe∼5Xormore 2 thanthoseofO topredictPd-basedH sensorperformance[17].Inaslightmodificationfrom 2 2 thepreviousmechanism,theH coefficientonboththemetalandtheoxidesurfacewasset 2 to8X(insteadof10X)theO stickingcoefficient.ThehighH coefficientisborneoutinthe 2 2 experiments,whichshowthateveninexcessO ,supportedPdOparticlescanundergopartial 2 reductionatlowtemperatures. Thetwomechanismsintable2capturethetrendsinexperimentalobservationsforϕ =0.1 for the range of temperatures shown in figure 1 and have qualitative agreement with the observations for ϕ =0.05. It should be noted that these mechanisms are only suited for predictingH combustionatlowϕ wherethereisnobulkPdOreduction.Simulationresults 2 with a detailed gas phase H /O mechanism indicated that over 99% of the H combustion 2 2 2 wasduetosurfacereactionsforT <200◦C,andthusfurthersimulationsignoredgasphase ext chemistry. 3. Modeldescription To facilitate ILDM analysis of the surface chemistry mechanism, a numerical model of the supportedwashcoatlayerisformulatedasauniformdifferentialreactorsuchthatthesystem MechanismanalysiswithILDMsforH2combustiononPdcatalysts 7 of governing equations can be identified as a dynamical system dependent only on local conditions.Suchareactormodelisillustratedbytheschematicshowninfigure2(a).Surface reactionsareinfluencedbyheatandmasstransportfromthesurroundinggas-phaseflowand bythermalconductionthroughthesolidmatrixofthecatalystsupport. The model solves the transient differential algebraic equations that govern the washcoat temperature T, gas phase mass fractions Y , and surface species mole fractions θ on the k k supportedcatalystparticles.Gasphasedensityρ ismodeledwiththeidealgasequation.For theuniformporouswashcoat,conservationofgasphasespecies(k=1,k )isgivenbythe gas followingequation: (cid:4) (cid:5) ∂Y (cid:1) ρε k =εω˙ W +a s˙ W −Y (W s˙ ) +a ρ¯YV −a ρ¯V(Y¯ −Y ) (2) ∂t k k cat k k k k k wc k wc k k k,g where the overbar implies mean conditions between the washcoat and the external flow. In equation2,εiswashcoatporosity,W ismolecularweightofspeciesk,anda anda are k cat wc thecatalystsurfaceareaandexternalgeometricalareaofwashcoat,bothperunitvolumeof washcoat.Gas-phasereactionratesperunitvolumeω˙ canbeincorporatedinthemodel,but k arenotincludedinthecurrentsimulationsasdiscussedearlier.Calculationofthediffusiveflux ofspeciesYV betweenthewashcoatandtheexternalflowarediscussedbelow.TheStefan k 10 velocityV outofthewashcoatlayerarisesfromchangesinρand/ornetadsorption/desorption 0 2 fromthesurface. y r nua Withsurfacereactionratesperunitareaofcatalysts˙k,conservationofsurfacespecies(for Ja k=kgas+1,kgas+ksurf)isgovernedbythefollowingequation 3 2 ∂θ 07:51 (cid:10)cat ∂tk =s˙k (3) : At where(cid:10)catisthecatalystsitedensity.Conservationofenergyinwashcoatisgivenby: d ownloade (ρCp)∂∂Tt +=−acat(cid:1)k,g (hks˙kWk)−ε(cid:1)k,g (hkω˙kWk)−acat(cid:1)k,s (hks˙kWk) D (cid:1) (cid:1) +a h (T −T)+a ρ¯ ((h¯ −h )YV )−a ρ¯V (h¯ Y¯ −h Y ) wc T ext wc k k k wc k k k k k,g k,g (4) wheretheweightedspecificheatcapacityρC includesthegasandsolidphases.Although p transformation in bulk phase catalyst species are not included in this study, the developed modelcanbeappliedforfuturestudieslookingatconditionswhereH reducesthebulkofa 2 PdO catalyst. x TofacilitateclearerassessmentoftheILDMsthatgovernthesurfacechemistrymechanism, heat and mass transport are determined with fixed external flow conditions such that the dynamicalresponseofthesystemiscontrolledstrictlybychangeswithinthewashcoatmedia. Forthemassandheattransportbetweenthefixedexternalflowandthewashcoat,diffusive fluxesaremodeledwiththeuseofNusselt(Nu)andSherwood(Sh )numbercorrelationsused k inthechannelflowmodel[11].Thesefluxesattheinterfacebetweenthechannelflowandthe outerwashcoatsurfacearedefinedbythefollowingequations: YV = DkmShk(Yk,ext−Yk) for k =1, k , (5) k gas d hyd Nuλ (T −T) h (T −T)= gas ext at y =0.0. (6) T ext d hyd 8 S.