ebook img

Review Article PPAR-γ, Microglial Cells, and Ocular Inflammation: New Venues for Potential ... PDF

13 Pages·2014·1.25 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review Article PPAR-γ, Microglial Cells, and Ocular Inflammation: New Venues for Potential ...

HindawiPublishingCorporation PPARResearch Volume2008,ArticleID295784,12pages doi:10.1155/2008/295784 Review Article γ PPAR- , Microglial Cells, and Ocular Inflammation: New Venues for Potential Therapeutic Approaches FiorellaMalchiodi-Albedi,1AndreaMatteucci,2AntoniettaBernardo,1andLuisaMinghetti1 1DepartmentofCellBiologyandNeurosciences,IstitutoSuperiorediSanita`,00161Rome,Italy 2G.B.BiettiFoundationforOphthalmology(IRCCS),00198Rome,Italy CorrespondenceshouldbeaddressedtoLuisaMinghetti,[email protected] Received9December2007;Accepted25January2008 RecommendedbySuofuQin Thelastdecadehaswitnessedanincreasinginterestfortheroleplayedbytheperoxisomeproliferator-activatedreceptor-γ(PPAR- γ)incontrollinginflammationinperipheralorgansaswellasinthebrain.ActivationofPPAR-γhasbeenshowntocontrolthe responseofmicroglialcells,themainmacrophagepopulationfoundinbrainparenchyma,andlimittheinflammation.Theanti- inflammatory capacity of PPAR-γ agonists has led to the hypothesis that PPAR-γ might be targeted to modulate degenerative braindiseasesinwhichinflammationhasbeenincreasinglyrecognizedasasignificantcomponent.Recentexperimentalevidence suggeststhatPPAR-γagonistscouldbeexploitedtotreatoculardiseasessuchasdiabeticretinopathy,age-relatedmaculardegener- ation,autoimmuneuveitis,andopticneuritiswhereinflammationhasrelevantrole.AdditionalPPAR-γagonistbeneficialeffects couldinvolveameliorationofretinalmicrocirculationandinhibitionofneovascularization.However,PPAR-γactivationcould,in someinstances,aggravatetheocularpathology,forexample,byincreasingthesynthesisofvascularendothelialgrowthfactor,a proangiogenicfactorthatcouldtriggeraviciouscircleandfurtherdeteriorateretinalperfusion.Thedevelopmentofnewinvivo andinvitromodelstostudyocularinflammationandhowtomodulatefortheeyebenefitwillbeinstrumentalforthesearchof effectivetherapies. Copyright©2008FiorellaMalchiodi-Albedietal. This is an open access article distributed under the Creative Commons AttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkis properlycited. 1. INTRODUCTION glucoseloweringactivityofPPAR-γhasleadtothedevelop- mentofspecificPPAR-γagonistsforthetreatmentoftype-2 The peroxisome proliferator-activated receptor-γ (PPAR-γ) diabetes and the metabolic syndrome [5]. PPAR-γ agonists is a ligand-inducible transcription factor that belongs to such as thiazolidinediones (TZD), including pioglitazone a large superfamily comprising the nuclear receptors for (Actos) and rosiglitazone (Avandia), increase insulin sensi- steroids,thyroidhormones,andretinoids.ThePPAR-γ and tivitytherebyimprovingglycaemiccontrol,butalsomodify thetwocloselyrelatedPPAR-αandPPAR-δ(alsoknownasβ, lipidemicprofileanddecreasebloodpressure[6–9].Onthe NUC-1,orFAAR)areactivatedbynaturallyoccurringfatty other hand, fibrates, which are PPAR-α agonists, are preva- acidsandactassensorsthatregulatewholebodymetabolism lentlyantilipidemicdrugs,andtherapeuticbenefitsofPPAR- inresponsetothedietaryintakebycontrollinglipidandcar- α and PPAR-γ activations, which only are minimally over- bohydratemetabolismandlipidstorage[1].AllthreePPARs, lapping, have generated interest in dual agonists that target once agonist-activated,form heterodimers with retinoic X bothreceptors,thusofferingimprovedinsulinsensitivityand receptors and regulate specific target gene transcription by lipidemiccontrolinthesamemolecule[10,11].Thiswould bindingtospecificDNAregions(peroxisomeproliferatorre- provideatherapeutictoolagainstdiabetesandthemetabolic sponseelements,PPREs)orbyamechanismindependentof syndrome. PPRE binding, termed transrepression, which begins to be The three PPARs share a high homology, but differ for unravelled[2]. tissue distribution and ligand specificity. PPAR-α is mainly Becauseoftheirroleintheregulationofgenesinvolved expressed in tissues with high catabolic rates of fatty acids, in lipid and carbohydrate metabolism, PPARs deeply affect suchastheliver,muscle,andheart,whereasPPAR-δ shows lipid homeostasis and insulin sensitivity [3, 4]. The serum a much wider distribution. PPAR-γ is highly expressed in 2 PPARResearch adipose tissue, where it plays a central role in the regula- drocytes,theretina-specificMuller-glialcells,andmicroglia, tionofadipocytedifferentiation[12],andincellsoftheim- whichareconsideredthemainimmuneresidentcells. mune system, including lymphocytes and macrophages. In Retinalmicroglia,liketheircounterpartinthebrain,be- peripheralmonocytes,PPAR-γexpressionisinducedduring longtothemyeloidlineageandtheirmyeloidprogenitorsen- theprocessofextravasationfrombloodvesselsintothetis- terthenervoussystemprimarilyduringembryonicandfetal sues, and in the course of activation by pro-inflammatory periods of development. During embryogenesis, microglial stimuli,suggestingthatPPAR-γ isimportantforpromoting precursorsmigratetotheretinabeforeretinalvascularization monocyte-macrophage differentiation and activation and, and differentiate into ramified, quiescent microglia typical thus,controllinginflammation[13–16].Asformacrophages of adult healthyretina. A second population of phagocytes, ofperipheraltissues,PPAR-γregulatestheactivationofmi- whichexpressmacrophagemarkers,invadestheretinallater croglial cells, the main macrophage population found in through the developing vasculature and remains associated brain parenchyma, and increasing evidence indicates that with the blood vessels (see below). In the adult retina, mi- PPAR-γ might modulate brain inflammation and neurode- crogliaaredistributedthroughmostoftheretinallayers,in- generation[17]andbeexploitedasvaluabletherapeutictar- cludingouterplexiformlayer,outernuclearlayer,innerplex- getinneurologicaldiseases[18].Indeed,braininflammation iformlayer,ganglioncelllayer,andnervefiberlayer.Engraft- isincreasinglyviewedasatargetfortreatingneurologicaldis- mentexperimentshaveshownthattheydisplaysomeprolif- eases, not only in classical infectious and immune-mediate erativecapacityandhaveaslowturnoverinrespectofother disorderssuchasmeningitisormultiplesclerosis,butalsoin macrophage populations [21]. Disturbances in the number stroke,trauma,andneurodegenerativediseasesthatwerenot ordistributionofthesecellsdisruptthenormaldevelopment originallyconsideredtobeinflammatory[19,20]. oftheeyeanditsrelatedstructures.Ritterandcollaborators In a similar way, inflammation could represent an im- [22]haverecentlyreportedthatmyeloidprogenitorsmigrate portant target to treat ocular diseases. In the study of oph- tovascularregionsoftheretinawheretheydifferentiateinto thalmology,theclassicalsubdivisionofpathologytextbooks microgliaandfacilitatethenormalizationofthevasculature, in metabolic, inflammatory, hemodynamic, and degenera- thusunderliningamainroleofmicroglialcellsinpromoting tivedisordersappearsartificialanddoesnotreflectthecom- andmaintainingretinalvasculatureduringdevelopment. plexityofconditions,whereinflammation,dysmetabolicand Microglia show particular capacity of interaction with hemodynamicdisorders,andneurodegenerationoftencon- retinal cells, supervising the immune environment (see spiretothedevelopmentofdiseases.Paradigmaticexample [23] and references therein). As for microglia in the brain isdiabeticretinopathy(DR),whereametabolicderangement parenchyma, retinal microglial cells are immunocompetent (hyperglycemia)triggersapathologicpathway,characterized cells,abletoremovethedebriscreatedduringnormaleyede- initiallybyinflammation(leukostasis,enhancedretinalvas- velopmentordegenerativeconditionsbyphagocytosisandto cular permeability, Muller cell, and microglial activation), mountaninflammatoryandimmuneresponseagainstocu- followedbymicrovasculaturealterationsandischemia(pro- larinjury,infection,anddisease. liferative DR), eventually leading to degeneration of neu- Under normal conditions, microglia are characterized ralretinaandvisualloss.Tothiscomplexity,asimplicityin by a downregulated phenotype when compared to other the natural history may correspond and the course of dif- macrophage populations of peripheral tissues. The mainte- ferent retinal diseases may at a certain stage converge to- nanceofmicrogliainthis“inhibited”stateiscrucialforthe ward a similar evolution. For example, pathologic neovas- regulation of the immune state of the retina, which has to cularizationmaybethesameandominousoutcomeofDR, maintaintissuehomeostasiswhilepreventingthedestructive age-relatedmaculardegeneration(AMD),andautoimmune potentialofinflammatoryandimmuneresponse.Thecom- uveitis,conditionsthatareveryfarfromeachotherfromthe plexityoftheseveralintraocularstructuresonwhichthecor- pointofviewofetiology. rectvisionisdependentrenderstheeyeparticularlyvulner- In the present article, we will first briefly review the able to the reactions of the immune system against invad- immune cells that participate to the ocular inflammation, ing pathogens or ocular injury. To prevent that a defensive mainlymicroglia,andtheroleofPPAR-γincontrollingtheir reaction can transform into a threat to vision in itself, the functions.Inasecondpart,wewillconsiderthreeconditions, eye is equipped with several regulatory mechanisms, which whereinflammationhasarelevantfunction,microgliaisin- contributetomaketheeyean“immune-privileged”site[24]. volved,andtheroleofPPARshasbeentakenintoconsidera- Asrecentlydescribedforthebrainparenchyma[25],theim- tion:DR,AMD,andopticneuritis(ON). muneprivilegeisnotanabsoluteoranimmutablestate,but ratheritistheresultoftheactiveinterplayamongspecialized 2. MICROGLIALCELLSANDOTHERCELL cellular elements and specific microenvironment character- POPULATIONSOFTHEIMMUNERESPOSE istics, and it can be overcome in several instances. Among INTHEEYE. themainfeaturesthataccountfortheocularimmuneprivi- legeare is the presence of blood-ocular barriers (the blood- Glial cells are the primary participants in the formation of aqueous barrier and the blood-retinal barrier), which are scarsinresponsetoretinalorocularinjuryanddiseases.In physical barriers between the local blood vessels and most addition, under normal conditions, they carry out a vari- partsoftheeyeitself,andthepeculiarcharacteristicsofthe etyofsupportivefunctionsfortheneuronswithwhichthey resident immune cells, namely, microglia, which are largely are closely related. Glial cells include astrocytes, oligoden- dependentonthepresenceofimmunomodulatoryfactors FiorellaMalchiodi-Albedietal. 3 Table1:Retinalpathologiescharacterizedbymicroglialactivation. lieved to be essential as structural support in microcircula- tion. In addition, together with astrocytes and Muller glia, Pathology References they are considered to play a major role in maintaining the Diabeticretinopathy [26–29] innerblood-retinalbarrier[49].Thesecells,ofmesodermal Glaucomatousopticnervedegeneration [30–33] origin,areenclosedwithinthebasallaminaontheablumi- Humanretinitispigmentosa [34] nal surface of endothelial cells and contain contractile pro- Age-relatedmaculardegeneration [34,35] teins. Pericytes have been shown to control vessel constric- Retinalischemiaandreperfusioninjury [36,37] tion and retinal blood flow [50], and are involved in sev- eral pathological conditions, including hypoxia, hyperten- Retinaldegeneration [14,20,38] sion,andDR.Theiractivation,sincetheveryearlyphasesof disease,isthoughtcontributetothedisruptionoftheblood- retinal barrier [51]. Finally, the RPE cells are important in in the aqueous humor and on the cross-talk between mi- ocularimmuneresponseandinmaintainingtheeyeimmune croglia and retinal cells. Several “ligand-receptor-” type in- privilege. These cells form a monolayer between the neu- teractions between retinal cells and microglia contribute to roretinaandthechoroidsandaretheessentialcomponentof maintainingmicrogliainanonactivatedstate.Amongthese, theouterblood-retinalbarrier.Oneofthemaincharacteris- theglycoproteinCD200,whichintheretinaisextensivelyex- ticsofRPEcellsisthepresenceoftightjunctionsattheapical pressedinneuronsandendothelialcells,andthecognatelig- sideoftheirlateralmembrane,whichrenderthemonolayer andCD200Lonmicroglia[39],andtheneuronalchemokine impermeable for macromolecules and limit access of blood fractalkine(orCX3CL1)anditsmicroglialreceptorCX3CR1 components to the retina. In addition to several important [40]. supportive functions, including regulation of transport of In spite of their apparent “dormant” state, resting mi- nutrientstothephotoreceptors,phagocytosisofdamagedor crogliaactivelymonitorthesurroundingmicroenvironment old rod outer segments, and production of growth factors, withextremelymotileprocessesandprotrusions,enteringin RPE cells contribute to the immune and inflammatory re- contactwithothercellularelementsandsensingalterations sponse of the retina by expressing major histocompatibility inthenearbyenvironment,towhichtheyrapidlyreact.Mi- complex(MHC)antigens,adhesionmolecules,andavariety croglial activation comprises morphological changes, such ofcytokines,whichmayeitherpromoteorenhanceimmune ascellularhypertrophy,retractionofprocesses,andexpres- responsesordown-regulatethem[52]. sionofsurfacemarkers,aswellasfunctionalchanges,includ- Inadditiontothecelltypessofardescribed,anovelpop- ingproliferation,migration,phagocytosis,andproductionof ulationofdendriticcellshasbeenrecentlyreportedinnor- bioactivemolecules.Activatedmicrogliahavebeendescribed malmouseretina,distinguishablebythecelltypesbytheex- in several forms of retinal injury or disease (see Table 1), tent of specific surface antigens and anatomical tissue loca- in which they are believed to play major roles, either pro- tion[53]. tective or detrimental. Indeed, activated microglia can, on one side, remove the degenerating neurons and contribute 3. DIABETICRETINOPATHY to re-establish tissue integrity; on the other side, they can secreteproinflammatorycytokinessuchinterleukin(IL)-1β, Diabeticretinopathy(DR)isoneofthemostseriouscompli- IL-3, IL-6, tumour necrosis factor (TNF)-α, and interferon cationsofdiabetesandtheleadingcauseofblindnessamong (IFN)-γ,whichcanbetoxictoneuronsandphotoreceptors working-ageadults.DRsymptomsaremostlyduetothevas- [41, 42] or to other cellular targets such as oligodendro- cularalterationsthataffecttheretina.Theearlyeventsarein- cytes[43,44].Inaddition,severalofthesemicroglialprod- creasedbloodflowandabnormalvesselpermeability,dueto uctscanup-regulatetheexpressionofvascularcelladhesion theimpairmentofblood-retinalbarrier.Theyarecausedby moleculesandchemokines[45–47],thuspromotingthere- hyperglycemiaandtheothermetabolicconsequencesofex- cruitmentoflymphocytesandmacrophages,andenhancing cessglucosedisposal.Asthediseaseprogresses,retinalvascu- the immune-mediated tissue damage [23, 48]. In this con- lopathy develops, showing loss of pericytes, smooth muscle text,moleculesthatcanenablethecontrolofmicroglialacti- and endothelial cell death, and microaneurysm formation, vationrepresentvaluabletoolstocounteractthedetrimental resultinginareasofischemiaintheretina.Atthisstage,up- effectsof inflammation and immune response while foster- regulationofproangiogenicfactorsinischemicretina,such ingthosenecessaryforhealing. asvascularendothelialgrowthfactor(VEGF),initiatesavi- Inadditiontomicroglia,othercelltypescontributetothe ciouscircleofneovascularization(proliferativeDR),charac- immuneresponseintheeye.Theperivascularmacrophages terizedbyenhancedvascularleakageandformationofnew, resideoutsidetheblood-ocularbarrier,inthespacethatsep- weak,andprone-to-breakbloodvessels,whichfurtherdete- arates the endothelium of the retinal capillaries and reti- riorates retinal perfusion, worsens ischemia and eventually nal pigment epithelium (RPE). Because of their anatom- leadstovisualloss. ical location, they escape the tight control to which reti- Although the pathogenetic cascade connecting these nal microglia are subjected and their morphology and im- events is still unclear, evidence suggesting a role for in- munophenotype are very similar to those of macrophages flammationinDRisaccumulating,supportingtheinvolve- of peripheral tissues. In close proximity, but separate from ment of both chemical mediators and inflammatory cells perivascular macrophages are the pericytes, which are be- in the pathogenesis of the disease [54]. Elevated levels of 4 PPARResearch proinflammatory cytokines, such as IL-1β, IL-6 and IL-8, ular hemodynamics [77]. In bovine aortic endothelial cells, andTNF-αandvascularcelladhesionmolecule-1,havebeen troglitazone increased NO production in a dose- and time- foundinthevitreousofpatientswithproliferativeDR[55– dependent manner with no modifications in eNOS expres- 57]. Increased VEGF and IL-6 levels were detected in the sion [78]. A study focused on NO production in pericytes aqueous humor of diabetic patients with macular edema showedthatPPAR-γisconstitutivelyexpressedinretinalper- [58].TNF-αwasfoundinepiretinalmembranesofprolifera- icytes and that troglitazone increases NO production and tiveDR[59].Datafromexperimentalmodelsareinlinewith iNOS expression in a PPAR-γ-dependent manner, an effect theseobservations.Instreptozotocin(STZ)-induceddiabetic which is opposite to what observed in cultured microglia rats,changesinretinalbloodvesselpermeability,whichchar- [79, 80]. This study suggests that PPAR-γ agonists, in ad- acterizes the early phases of DR, are paralleled by increase dition to improving insulin sensitivity, might also improve in the level of the intercellular cell adhesion molecule-1 retinal microcirculation in early DR [81]. However, NO is (ICAM-1),whichfacilitatesthetraffickingofleukocytes[60], a double-edged sword. Overproduction of NO by neuronal andpro-inflammatorymediators,suchasTNF-αandcyclo- NOSissupposedtocontributetoretinalinjuryinischemia oxygenase-2(COX-2)[61,62].Inthesameanimalmodel,an [82,83].Thus,althoughinDRearlyphaseanincreaseinNO increasedlevelofIL-1βhasbeenobservedandputinrelation may contribute to the improvement of retinal microcircu- toupregulatedinduciblenitricoxidesynthase(iNOS)[63]. lation, in proliferative DR a beneficial effect is doubtful. A Mice deficient in the leukocyte adhesion molecules CD18 further reason of concern is represented by TZD effects on andICAM-1demonstratesignificantlyfeweradherentleuko- VEGF.Severalinvivoandinvitrostudieshavereportedin- cytes in the retinal vasculature after induction of diabetes creasedexpressionofVEGFinresponsetoPPAR-γ ligands. with STZ [54]. According to some authors, VEGF could be TZDshavebeenfoundtoupregulateVEGFinhumanvascu- responsiblefortheinitiationoftheinflammatorycascade,as larmusclecells[84],in3T3-L1adipocytes[85],incultured itsadministrationinvivowasfoundtoinduceretinalICAM- cardiacmyofibroblasts[86].Inbovineaorticendothelialcells 1 and endothelial NOS (eNOS) expression [64, 65]. As far treatedwithtroglitazone,NOincreasewasaccompaniedby as inflammatory cells are concerned, microglia seem to be upregulationofVEGFanditsreceptor,KDR/Flk-1[78].Ad- mostly involved. Microglial activation appears early in the ministrationofpioglitazone[87]andtroglitazone[85]also course of DR, before the onset of overt neuronal cell death significantly increased plasma VEGF levels in diabetic pa- [62]. In STZ-induced diabetic rats, hypertrophic microglia tients.ConsideringtheroleplayedbyVEGFinthedevelop- were observed one month after the onset of diabetes [66], mentandprogressionofDR,cautionhasbeensuggestedin with significant increase also in cell number [67]. In mice theuseofPPAR-γligandsinpatientswithadvanceddisease with alloxan-induced diabetes, changes in microglial cell [85, 87]. However, in partial disagreement with the results morphologywerethefirstdetectablecellularmodifications, abovereported,antiangiogenicpropertiesofPPARagonists apparentlyprecedingganglioncellapoptosisandincreasein havebeenshownbothininvitroandinvivomodels[35,88– bloodbarrierpermeability[68].TreatmentofSTZ-induced 90].Inneonatalmice,whereischemiawasusedasamodelof diabetic rats with minocycline, a semisynthetic tetracycline retinalneovascularization,intravitreousinjectionofrosigli- thatcounteractsmicroglialactivation,besidesdecreasingthe tazoneortroglitazoneinhibiteddevelopmentofnewretinal expressionofproinflammatorycytokines,decreasedcaspase- vessels [91]. In the same study, TZDs have been found to 3 levels [62], suggesting a potential neuroprotective anti- inhibit retinal endothelial cell proliferation, migration, and apoptoticeffectofinhibitionofmicroglialactivation. tubeformationinresponsetoVEGFtreatment[91].Further Considering the role of inflammation in the pathogen- studiesarethereforerequiredtoclarifytheissue. esis of DR, it has been suggested that PPAR-γ ligands ex- ert therapeutic effects also as modulators of inflammation, 4. AGE-RELATEDMACULARDEGENERATION besides providing glycemic control [69]. In diabetic pa- tients, PPAR-γ agonists reduce several markers of inflam- Age-related macular degeneration (AMD) is the leading mation, such as serum levels of C-reactive protein, IL-6, cause of vision loss in the elderly in the western world. It monocyte chemoattractant protein-1 (MCP-1), plasmino- is characterized by degeneration of the macula, the central gen activator inhibitor-1, soluble CD40 ligand, and matrix areaoftheretinawiththehighestconcentrationofconepho- metalloproteinase-9 [70–75]. In addition, they have been toreceptors, responsible for visual acuity and color vision. showntoinducethesuppressionofactivatedNFκBandde- Histopathologically,theearlyphaseofAMDischaracterized creaseROSgenerationinbloodmononuclearcells[70,73]. by formation of drusen, deposits of lipid and cellular de- Modulation of the inflammatory process has also been bristhatarefoundbetweentheRPEcellsandBruch’smem- studiedinDRininvivomodels.Instreptozotocin-induced brane,possiblyasaresultofRPEdegenerationor,asrecently DR,rosiglitazonewasshowntoinhibitbothretinalleukosta- proposed[92],microglialinfiltrationandtransformationin sisandretinalleakage[76].Theeffectwasnotaccompanied foamcells.Asthediseaseproceeds,photoreceptordegener- by downregulation of proinflammatory cytokines, such as ationand,inthemostaggressivecases,choroidalneovascu- TNF-α, although the adhesion molecule ICAM was found larization(CNV)intervene,withgrowthofnewbloodvessels reduced. Nitric Oxide (NO) of endothelial origin regulates fromthechoroidsintothesubretinalspace.Twomajorclin- ocular blood flow. In the endothelial dysfunction, which icalphenotypesofAMDarerecognized:nonexudative(dry characterizes the early stages of DR, a reduction in the type), and exudative (wet type). The latter more frequently bioavailability of NO may contribute to impairment of oc- developsintoCNV. FiorellaMalchiodi-Albedietal. 5 AMD is a complex, multifactorial disease and both ge- whiledirectinjectionofmacrophagessignificantlyinhibited netic and environmental factors may contribute at some CNV. level.Inthepathogenesisofthedisease,bothalteredangio- As mentioned earlier, beside mononuclear phagocytic genesis and inflammation play a role. The study of patho- cells,RPEcellshavealsoaroleintheinflammatoryandan- logicangiogenesisintheretinahasfocusedontwomainfac- giogeneticprocess,asamajorsourceofVEGFandPEDF.In tors: the angiogenic VEGF [93, 94] and the antiangiogenic addition,thereisacross-talkbetweenRPEandmacrophages. PEDF [94–96], although a number of other factors are im- It has been shown that macrophages in CNV are im- plicated(for a review, see [97]). It is widely agreed that in munopositive for VEGF, TNF-α, and IL-1β [119]. The lat- CNVanimbalancebetweenangiogenicandanti-angiogenic ter factors can induce the secretion of IL-8 and MCP-1 in factors takes place, but what disrupts this delicate equilib- RPEcellsinvitro[120,121].MCP-1is,inturn,involvedin riumisstillunclear.Severallinesofevidencepointtoinflam- therecruitmentofmacrophages[122],thusclosingthecir- mationasapathogeneticmechanism.Manyriskfactorsfor cle. Indeed, in surgically excised CNV specimens, RPE was AMD are related to inflammation, including environmen- found to express VEGF and MCP-1 and macrophages were talfactors,suchassmokingandlowintakeofomega-3fatty immunolabeledforVEGF[123]. acid[98,99],andgeneticfactors,suchaspolymorphismsof The interest in the role of PPARs in AMD has been complementfactorH[100–102]andthechemokinereceptor mainly focused on their activities as modulators of angio- CX3CR, which is expressed by microglia and mediates mi- genesis.PPARagonistshaveshownantiangiogenicproperties grationandadhesioninresponsetoitsligandfractalkineor bothininvitroandinvivomodels[35,88,89].Ithasbeen CX3CL1[103].IncreasedserumlevelsofIL-6andC-reactive shownthatchoroidalECsandRPEcellsexpressPPAR-γand protein have been found to be related with progression of thatPPAR-γligandsinhibittheirresponsetoVEGF,without AMD[104].Morerecently,IL-6receptorneutralizationhas apparent toxicity to the adjacent retina, in a laser-induced shown to lead to decrease in the expression of inflamma- model of CNV [90]. Decrease in angiogenesis apparently torymediators,suchasthechemokineMCP-1,theadhesion takes place by inhibition of VEGF, since PPAR-α agonists moleculeICAM-1,andVEGF,andtoreducemacrophagein- are found to inhibit endothelial VEGFR2 expression [124]. filtration into CNV in in vivo model of the disease [105]. An opposite role has been recently described for PPARδ, Inflammatorymediators,suchasmacrophagechemoattrac- whichinducedendothelialproliferationandangiogenesisin tantsandactivatedcomplementcomponents,especiallyC3a vitro, through a VEGF-dependent mechanism [125]. The and C5a, are also found in drusen samples from AMD pa- natural ligand 15-deoxy-Δ12,14-prostaglandin J (15d-PGJ ) 2 2 tients[106–108].Aroleforcomplementinthedevelopment was found to protect a human RPE cell line from oxidative of thediseasehasbeensuggested[34].Inline withthishy- stressbyelevatingGSHandenhancingMAPKactivation,but pothesis,ithasbeenobservedthatgeneticablationofrecep- suchactivitywasindependentofitsPPAR-γbindingactivity torsforC3aorC5areducedVEGFexpression,leukocytere- [126].Therolesofinfiltratingmacrophagesand/orresident cruitment,andCNV[109]. microglia in the pathogenesis of AMD open the possibility Activation of microglia and infiltration of macrophages that PPAR-γ agonists may ameliorate the course of the dis- have been reported in the human AMD as well as in easealsothroughthedown-regulationofseveralproinflam- experimental CNV [110–112]. In transgenic mice lack- matoryfunctionsofthesecells[8]andreferencetherein,in- ing CX3CR1, microglia migrate defectively and accumu- cludingTNF-αandiNOS,andMHC-IIexpression. late in the subretinal space, evoking morphological and However, possible beneficial effects of PPAR-γ agonists pathological features similar to those observed in human in the treatment of ocular inflammation and, particularly, AMD. In addition, laser-induced CNV was exacerbated in ofAMDneedtobefurtherverified.Itisimportanttokeep these mice [92]. A controversy exists regarding the ori- in mind that PPAR-γ is involved in the differentiation of gin of activated retinal mononuclear phagocytes, that is, macrophagestofoamingcellsandPPAR-γligandscaninduce whether they are resident microglia [113, 114] or blood- expression of adipocyte lipid binding protein (ALBP/aP2), derived bone marrow macrophages [46, 115]. In support agenethatishighlyexpressedinvivoinmacrophage/foam of the latter hypothesis, it should be noted that systemic cellsof human atheroscleroticplaques[127].Moreover,ac- depletionofmacrophagesusingclodronate-filledliposomes tivationofPPAR-γhasbeenshowntoreduceCCR2expres- blocked neovascularization [116, 117]. However, the role sioninmonocytesandtheirchemotaxisinresponsetoMCP- of macrophages is still debated, since some studies suggest 1 [128]. These PPAR-γ mediated activities are of particular an antiangiogenic role for macrophages. For example, mice interestintheviewoftherecentfindingbyCombadie`reetal. lackingCCchemokineligand2(CCL2)oritsreceptor,both [92], suggesting that subretinal microglial foam cells might involved in chemoattraction of macrophages and/or mi- betheoriginofdrusen-likedepositsandthataccumulation croglia,showdrusen-likedepositsandCNV,suggestingthat ofmicrogliainthesubretinalspacemaybeadrivingforcein macrophage recruitment may protect against AMD [118]. thepathogenesisofAMD. In addition, mice lacking IL-10, an anti-inflammatory cy- tokine known to control macrophage/microglia functions, 5. OPTICNEURITISANDRELATEDDISORDERS had significantly reduced neovascularization and increased macrophage infiltrates compared to wild type, in a laser- Optic neuritis (ON), an inflammatory, demyelinating dis- inducedmodelofCNV.Intheseexperiments,preventionof easeoftheopticnerve,maybetheinitialsymptomofmul- macrophageentryintotheeyepromotedneovascularization tiple sclerosis (MS) or appear in the course of the disease. 6 PPARResearch Table2:PPARagonistsandEAE. Agonists Biologicalactivity Receptor References Troglitazone Ameliorationofclinicalsymptoms.Reducedexpression PPAR-γ [129] ofproinflammatorycytokines,IL1βandTNF-α Decrease of severity and duration of clinical paralysis. Ciglitazone,15d-PGJ2 DecreaseofCNSinflammationanddemyelination.De- PPAR-γ [130] creaseofIL-12production Delayintheonsetanddecreaseintheseverityofdisease. 15d-PGJ2 ReductionofConA-andMBPAc1–11-reactive,IFN-α- PPAR-γ [131] andIL-4-secretingcells Pioglitazone Decreased mRNA levels of iNOS and the chemokines PPAR-γ [132] MIP1andRANTESinthecentralnervoussystem Dose-dependent suppression of lymphocyte prolifera- Gemfibrozilandfenofibrate tion. Promotion of IL-4 production and inhibition of PPAR-α [133] IFN-γproduction GW0742 Improvement of clinical recovery. Reduction of glial PPAR-δ [134] activation Ciglitazone,15d-PGJ Ameliorationofclinicalandpathologicalsymptoms.In- PPAR-γ [135] 2 hibitionofneuralantigen-specificTcellproliferation Reductionofincidenceandclinicalsigns.Inhibitionof Gemfibroil theinfiltrationofinflammatorycellsintotheCNS.Re- noPPAR-γ [136] ducedexpressionofproinflammatorymoleculessuchas iNOS,IL-1,IL-6,andTNF-α Prevention of relapse episodes and reduction of mean Pioglitazone clinicalscoresduringthetreatmentperiod.Decreaseof PPAR-γ [137] IFN-γlevels Inanyevent,nearlyhalfofMSpatientsdevelopONduring inflammatoryactivitiesofPPAR-γagonistsarecomplexand the course of the disease. An idiopathic demyelinating dis- multifaceted,evidencehasbeenprovidedsuggestingadirect orderoftheopticnervealsooccursasNeuroMyelitisOptica actionofPPAR-γagonistsonmicroglia/mononuclearphago- (NMO)orDevic’sdisease,whichischaracterizedbytheco- cytic cells. Indeed, taking part in both innate and adaptive existence of usually bilateral and severe optic neuritis with immuneresponses,microgliaandmononuclearphagocytes spinal cord involvement and the presence of a highly spe- aredeeplyimplicatedinthecomplexinflammatorycascade cific serum autoantibody marker (NMO-IgG), recognizing associated with MS. Their role has been recently and ex- the transmembrane channel Aquaporin 4 [138, 139]. The tensively reviewed [144, 145]. The PPAR-γ natural agonist boundariesbetweenNMOandMSare,however,ratherim- 15d-PGJ [146] and the PPAR-α agonist gemfibrozil [133] 2 precise,fromboththeclinicalandpathologicpointsofview were found to significantly reduce macrophage infiltration and it is still a matter of controversy whetherNMO should in the lesions. A decreased number of IL-1β-positive cells beconsideredavariantofMSoraseparateentity[139,140]. werefoundinEAEbrainofmicetreatedwithGW0742anda Consideringtheirroleininflammation,thepossiblether- PPAR-δagonistandthisobservationwasconsideredindica- apeutic efficacy of PPAR-γ agonists has been studied in ex- tive of a reduction of glial activation [134]. PPAR-γ inhibi- perimental autoimmune encephalomyelitis (EAE), an ani- tionofmicroglialcellactivationisalsosupportedbyinvitro mal model of the disease where the autoimmune reaction experiments[8,79,80,147–152]. against myelin is induced in animals by active sensitization Notwithstanding the amount of data regarding a thera- with myelin components. Although several criticisms have peuticactivityofPPARagonistsin EAE,clinicalstudies are been moved towards this model, EAE still provides a valu- lackingandreportontheirclinicaluseinMSorONisstill abletoolforimprovingourunderstandingonthepathogen- anecdotical[153].Clinicaltrialsarehoweverincoursewith esis and treatment of MS. EAE is also considered a model pioglitazoneandrosiglitazone. relevant to the study of demyelinated diseases of the optic nerve[141,142].Anadditionalanimalmodelisrepresented 6. CONCLUSIONS byTcellreceptortransgenicmicespecificformyelinoligo- dendrocyte glycoprotein (MOG). These mice develop iso- The promising results obtained in experimental models of lated optic neuritis either spontaneously or after sensitiza- ocular diseases and the recent advancements in the knowl- tionwithsuboptimaldosesofMOG[143].Therapeuticeffi- edge of the pathogenic mechanisms driving ocular damage cacy of PPAR-γ ligands has been demonstrated in terms of and vision loss strongly point to PPAR-γ as a valuable tar- suppression or amelioration of clinical symptoms and de- get to control inflammation and treat invalidating diseases creaseofinflammatorysigns(seeTable2).Althoughtheanti- such as DR, AMD, and ON. Given the complexity of the FiorellaMalchiodi-Albedietal. 7 phenomenathatcanbeinfluencedbyPPAR-γactivation,in- [12] T. M. Willson, M. H. Lambert, and S. A. Kliewer, “Perox- volving not only inflammation but also retinal microcircu- isome proliferator-activated receptor γ and metabolic dis- lation, neovascularization, and transformation of activated ease,” Annual Review of Biochemistry, vol. 70, pp. 341–367, microgliainfoamcellscontributingtodrusen-likedeposits, 2001. furtherstudiesaremandatoryforacorrectevaluationofpro [13] R.A.DaynesandD.C.Jones,“EmergingrolesofPPARsin and cons of using PPAR-γ agonists in ocular disease treat- inflammationandimmunity,”NatureReviewsImmunology, ment.ThePPAR-γagonistscouldalsofindotherimportant vol.2,no.10,pp.748–759,2002. applications in controlling the adverse effects of inflamma- [14] M.Ricote,J.Huang,L.Fajas,etal.,“Expressionoftheper- tionthatcanputatrisktheeyeintegrityandthecorrectvi- oxisomeproliferator-activatedreceptorγ(PPARγ)inhuman atherosclerosis and regulation in macrophages by colony sion.Asanexample,someoftheadversereactionsdescribed stimulating factors and oxidized low density lipoprotein,” after liquid artificial vitreous replacement use in vitreoreti- ProceedingsoftheNationalAcademyofSciencesoftheUnited nalsurgeryareaconsequenceofinflammatoryreactionand StatesofAmerica,vol.95,no.13,pp.7614–7619,1998. activationofmononuclearphagocyticcells[154],suggesting thattheuseofPPAR-γagonistscouldbeveryadvantageous [15] M.Ricote,A.C.Li,T.M.Willsons,C.J.Kelly,andC.K.Glass, “Theperoxisomeproliferator-activatedreceptor-γ isaneg- incontrollingtheinflammatoryresponsetobiomaterials. ativeregulatorofmacrophageactivation,” Nature,vol.391, no.6662,pp.79–82,1998. REFERENCES [16] P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R.M.Evans,“PPARγ promotesmonocyte/macrophagedif- ferentiationanduptakeofoxidizedLDL,”Cell,vol.93,no.2, [1] B. Desvergne and W. Wahli, “Peroxisome proliferator- pp.241–252,1998. activated receptors: nuclear control of metabolism,” En- docrineReviews,vol.20,no.5,pp.649–688,1999. [17] A.BernandoandL.Minghetti,“PPAR-γagonistsasregula- torsofmicroglialactivationandbraininflammation,”Cur- [2] M. Ricote and C. K. Glass, “PPARs and molecular mech- rentPharmaceuticalDesign,vol.12,no.1,pp.93–109,2006. anisms of transrepression,” Biochimica et Biophysica Acta, vol.1771,no.8,pp.926–935,2007. [18] M. T. Heneka, G. E. Landreth, and M. Hu¨ll, “Drug in- sight:effectsmediatedbyperoxisomeproliferator-activated [3] P. Escher and W. Wahli, “Peroxisome proliferator-activated receptor-γ inCNSdisorders,”NatureClinicalPracticeNeu- receptors:insightintomultiplecellularfunctions,”Mutation rology,vol.3,no.9,pp.496–504,2007. Research,vol.448,no.2,pp.121–138,2000. [4] M.StumvollandH.-U.Ha¨ring,“Glitazones:clinicaleffects [19] M.M.Esiri,“Theinterplaybetweeninflammationandneu- rodegeneration in CNS disease,” Journal of Neuroimmunol- and molecular mechanisms,” Annals of Medicine, vol. 34, ogy,vol.184,no.1-2,pp.4–16,2007. no.3,pp.217–224,2002. [20] L. Minghetti, “Role of inflammation in neurodegenerative [5] P.Gervois,J.-C.Fruchart,andB.Staels,“Druginsight:mech- diseases,” Current Opinion in Neurology, vol. 18, no. 3, pp. anismsofactionandtherapeuticapplicationsforagonistsof 315–321,2005. peroxisomeproliferator-activatedreceptors,”NatureClinical PracticeEndocrinology&Metabolism,vol.3,no.2,pp.145– [21] H.Xu,M.Chen,E.J.Mayer,J.V.Forrester,andA.D.Dick, 156,2007. “Turnoverofresidentretinalmicrogliainthenormaladult mouse,”GLIA,vol.55,no.11,pp.1189–1198,2007. [6] H.Yki-Ja¨rvinen,“Thiazolidinediones,”NewEnglandJournal ofMedicine,vol.351,no.11,pp.1106–1118,2004. [22] M.R.Ritter,E.Banin,S.K.Moreno,E.Aguilar,M.I.Dorrell, andM.Friedlander,“Myeloidprogenitorsdifferentiateinto [7] P. Delerive, J.-C. Fruchart, and B. Staels, “Peroxisome microgliaandpromotevascularrepairinamodelofischemic proliferator-activated receptors in inflammation control,” retinopathy,”JournalofClinicalInvestigation,vol.116,no.12, JournalofEndocrinology,vol.169,no.3,pp.453–459,2001. pp.3266–3276,2006. [8] P. Gerber, G. Lu¨bben, S. Heusler, and A. Dodo, “Effects of [23] T.Langmann,“Microgliaactivationinretinaldegeneration,” pioglitazoneonmetaboliccontrolandbloodpressure:aran- Journal of Leukocyte Biology, vol. 81, no. 6, pp. 1345–1351, domisedstudyinpatientswithtype2diabetesmellitus,”Cur- 2007. rentMedicalResearchandOpinion,vol.19,no.6,pp.532– 539,2003. [24] J.W.Streilein,“Ocularimmuneprivilege:theeyetakesadim butpracticalviewofimmunityandinflammation,”Journal [9] P. A. Sarafidis, A. N. Lasaridis, P. M. Nilsson, et al., “Am- ofLeukocyteBiology,vol.74,no.2,pp.179–185,2003. bulatory blood pressure reduction after rosiglitazone treat- mentinpatientswithtype2diabetesandhypertensioncor- [25] I. Galea, I. Bechmann, and V. H. Perry, “What is immune relateswithinsulinsensitivityincrease,”JournalofHyperten- privilege(not)?”TrendsinImmunology,vol.28,no.1,pp.12– sion,vol.22,no.9,pp.1769–1777,2004. 18,2007. [10] B.R.Henke,“Peroxisomeproliferator-activatedreceptorα/γ [26] L.Chen,P.Yang,andA.Kijlstra,“Distribution,markers,and dualagonistsforthetreatmentoftype2diabetes,”Journalof functionsofretinalmicroglia,”OcularImmunology&Inflam- MedicinalChemistry,vol.47,no.17,pp.4118–4127,2004. mation,vol.10,no.1,pp.27–39,2002. [11] D.M.Kendall,C.J.Rubin,P.Mohideen,etal.,“Improvement [27] K.C.Silva,C.C.Pinto,S.K.Biswas,J.B.LopesdeFaria,and ofglycemiccontrol,triglycerides,andHDLcholesterollev- J.M.LopesdeFaria,“Hypertensionincreasesretinalinflam- elswithmuraglitazar,adual(α/γ)peroxisomeproliferator- mationinexperimentaldiabetes:apossiblemechanismfor activated receptor activator, in patients with type 2 dia- aggravation of diabetic retinopathy by hypertension,” Cur- betes inadequately controlled with metformin monother- rentEyeResearch,vol.32,no.6,pp.533–541,2007. apy:adouble-blind,randomized,pioglitazone-comparative [28] K. C. Silva, C. C. Pinto, S. K. Biswas, D. S. Souza, J. B. study,”DiabetesCare,vol.29,no.5,pp.1016–1023,2006. Lopes de Faria, and J. M. Lopes de Faria, “Prevention of 8 PPARResearch hypertension abrogates early inflammatory events in the [44] T. Nakazawa, C. Nakazawa, A. Matsubara, et al., “Tumor retina of diabetic hypertensive rats,” Experimental Eye Re- necrosis factor-α mediates oligodendrocyte death and de- search,vol.85,no.1,pp.123–129,2007. layed retinal ganglion cell loss in a mouse model of glau- [29] A.L.Wang,A.C.H.Yu,Q.H.He,X.Zhu,andM.O.M. coma,” Journal of Neuroscience, vol. 26, no. 49, pp. 12633– Tso,“AGEsmediatedexpressionandsecretionofTNFαinrat 12641,2006. retinalmicroglia,”ExperimentalEyeResearch,vol.84,no.5, [45] M.C.Madigan,P.L.Penfold,N.J.C.King,F.A.Billson,and pp.905–913,2007. R.M.Conway,“Immunoglobulinsuperfamilyexpressionin [30] L.YuanandA.H.Neufeld,“Tumornecrosisfactor-α:apo- primaryretinoblastomaandretinoblastomacelllines,”On- tentially neurodestructive cytokine produced by glia in the cologyResearch,vol.13,no.2,pp.103–111,2002. humanglaucomatousopticnervehead,”GLIA,vol.32,no.1, [46] A.Caicedo,D.G.Espinosa-Heidmann,Y.Pin˜a,E.P.Hernan- pp.42–50,2000. dez, and S. W. Cousins, “Blood-derived macrophages infil- [31] R. Naskar, M. Wissing, and S. Thanos, “Detection of tratetheretinaandactivateMullerglialcellsunderexperi- earlyneurondegenerationandaccompanyingmicroglialre- mentalchoroidalneovascularization,”ExperimentalEyeRe- sponsesintheretinaofaratmodelofglaucoma,”Investiga- search,vol.81,no.1,pp.38–47,2005. tiveOphthalmology&VisualScience,vol.43,no.9,pp.2962– [47] T. Nakazawa, T. Hisatomi, C. Nakazawa, et al., “Mono- 2968,2002. cytechemoattractantprotein1mediatesretinaldetachment- [32] E.C.Johnson,L.Jia,W.O.Cepurna,T.A.Doser,andJ.C. induced photoreceptor apoptosis,” Proceedings of the Na- Morrison,“Globalchangesinopticnerveheadgeneexpres- tional Academy of Sciences of the United States of America, sionafterexposuretoelevatedintraocularpressureinarat vol.104,no.7,pp.2425–2430,2007. glaucomamodel,”InvestigativeOphthalmology&VisualSci- [48] M. H. Davies, J. P. Eubanks, and M. R. Powers, “Microglia ence,vol.48,no.7,pp.3161–3177,2007. and macrophages are increased in response to ischemia- inducedretinopathyinthemouseretina,”MolecularVision, [33] D. M. Inman and P. J. Horner, “Reactive nonproliferative vol.12,pp.467–477,2006. gliosispredominatesinachronicmousemodelofglaucoma,” [49] J.H.Kim,J.H.Kim,J.A.Park,etal.,“Blood-neuralbarrier: GLIA,vol.55,no.9,pp.942–953,2007. intercellularcommunicationatglio-vascularinterface,”Jour- [34] L. A. Donoso, D. Kim, A. Frost, A. Callahan, and G. S. nalofBiochemistryandMolecularBiology,vol.39,no.4,pp. Hageman,“Theroleofinflammationinthepathogenesisof 339–345,2006. age-relatedmaculardegeneration,”SurveyofOphthalmology, [50] C.M.Peppiatt,C.Howarth,P.Mobbs,andD.Attwell,“Bidi- vol.51,no.2,pp.137–152,2006. rectionalcontrolofCNScapillarydiameterbypericytes,”Na- [35] X. Xin, S. Yang, J. Kowalski, and M. E. Gerritsen, “Peroxi- someproliferator-activatedreceptorγligandsarepotentin- ture,vol.443,no.7112,pp.700–704,2006. [51] G. J. Guillemin and B. J. Brew, “Microglia, macrophages, hibitorsofangiogenesisinvitroandinvivo,”JournalofBio- perivascular macrophages, and pericytes: a review of func- logicalChemistry,vol.274,no.13,pp.9116–9121,1999. tionandidentification,”JournalofLeukocyteBiology,vol.75, [36] O.Uckermann,S.Uhlmann,T.Pannicke,etal.,“Ischemia- no.3,pp.388–397,2004. reperfusion causes exudative detachment of the rabbit [52] M. Holtkamp, R. Zschenderlein, W. Bru¨ck, and J. R. We- retina,”InvestigativeOphthalmology&VisualScience,vol.46, ber,“Chronicinflammatorydemyelinatingpolyradiculoneu- no.7,pp.2592–2600,2005. ropathywithhistologicallyprovenopticneuritis,”ActaNeu- [37] C.Zhang,T.T.Lam,andM.O.M.Tso,“Heterogeneouspop- ropathologica,vol.101,no.5,pp.529–531,2001. ulationsofmicroglia/macrophagesintheretinaandtheirac- [53] S.Xu,P.D.Witmer,S.Lumayag,B.Kovacs,andD.Valle,“Mi- tivationafterretinalischemiaandreperfusioninjury,”Exper- croRNA(miRNA)transcriptomeofmouseretinaandiden- imentalEyeResearch,vol.81,no.6,pp.700–709,2005. tification of a sensory organ-specific miRNA cluster,” Jour- [38] C. Zhang, J.-K. Shen, T. T. Lam, et al., “Activation of mi- nalofBiologicalChemistry,vol.282,no.34,pp.25053–25066, croglia and chemokines in light-induced retinal degenera- 2007. tion,”MolecularVision,vol.11,pp.887–895,2005. [54] A.M.Joussen,V.Poulaki,M.L.Le,etal.,“Acentralrolefor [39] A. D. Dick, D. Carter, M. Robertson, et al., “Control of inflammation in the pathogenesis of diabetic retinopathy,” myeloid activity during retinal inflammation,” Journal of TheFASEBJournal,vol.18,no.12,pp.1450–1452,2004. LeukocyteBiology,vol.74,no.2,pp.161–166,2003. [55] A. M. Abu el Asrar, D. Maimone, P. H. Morse, S. Gregory, [40] A. E. Cardona, E. P. Pioro, M. E. Sasse, et al., “Control of andA.T.Reder,“Cytokinesinthevitreousofpatientswith microglialneurotoxicitybythefractalkinereceptor,”Nature proliferativediabeticretinopathy,”AmericanJournalofOph- Neuroscience,vol.9,no.7,pp.917–924,2006. thalmology,vol.114,no.6,pp.731–736,1992. [41] D. T. Walsh, L. Bresciani, D. Saunders, et al., “Amyloid [56] G. A. Limb, J. Hickman-Casey, R. D. Hollifield, and A. H. β peptide causes chronic glial cell activation and neuro- Chignell,“Vascularadhesionmoleculesinvitreousfromeyes degenerationafterintravitrealinjection,”Neuropathologyand with proliferative diabetic retinopathy,” Investigative Oph- AppliedNeurobiology,vol.31,no.5,pp.491–502,2005. thalmology&VisualScience,vol.40,no.10,pp.2453–2457, [42] H.-Y.Zeng,X.-A.Zhu,C.Zhang,L.-P.Yang,L.-M.Wu,and 1999. M.O.M.Tso,“Identificationofsequentialeventsandfactors [57] T. Yuuki, T. Kanda, Y. Kimura, et al., “Inflammatory cy- associated with microglial activation, migration, and cyto- tokinesinvitreousfluidandserumofpatientswithdiabetic toxicityinretinaldegenerationinrdmice,”InvestigativeOph- vitreoretinopathy,”JournalofDiabetesandItsComplications, thalmology & Visual Science, vol. 46, no. 8, pp. 2992–2999, vol.15,no.5,pp.257–259,2001. 2005. [58] H. Funatsu, H. Yamashita, H. Noma, T. Mimura, T. Ya- [43] L. Gao, W. Macklin, J. Gerson, and R. H. Miller, “Intrinsic mashita,andS.Hori,“Increasedlevelsofvascularendothe- andextrinsicinhibitionofoligodendrocytedevelopmentby lialgrowthfactorandinterleukin-6intheaqueoushumorof ratretina,”DevelopmentalBiology,vol.290,no.2,pp.277– diabeticswithmacularedema,”AmericanJournalofOphthal- 286,2006. mology,vol.133,no.1,pp.70–77,2002. FiorellaMalchiodi-Albedietal. 9 [59] D. Armstrong, A. J. Augustin, R. Spengler, et al., “Detec- ClinicalEndocrinology&Metabolism,vol.89,no.6,pp.2728– tionofvascularendothelialgrowthfactorandtumornecro- 2735,2004. sis factor α in epiretinal membranes of proliferative dia- [74] G.Wang,J.Wei,Y.Guan,N.Jin,J.Mao,andX.Wang,“Per- beticretinopathy,proliferativevitreoretinopathyandmacu- oxisome proliferator-activated receptor-γ agonist rosiglita- lar pucker,” Ophthalmologica, vol. 212, no. 6, pp. 410–414, zone reduces clinical inflammatory responses in type 2 di- 1998. abetes with coronary artery disease after coronary angio- [60] K. Miyamoto, S. Khosrof, S.-E. Bursell, et al., “Prevention plasty,”Metabolism,vol.54,no.5,pp.590–597,2005. ofleukostasisandvascularleakageinstreptozotocin-induced [75] R.Agarwal,“Anti-inflammatoryeffectsofshort-termpiogli- diabeticretinopathyviaintercellularadhesionmolecule-1in- tazonetherapyinmenwithadvanceddiabeticnephropathy,” hibition,”ProceedingsoftheNationalAcademyofSciencesof American Journal of Physiology, vol. 290, no. 3, pp. F600– theUnitedStatesofAmerica,vol.96,no.19,pp.10836–10841, F605,2006. 1999. [76] K. Muranaka, Y. Yanagi, Y. Tamaki, et al., “Effects of per- [61] A. M. Joussen, T. Murata, A. Tsujikawa, B. Kirchhof, S.-E. oxisome proliferator-activated receptor γ and its ligand on Bursell,andA.P.Adamis,“Leukocyte-mediatedendothelial blood-retinal barrier in a streptozotocin-induced diabetic cellinjuryanddeathinthediabeticretina,”AmericanJournal model,”InvestigativeOphthalmology&VisualScience,vol.47, ofPathology,vol.158,no.1,pp.147–152,2001. no.10,pp.4547–4552,2006. [62] J. K. Krady, A. Basu, C. M. Allen, et al., “Minocycline re- [77] N.TodaandM.Nakanishi-Toda,“Nitricoxide:ocularblood ducesproinflammatorycytokineexpression,microglialacti- flow,glaucoma,anddiabeticretinopathy,”ProgressinRetinal vation,andcaspase-3activationinarodentmodelofdiabetic andEyeResearch,vol.26,no.3,pp.205–238,2007. retinopathy,”Diabetes,vol.54,no.5,pp.1559–1565,2005. [78] D.-H. Cho, Y. J. Choi, S. A. Jo, and I. Jo, “Nitric [63] A.Carmo,J.G.Cunha-Vaz,A.P.Carvalho,andM.C.Lopes, oxide production and regulation of endothelial nitric- “L-argininetransportinretinasfromstreptozotocindiabetic oxide synthase phosphorylation by prolonged treatment rats:correlationwiththelevelofIL-1βandNOsynthaseac- with troglitazone: evidence for involvement of peroxisome tivity,”VisionResearch,vol.39,no.23,pp.3817–3823,1999. proliferator-activated receptor (PPAR) γ-dependent and PPARγ-independent signaling pathways,” Journal of Biolog- [64] M.Lu,V.L.Perez,N.Ma,etal.,“VEGFincreasesretinalvas- icalChemistry,vol.279,no.4,pp.2499–2506,2004. cularICAM-1expressioninvivo,”InvestigativeOphthalmol- [79] A.Bernardo,G.Levi,andL.Minghetti,“Roleoftheperoxi- ogy&VisualScience,vol.40,no.8,pp.1808–1812,1999. someproliferator-activatedreceptor-γ(PPAR-γ)anditsnat- [65] A.M.Joussen,V.Poulaki,N.Mitsiades,etal.,“Nonsteroidal uralligand15-deoxy-Δ12,14-prostaglandinJ intheregulation anti-inflammatory drugs prevent early diabetic retinopathy 2 viaTNF-αsuppression,”TheFASEBJournal,vol.16,no.3, of microglial functions,” European Journal of Neuroscience, vol.12,no.7,pp.2215–2223,2000. pp.438–440,2002. [80] A. Bernardo, M. A. Ajmone-Cat, L. Gasparini, E. Ongini, [66] X.-X. Zeng, Y.-K. Ng, and E.-A. Ling, “Neuronal and mi- andL.Minghetti,“Nuclearreceptorperoxisomeproliferator- croglialresponseintheretinaofstreptozotocin-induceddi- activatedreceptor-γisactivatedinratmicroglialcellsbythe abeticrats,”VisualNeuroscience,vol.17,no.3,pp.463–471, anti-inflammatorydrugHCT1026,aderivativeofflurbipro- 2000. fen,”JournalofNeurochemistry,vol.92,no.4,pp.895–903, [67] E. Rungger-Bra¨ndle, A. A. Dosso, and P. M. Leuenberger, 2005. “Glialreactivity,anearlyfeatureofdiabeticretinopathy,”In- [81] J.Kim,Y.-S.Oh,andS.-H.Shinn,“Troglitazonereversesthe vestigativeOphthalmology&VisualScience,vol.41,no.7,pp. inhibitionofnitricoxideproductionbyhighglucoseincul- 1971–1980,2000. tured bovine retinal pericytes,” Experimental Eye Research, [68] D. Gaucher, J.-A. Chiappore, M. Paˆques, et al., “Microglial vol.81,no.1,pp.65–70,2005. changesoccurwithoutneuralcelldeathindiabeticretinopa- [82] K. Adachi, S. Kashii, H. Masai, et al., “Mechanism of the thy,”VisionResearch,vol.47,no.5,pp.612–623,2007. pathogenesisofglutamateneurotoxicityinretinalischemia,” [69] P.LibbyandJ.Plutzky,“Inflammationindiabetesmellitus: Graefe’sArchiveforClinicalandExperimentalOphthalmology, roleofperoxisomeproliferator-activatedreceptor-αandper- vol.236,no.10,pp.766–774,1998. oxisome proliferator-activated receptor-γ agonists,” Ameri- [83] C.Kaur,V.Sivakumar,andW.S.Foulds,“Earlyresponseof can Journal of Cardiology, vol. 99, no. 4, supplement 1, pp. neurons and glial cells to hypoxia in the retina,” Investiga- 27–40,2007. tiveOphthalmology&VisualScience,vol.47,no.3,pp.1126– [70] A.Aljada,R.Garg,H.Ghanim,etal.,“Nuclearfactor-κBsup- 1141,2006. pressiveandinhibitor-κBstimulatoryeffectsoftroglitazone [84] K. Yamakawa, M. Hosoi, H. Koyama, et al., “Peroxisome in obese patients with type 2 diabetes: evidence of an an- proliferator-activated receptor-γ agonists increase vascular tiinflammatoryaction?”JournalofClinicalEndocrinology& endothelial growth factor expression in human vascular Metabolism,vol.86,no.7,pp.3250–3256,2001. smooth muscle cells,” Biochemical and Biophysical Research [71] S.M.Haffner,A.S.Greenberg,W.M.Weston,H.Chen,K. Communications,vol.271,no.3,pp.571–574,2000. Williams,andM.I.Freed,“Effectofrosiglitazonetreatment [85] M.Emoto,T.Anno,Y.Sato,etal.,“Troglitazonetreatment on nontraditional markers of cardiovascular disease in pa- increases plasma vascular endothelial growth factor in dia- tients with type 2 diabetes mellitus,” Circulation, vol. 106, beticpatientsanditsmRNAin3T3-L1adipocytes,”Diabetes, no.6,pp.679–684,2002. vol.50,no.5,pp.1166–1170,2001. [72] N.Marx,A.Imhof,J.Froehlich,etal.,“Effectofrosiglitazone [86] V.Chintalgattu,G.S.Harris,S.M.Akula,andL.C.Katwa, treatmentonsolubleCD40Linpatientswithtype2diabetes “PPAR-γagonistsinducetheexpressionofVEGFanditsre- andcoronaryarterydisease,”Circulation,vol.107,no.15,pp. ceptors in cultured cardiac myofibroblasts,” Cardiovascular 1954–1957,2003. Research,vol.74,no.1,pp.140–150,2007. [73] P. Mohanty, A. Aljada, H. Ghanim, et al., “Evidence for a [87] T. Baba, K. Shimada, S. Neugebauer, D. Yamada, S. potent antiinflammatory effect of rosiglitazone,” Journal of Hashimoto, and T. Watanabe, “The oral insulin sensitizer, 10 PPARResearch thiazolidinedione, increases plasma vascular indothelial thepathogenesisofage-relatedmaculardegeneration,” The growth factor in type 2 diabetic patients,” Diabetes Care, FASEBJournal,vol.18,no.11,pp.1297–1299,2004. vol.24,no.5,pp.953–954,2001. [104] J.M.Seddon,S.George,B.Rosner,andN.Rifai,“Progression [88] D. Panigrahy, S. Singer, L. Q. Shen, et al., “PPARγ ligands ofage-relatedmaculardegeneration:prospectiveassessment inhibitprimarytumorgrowthandmetastasisbyinhibiting ofC-reactiveprotein,interleukin6,andothercardiovascular angiogenesis,”JournalofClinicalInvestigation,vol.110,no.7, biomarkers,”ArchivesofOphthalmology,vol.123,no.6,pp. pp.923–932,2002. 774–782,2005. [89] J.Varet,L.Vincent,P.Mirshahi,etal.,“Fenofibrateinhibits [105] K. Izumi-Nagai, N. Nagai, Y. Ozawa, et al., “Interleukin-6 angiogenesisinvitroandinvivo,”CellularandMolecularLife receptor-mediated activation of signal transducer and acti- Sciences,vol.60,no.4,pp.810–819,2003. vatoroftranscription-3(STAT3)promoteschoroidalneovas- [90] T.Murata,S.He,M.Hangai,etal.,“Peroxisomeproliferator- cularization,”AmericanJournalofPathology,vol.170,no.6, activated receptor-γ ligands inhibit choroidal neovascu- pp.2149–2158,2007. larization,” Investigative Ophthalmology & Visual Science, [106] D. H. Anderson, R. F. Mullins, G. S. Hageman, and L. V. vol.41,no.8,pp.2309–2317,2000. Johnson,“Aroleforlocalinflammationintheformationof [91] T. Murata, Y. Hata, T. Ishibashi, et al., “Response of ex- drusenintheagingeye,”AmericanJournalofOphthalmology, perimentalretinalneovascularizationtothiazolidinediones,” vol.134,no.3,pp.411–431,2002. ArchivesofOphthalmology,vol.119,no.5,pp.709–717,2001. [107] R.F.Mullins,S.R.Russell,D.H.Anderson,andG.S.Hage- [92] C. Combadie`re, C. Feumi, W. Raoul, et al., “CX3CR1- man,“Drusenassociatedwithagingandage-relatedmacular dependentsubretinalmicrogliacellaccumulationisassoci- degenerationcontainproteinscommontoextracellularde- atedwith cardinalfeatures ofage-related macular degener- positsassociatedwithatherosclerosis,elastosis,amyloidosis, ation,”JournalofClinicalInvestigation,vol.117,no.10,pp. anddensedepositdisease,”TheFASEBJournal,vol.14,no.7, 2920–2928,2007. pp.835–846,2000. [93] P.J.Keck,S.D.Hauser,G.Krivi,etal.,“Vascularpermeability [108] G.S.Hageman,P.J.Luthert,N.H.VictorChong,L.V.John- factor,anendothelialcellmitogenrelatedtoPDGF,”Science, son,D.H.Anderson,andR.F.Mullins,“Anintegratedhy- vol.246,no.4935,pp.1309–1312,1989. pothesis that considers drusen as biomarkers of immune- [94] D.W.Leung,G.Cachianes,W.-J.Kuang,D.V.Goeddel,and mediatedprocessesattheRPE-Bruch’smembraneinterface N.Ferrara,“Vascularendothelialgrowthfactorisasecreted inagingandage-relatedmaculardegeneration,”Progressin angiogenicmitogen,”Science,vol.246,no.4935,pp.1306– RetinalandEyeResearch,vol.20,no.6,pp.705–732,2001. 1309,1989. [109] M.Nozaki,B.J.Raisler,E.Sakurai,etal.,“Drusencomple- [95] J.Tombran-Tink,G.G.Chader,andL.V.Johnson,“PEDF:a mentcomponentsC3aandC5apromotechoroidalneovas- pigmentepithelium-derivedfactorwithpotentneuronaldif- cularization,”ProceedingsoftheNationalAcademyofSciences ferentiativeactivity,”ExperimentalEyeResearch,vol.53,no.3, oftheUnitedStatesofAmerica,vol.103,no.7,pp.2328–2333, pp.411–414,1991. 2006. [96] D. W. Dawson, O. V. Volpert, P. Gillis, et al., “Pigment [110] B.MartiniandS.J.Ryan,“Argonlaserlesionsoftheretina; epithelium-derived factor: apotent inhibitorofangiogene- occurrenceandoriginofmacrophages,”EuropeanJournalof sis,”Science,vol.285,no.5425,pp.245–248,1999. Ophthalmology,vol.2,no.2,pp.51–57,1992. [97] A. Afzal, L. C. Shaw, A. V. Ljubimov, M. E. Boulton, M. [111] P.L.Penfold,M.C.Madigan,M.C.Gillies,andJ.M.Provis, S. Segal, and M. B. Grant, “Retinal and choroidal mi- “Immunologicalandaetiologicalaspectsofmaculardegen- croangiopathies: therapeutic opportunities,” Microvascular eration,”ProgressinRetinalandEyeResearch,vol.20,no.3, Research,vol.74,no.2-3,pp.131–144,2007. pp.385–414,2001. [98] J. S. L. Tan, P. Mitchell, A. Kifley, V. Flood, W. Smith, and [112] N. Gupta, K. E. Brown, and A. H. Milam, “Activated mi- J. J. Wang, “Smoking and the long-term incidence of age- crogliainhumanretinitispigmentosa,late-onsetretinalde- relatedmaculardegeneration:thebluemountainseyestudy,” generation, and age-related macular degeneration,” Experi- Archives of Ophthalmology, vol. 125, no. 8, pp. 1089–1095, mentalEyeResearch,vol.76,no.4,pp.463–471,2003. 2007. [113] S. Thanos, “Sick photoreceptors attract activated microglia [99] J. P. SanGiovanni, E. Y. Chew , T. E. Clemons, et al., “The fromtheganglioncelllayer:amodeltostudytheinflamma- relationshipofdietarylipidintakeandage-relatedmacular torycascadesinratswithinheritedretinaldystrophy,”Brain degenerationinacase-controlstudy:AREDSreportno.20,” Research,vol.588,no.1,pp.21–28,1992. ArchivesofOphthalmology,vol.125,no.5,pp.671–679,2007. [114] R.S.Roque,C.J.Imperial,andR.B.Caldwell,“Microglial [100] A. O. Edwards, R. Ritter III, K. J. Abel, A. Manning, C. cellsinvadetheouterretinaasphotoreceptorsdegeneratein Panhuysen, and L. A. Farrer, “Complement factor H poly- RoyalCollegeofSurgeonsrats,”InvestigativeOphthalmology morphism and age-related macular degeneration,” Science, &VisualScience,vol.37,no.1,pp.196–203,1996. vol.308,no.5720,pp.421–424,2005. [115] D.G.Espinosa-Heidmann,A.Caicedo,E.P.Hernandez,K. [101] G.S.Hageman,D.H.Anderson,L.V.Johnson,etal.,“Acom- G. Csaky, and S. W. Cousins, “Bone marrow-derived pro- monhaplotypeinthecomplementregulatorygenefactorH genitor cells contribute to experimental choroidal neovas- (HF1/CFH) predisposes individuals to age-related macular cularization,” Investigative Ophthalmology & Visual Science, degeneration,” Proceedings of the National Academy of Sci- vol.44,no.11,pp.4914–4919,2003. ences of the United States of America, vol. 102, no. 20, pp. [116] E. Sakurai, A. Anand, B. K. Ambati, N. van Rooijen, and 7227–7232,2005. J. Ambati, “Macrophage depletion inhibits experimental [102] J.L.Haines,M.A.Hauser,S.Schmidt,etal.,“Complement choroidal neovascularization,” Investigative Ophthalmology factorHvariantincreasestheriskofage-relatedmacularde- &VisualScience,vol.44,no.8,pp.3578–3585,2003. generation,”Science,vol.308,no.5720,pp.419–421,2005. [117] D. G. Espinosa-Heidmann, I. J. Suner, E. P. Hernandez, D. [103] J.Tuo,B.C.Smith,C.M.Bojanowski,etal.,“Theinvolve- Monroy,K.G.Csaky,andS.W.Cousins,“Macrophagede- ment of sequence variation and expression of CX3CR1 in pletion diminishes lesion size and severity in experimental

Description:
Fiorella Malchiodi-Albedi,1 Andrea Matteucci,2 Antonietta Bernardo,1 and Luisa .. and ICAM-1 demonstrate significantly fewer adherent leuko-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.