-A.S.ReihaniandG.S.Jackson Gas-phasetransportpropertiesvarywithcompositionandT basedonCHEMKIN’skinetic theoryalgorithms.StandardJANAFtablesareusedtomodelgas-phasethermodynamicprop- erties with respect to temperature. Because conditions in the current study have significant dilutionofthereactants,amixture-averagedformofthebinarydiffusioncoefficient D is km used for diffusion coefficients. Thermal diffusion is incorporated into the D for the light km gas phase species (H ). The washcoat pores are assumed to be substantially larger than the 2 molecularmeanfreepath,andthusKnudsendiffusionhasanegligibleimpactondiffusionin thewashcoat. Theabovetransientconservationequationsareintegratednumericallywithrespecttotime usingthenumericalintegrationschemeLIMEX[18]untiltimet=1000s,atwhichpointforall non-oscillatorycasesasteady-statesolutionhasbeenreached.Thisnumericalmodelisused tostudythetwomechanismspresentedintable2.Toensuredifferentialreactorbehaviorfor clearerkineticevaluations,celllengthforthemodelissetto10µmwithwashcoatthicknesses δ of10µmandreactorsubstratethicknessδ of75µm.Thecatalyticwashcoatiscomposed wc sub ofγ-Al O withaporosity,ε =0.5,acatalystloadingof5.5mgofPdpercm3 ofwashcoat 2 3 volume,andacatalystdispersionof0.1.Externalflowconditionsfollowtheaforementioned rangeofexperimentalconditions. Figures3aand3bshowpredictionsusingMechanismAoftransientprofilesofH conversion 2 0 inthewashcoat(=1−YH2/YH2,ext)andsurfacesitefractions(θk)forthedifferentialwashcoat 201 reactorunderbothdryandwet(XH2O,ext =0.022)conditionsatText =100◦C,ϕ =0.1,and ary XN2,ext/XO2,ext =20.Theθk plottedinfigure3showatransitionfromaninitiallyoxidized anu catalystwithθO(sb) =0.9toconditionswherethesurfacehassignificantcoverageofOH(sb) J andOH(s).Forthedrycase,thistransitionleadstooscillatorybehavior(ofthesurfacesite 3 2 fractionsandtheH conversion).Whilemildoscillationswereobservedinthemassspectrom- 51 2 7: etermeasurementsinthecatalystchannelexperimentsforsomeconditions,theoscillations 0 : wereminimalcomparedtothoseshowninfigure3a.However,channelflowsimulationsusing t A MechanismAunderdryinletconditionspredictedsignificantlydampedoscillations(<10% d e oad of mean H2 conversion) due to the production of H2O along the channel. Gas phase H2O nl suppressestheoscillationsasindicatedbythewetcaseinfigure3b.Thissuggeststhevalue w o D ofdifferentialreactorstotestkineticmechanisms. Figure4ashowshowtheslightchangesinMechanismBsuppresstheoscillationsentirely forthedrycaseatT =100◦Candϕ =0.1.ThelackofpredictedoscillationswithMech- ext anismBcaninpartbeattributedtothereducedstabilityofthesurfacespeciesOH(sb)and H O(sb)whichpreventsthebuild-upofthesespeciesasconversionincreases.Alltheresults 2 infigure4aforboththedryandwetcasesindicatemultipletimescalesfrom(cid:8)1sto(cid:9) 10s impacting the surface site fractions and similarly the H conversion with respect to time. 2 The rapid (<1 s)changes of H conversion would likely only be observed in a differential 2 reactor, of order 1 mm in length, because variation in gas and surface conditions length- wise along longer reactors will mask the effects of sharp local transitions on exhaust gas measurements. Themultipletimescalesandtheoscillatorybehaviorillustratedinfigures3and4suggest thatILDMsmayprovideinsighttothissystembyisolatingtheslowertimescaleprocesses. Tothisend,thegoverningequationsfortheporouscatalyticwashcoatcanbewrittenas: ∂∂U(cid:12)t = B(cid:12)(cid:12) −1(U(cid:12) )((cid:10)(cid:12)(Text,Yk,ext,U(cid:12) )+ (cid:13)(cid:12) (U(cid:12) ))= F(cid:12) (U(cid:12) ) (7) where, U(cid:12) thesolutionvectorincludesT,Y ,andθ inthecatalyticwashcoat. B(cid:12)(cid:12) (U(cid:12) )denotes k k thematrixmultiplierofthetransientderivatives, (cid:10)(cid:12) denotesfluxtermsduetodiffusionand Stefanvelocityconvectionto/fromtheexternalflow,and (cid:13)(cid:12) isthelocalsourcetermsdueto MechanismanalysiswithILDMsforH2combustiononPdcatalysts 9 0 1 0 2 y r a u n a J 3 2 1 5 : 7 0 : t A d e d a o l n w o D Figure3. TransientprofilesofH2 conversionandsurfacesitefractionsinuniformdifferentialreactoratText= –1(cid:1)00–◦CO(asnbd),φ−−=•−0−.1OwHit(hsbM),e−c−h(cid:2)a−n−ismOHA(sfo),rH(a2)−d−r◦y−a−ndO((bs)b)w,e−t−((cid:3)X−H−2OH,e2xOt=(s)0,.—02(cid:4)2—)cHon(ds)i.tions.−−−H2Conversion reactions.BecauseTextandYk,extarefixedinthisproblem,thederivativesaresimplyafunction (cid:12) (cid:12) F ofthewashcoatstatespecifiedby U. To identify the time-scales of this system around a point in state space, the Jacobian and associated eigenvalues and eigenvectors are evaluated for the system and the different modes are sorted into slow (subscript s) and fast (subscript f) modes via the following
Description: