HindawiPublishingCorporation ISRNOrganicChemistry Volume2013,ArticleID292396,14pages http://dx.doi.org/10.1155/2013/292396 Review Article Goniomitine: An Overview on the Chemistry of This Indole Alkaloid JoséC.F.Alves InstitutodePesquisasdeProdutosNaturaisWalterMors,CentrodeCieˆnciasdaSau´de,BlocoH, UniversidadeFederaldoRiodeJaneiro,21941-902RiodeJaneiro,RJ,Brazil CorrespondenceshouldbeaddressedtoJose´C.F.Alves;[email protected] Received20September2013;Accepted22October2013 AcademicEditors:G.Li,F.Machetti,andJ.Wu Copyright©2013Jose´C.F.Alves. This is an open access article distributed under the Creative Commons Attribution License, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Thispaperreportsanoverviewonthechemistryoftheindolealkaloidgoniomitinefocusing,mainly,onthemethodsofsynthesis relatedtothisnaturalproductandanalogs. 1.Introduction the same plant from where goniomitine had been isolated. Therelativestructureofgoniomitine(1)wassoonaftercon- Theindolealkaloidsbelongtotheclassofnaturalsubstances firmedbyTakanoetal.[8]throughthetotalenantioselective displaying biological activities as well as a broad structural synthesis of the natural form of this alkaloid. It could be diversity.Inviewoftheseimportantproperties,theseprod- evidenced that the absolute structure of the compound 1 is uctsaretargetofstudyintheareasofisolation,identification, enantiomerictotheonethathadbeeninitiallyproposedfor and synthesis [1–5]. Goniomitine (1) (Figure1) is an indole 20S,21Rconfiguration. alkaloid that was isolated and identified by Randriambola et al. [6] and Hashimoto and Husson [7]. The unique structureandbiologicalactivityofgoniomitinehaveattracted 3.BiogenesisofGoniomitine the attention of several groups. This review describes the isolation, biogenesis hypothesis, chemical transformations, Randriambolaetal.[6]proposedthatgoniomitine(1)maybe andsynthesesofthisalkaloidandanalogs. derivedfromtheAspidospermaskeletonofvincadifformine (2)bythesuccessivestepsdepictedinScheme1. 2.IsolationofGoniomitine 4.ChemicalTransformationsand In the course of studies of the alkaloids of the genus SynthesesofGoniomitineandAnalogs Gonioma, Randriambola et al. [6] isolated, from the root bark of Gonioma malagasy, a crystalline compound named 4.1.ChemicalTransformationsofGoniomitine. Fortheocca- goniomitine with melting point of 150∘C (ether-methanol), sion of the structural determination of goniomitine (1) [6], [C𝛼1]9DH2026−N820O∘(H(cRM0.9S,Min+∙C2H98C.2l03)8,0,acnadlcumlaoteledcfuolrar298fo.2rm04u5l)a. t5hiuspcoonmtproeautnmdewntaswtirtahnsAfoc2rmOeidninMtoeOthHeNan-daceintytoldtehreivNat,iOve- Thestructureofgoniomitinewasinitiallyproposedasindi- diacetylderivative6upontreatmentwithAc2Oinpyridine cated in Figure1, with 20S, 21R configuration, based on its (Scheme2). The formation of the acetylated compounds 5 NMRspectra.Itsabsolutestructurewasdeducedthroughthe and6confirmedthepresenceofthegroupsOHandNHin correlationwithotheralkaloidsfromAspidospermafoundin thestructureof 1. 2 ISRNOrganicChemistry OH OH N N S R R S H H 21 20 21 20 H N H N (20R, 21S)-(−)-Goniomitine (1) (20S, 21R)-(+)-Goniomitine (1) (natural) (unnatural) Figure1:Natural(−)-andunnatural(+)-goniomitine(1). 3 14 5 4N 15 HO H N HO H N+ OH 20 19 10 9 68271 H 116718 a-b H c 11 13 N1 2 CO2Me N+ N N 12 H H H H 4 2 3 4 N H + d OH 6 9 8 7 5 10 2 16 11 1 13 N 17 18 12 21 H 20 19 H N4 15 3 14 1 Scheme1:Biogenetichypothesisoftransformationofvincadifformine(2)intogoniomitine(1):(a)oxidativefissionoftheC-5,N-4bond;(b) decarboxylation;(c)retro-Mannichreaction;(d)nucleophilicattackoftheindolenitrogenontheiminiummoiety. OH OH OAc Ac2O Ac2O MeOH Py N N N H H H Ac N H N Ac N 5 1 6 Scheme2:Chemicaltransformationsofgoniomitine(1)intotheacetylderivatives5and6. ISRNOrganicChemistry 3 OH OH OH CH3 a b c d (55%) (57%) (97%) (91%) N H N N N N H H H H TMS 7 8 9 10 11 N N N N Me + Me − I e (59%) OH 11 + N (36 : 23) H Me N (+/−)-12 Scheme3:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),hexane(reflux,6h)and(ii)methyl3-(3-pyridyl)propanoate,THF(−78to ∘ 15C);(b)MeMgI(10equiv),ethyleneoxide(10equiv),Et2O(1h),reflux(2h);(c)MeI,CH2Cl2(reflux,2h);(d)H2,PtO2,MeOH(3h);(e) H2,PtO2,NaOMe,MeOH(3h). 4.2. Synthesis of the Goniomitine Analog (+/−)-12. In order as a result of the attempts to synthesize (+)-goniomitine to ascertain unambiguously the unprecedented structure of (1) from the compound 40, previously obtained from (−)- the alkaloid goniomitine (1), Hashimoto and Husson [7] vincadifformine(2)(Scheme5)[9].InScheme7aredepicted synthesizedthegoniomitineanalog(+/−)-12bythesequence thesequences ofreactionsthatled to thesynthesisofcom- ofreactionsdepictedinScheme3. pound45aswellasotheralkaloidswithtetracyclicskeleton ofgoniomitine(1). 4.3. Total Synthesis of (−)-Goniomitine by Takano. The first enantiocontrolledtotalsynthesisofnatural(−)-goniomitine 4.6.SynthesisoftheGoniomitineAnalogs 52–55 byCycload- (1) was published in 1991 by Takano et al. [8], who estab- dition Reactions. In the year 1996, Gu¨rtler et al. [11] pub- lished the absolute stereochemistry of this alkaloid. This lished the synthesis of the goniomitine analogs 52–55 by total synthesis, depicted in Scheme4, starts with the chiral [4 + 2] cycloaddition reactions between 2-vinylindoles cyclopentadienonesynthon(−)-13. and substituted cyclic enamines, via anodic oxidation (Scheme8). 4.4.TheFirstBiomimeticApproachtotheSkeletonofGoniomi- tine from an Aspidosperma Alkaloid. The results from the 4.7.ProposalofSynthesisofGoniomitinebyAlves. Intheyear study of biomimetic transformation of an Aspidosperma alkaloid (2) into the substances 39-40, with the skeleton 2000,Alves[12]presentedhisqualificationexamofdoctorate of goniomitine (1), were published in 1995 by Lewin et al. aboutaplanofsynthesisoftheindolealkaloidgoniomitine (1). The convergent strategies and synthetic routes for the [9]. The sequences of reactions for the discovery of a new synthesis of this alkaloid, idealized on that occasion, are biomimeticinvitrorearrangementaredepictedinScheme5. described in the supplementary material of this review, Scheme6 displays the proposed mechanism [9] for the transformation of compound 36 into the alkaloids 39 and availableonlineathttp://dx.doi.org/10.1155/2013/292396. 40. 4.8. Syntheses of Cytotoxic Bisindole Alkaloids. In the year 4.5. Semisynthesis of (+)-(16S,20S,21R)-16-Hydroxymethyl- 2000,Lewinetal.[13]publishedanarticleaboutaslightmod- goniomitine from (−)-Vincadifformine. In continuation to ificationoftheBorchreductiveaminationmethod(delayed the studies of chemical transformations of vincadifformine addition of NaBH3CN) [14, 15], applied to compound 40, (2) into alkaloids analogs to goniomitine (1), Lewin and analogofthenaturalalkaloidgoniomitine(1).Asaresultof Schaeffer[10]publishedin1995thesemisynthesisof(+)-16- thisreaction,aseriesofnewcytotoxicbisindolealkaloidswas hydroxymethyl-goniomitine(45).Thisalkaloidwasobtained prepared,asdepictedinScheme9. 4 ISRNOrganicChemistry H a-c H d O e-f S O H (53%) H (72%⇒14) S (−)-13 14 O O 15 16 I g-h (75%) O 20 HN OEt O O O MeO j-k MeO i MeO (82%⇒17) 19 18 17 O S l (81%) H S CO2Me + O m N OEt (81%) N N 21 H 22 H O (11 : 70) 23 O OMe n-p CN N r-s q N O (78%⇒25) N O N O (65%⇒23) N NH2 H H H 27 HN 26 HN 25 HN 24 O t H OH CN CN O u v-x y N (84%⇒27) N N (40%⇒29) N 21 Cl− + H H H HN HN HN HN 28 29 30 z 31: C21-H𝛽 (82%) (−)-1: C21-H𝛼 Scheme4:Reagentsandconditions:(a)Zn(5.0equiv),AcOH-EtOH(1:3),reflux(4h);(b)EtI(2.0equiv),t-BuOK(1.2equiv),THF(−70to −30∘C,15min);(c)allylbromide(2.0equiv),t-BuOK(1.2equiv),THF(−30∘C,5min);(d)o-dichlorobenzene(reflux,24h);(e)LiAlH4(1.0 equiv),CuI(0.5equiv),HMPA-THF(1:4),−75∘C(15min);(f)propane-1,3-diyldithiotosylate(1.5equiv),t-BuOK(3.0equiv),t-BuOH-THF ∘ ∘ (1:4),0C;(g)KOH(5.0equiv),t-BuOH(70C,12h);(h)CH2N2,Et2O;(i)MeI(1.0equiv),CaCO3(5.0equiv),10%aq.MeCN(reflux,1h); (j)Ph3P(4.0equiv),CBr4(2.0equiv),Et3N(3.0equiv),CH2Cl2(0∘C,5min);(k)LDA(3.0equiv),THF(−78∘C,10min);(l)compound20(1.1 equiv),PdCl2(PPh3)2(2%),CuI(5%),Et3N(reflux,30min);(m)NaOEt(10equiv),Et3N(5%),EtOH(reflux,3h);(n)(i)dicyclohexylborane ∘ ∘ (1.5equiv),THF(0C,30min),(ii)10%NaOH(1.0equiv),30%H2O2(3.0equiv),0C(30min);(o)phthalimide(1.3equiv),Ph3P(1.3equiv), (i-PrO2CN)2(1.3equiv),THF(0∘C,10min);(p)NH2NH2⋅H2O(4.0equiv),EtOH(reflux,2h);(q)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t., ∘ 30min);(r)MeI,MeOH(r.t.,10min);(s)NaCN(1.3equiv),DMF(100C,10min);(t)POCl3(6.0equiv),toluene(reflux,2h);(u)NaBH4, MeOH,0∘C;(v)DIBAL(1.5equiv),CH2Cl2(−75∘C,10min);(x)dil.H2SO4;(y)NaBH4;(z)30%HCl-MeOH(1:10),reflux(30min). ISRNOrganicChemistry 5 + Ar O O N MeO N N N 5 O 5 3 steps a H H H H (82%) Cl Cl Cl N CO2Me N CO2Me N CO2Me N CO2Me H 2 32 33 34 Ar =m-Cl-C6H4 O CHO CHO O N Ar O N HO 5 O 5 CO2Me CO2Me e H b H (53%) Cl (71%) Cl N + N N CO2Me N CO2Me H H 35a: C5-H𝛼 HO N (42 : 11) N O 36 35b: C5-H𝛽 (3 : 1) 40 f 39 (40%) c (100%) g (52%) O Ar O N O 5 h H (48%) N CO2Me H 37 d (18%) O N HO 5 H N 38 −1 Scheme5:Reagentsandconditions:(a)m-CPBA(1.1equiv),CH2Cl2(r.t.,3h);(b)0.2molL NaOH-MeOH(r.t.,5min);(c)NaI(3.0equiv), −1 ∘ AcOH(r.t.,1.5h);(d)11molL HCl(105C,10min);(e)TFA(16equiv),CH2Cl2(r.t.,20min);(f)TFA(r.t.,4h);(g)TFA(16equiv),CH2Cl2 (r.t.,15h);(h)TFA(12.5equiv),CH2Cl2(r.t.,45h). In continuation to the studies of synthesis of cytotoxic synthesis of racemic (+/−)-goniomitine (1), accomplished bisindole alkaloids, Raoul et al. [16] published, in the year in 17 linear steps with 5.2% overall yield starting from 2001, an article with a novel series of these alkaloids pre- commercially available 𝛿-valerolactam (65). Their synthetic pared by reductive amination of the compound 40 with approachincludestheapplicationofaformal[3+2]cycload- various anilines, using the modified Borch amination con- dition between the highly functionalized nitrile 68 and the ditionsdescribedinScheme9(delayedaddition(20min)of activated cyclopropane 69 to prepare the indole nucleus NaBH3CN)[15].Theinfluenceofsubstitutionofthestarting (Scheme10). aniline on the reaction and on cytotoxicity of produced dimersisdiscussedinthepaper. 4.10. Total Synthesis of (+/−)-Goniomitine by Waser. De Simoneetal.[18]publishedthesynthesisofracemicgoniomi- 4.9.TotalSynthesisof(+/−)-GoniomitinebyPagenkopf. Inthe tine (1) with the first study of its bioactivity, revealing year 2008, Morales and Pagenkopf [17] published the total significant cytotoxicity against several cancer cell lines [18, 6 ISRNOrganicChemistry CHO + − O N HO N: O N CO2Me HO TFA OHC OHC Cl H H CH2Cl2 N Cl Cl Cl H N CO2Me N CO2Me N CO2Me − + O N 36 36a H 36b 36b CHO CHO CHO CO2Me CO2Me CO2Me b + a N N N b H H H − N O N O −O +N 36d 36c 39 a TFA CHO CHO CHO CO2Me CO2Me CO2Me .. OCOCF3 N N+ H N H H H HO N −O N HO N 39a 39b 40 Scheme6 OH OH CHO CO2Me CO2Me CO2H N a N b N (62%) (43%) H H H HO N HO N HO N 40 41 42 c (57%) OH OH OH OH OH OH OH CH3 H H N d N e N f N H (35%) H (66%) H (75%) H HO N HO N H N H N 43 44 45 46 ∘ Scheme7:Reagentsandconditions:(a)NaBH3CN,AcOH(r.t.,1.5h);(b)NaOH-MeOH(120C,1h);(c)LiAlH4(excess),THF(reflux,3h); ∘ (d)H2(1atm),10%Pd-C,MeOH(r.t.,5h);(e)TiCl3-H2O,MeOH(r.t.,20h);(f)30%HCl-MeOH(120C,1.5h). ISRNOrganicChemistry 7 Me CN N Me H CO2Me Me N 55 d(62%) Me R1 R3 Me CN c CN + R2 N a CN (91%) (68%) N Me NH N Me HHN CO2Me 49: R2= H, R3= CN HHN CN 47: R1= Me 50: R2= H, R3= CO2Me 54 48: R1= (CH2)2OEt 51: R2= Me, R3= CO2Me 52 b (53%) OEt CN N Me H CN H N 53 Scheme 8: Reagents and conditions: (a) vinylindole 47 (1.0 equiv), enamine 49 (2.37 equiv), CH3CN, LiClO4 (0.1mol L−1), electrolysis (480mVversusAg/AgNO3,current(20to2mA),200min);(b)vinylindole48(1.0equiv),enamine49(6.17equiv),CH3CN,LiClO4(0.1mol L−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min);(c)vinylindole47(1.0equiv),enamine50(1.4equiv),CH3CN, LiClO4(0.1molL−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),40min);(d)vinylindole47(1.0equiv),enamine51(2.1 −1 equiv),CH3CN,LiClO4(0.1molL ),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min). 19]. The strategy of this synthesis is based on cyclization Using the synthetic route described in Scheme13, but of aminocyclopropanes [20], applied to cyclopropyl ketone startingfromtheenantiomerofthelactam97(ent-97)Mizu- 83 to lead to compound 84 with tetracyclic skeleton of tani et al. [21] synthesized the unnatural (+)-goniomitine goniomitine(Scheme11). (ent-1).Withtheracemic,natural,andunnaturalgoniomitine inhand,theauthors[21]executedthepreliminarybioactive assays, which revealed that natural (−)-goniomitine has 4.11. Total Syntheses of (+/−)-, (−)-, and (+)-Goniomitine by strongerantiproliferativeactivityinMockandMDCK/MDR1 Mukay. In the year 2011, Mizutani et al. [21] published the cellsthanitsenantiomer. syntheses of both racemic and optically active goniomitine, whoseprincipalstepsarethepreparationoftheindoleskele- tonbytheirowndevelopedprocedure[22]andalkenecross- 4.12. Total Synthesis of (+/−)-Goniomitine by Bach. In the metathesis. The synthesis of racemic (+/−)-goniomitine (1) year 2012, Jiao et al. [23] published the total synthesis of was performed, as a preliminary study, by the sequence of racemic goniomitine (1), using the strategy of C-2 alkyla- reactionsdepictedinScheme12. tion of indoles catalyzed by palladium via a norbornene- The convergent total synthesis of the natural (−)-goni- mediated C–H activation [24]. The steps for the synthesis omitine(1)[21]wascompletedbythesequenceofreactions of (+/−)-goniomitine (1), by this strategy, are depicted in depictedinScheme13. Scheme14. 8 ISRNOrganicChemistry MeO2C MeO2C Me N HN N N CO2Me H N CO2Me H N HO AcO N N H 63 H 62 HO N AcO N e(68%) f (64 %) MeO2C HN HN Ph CHO N CO2Me CO2Me CO2Me H N NH2·HCl HO N + N + N 58 b H a H H (45%) HO N (51%) HO N HO N 40 56 57 (23 : 28) 58 c(38%) g %) (32 OH MeO2C HN HN OH N N H N CO2Me H N HO H N N H H HO N H N 64 59 d %) (70 MeO2C MeO2C HN Ac N N N CO2Me N + CO2Me H N Ac Ac N N H H Ac N (48 : 22) Ac N 61 60 Scheme9:Reagentsandconditions:(a)compound56(5.0equiv),NaBH3CN(immediateaddition),MeOH(r.t.,16h);(b)compound56(5.0 equiv),NaBH3CN(delayedaddition,20min),MeOH(r.t.,16h);(c)TiCl3-H2O(6.0equiv),MeOH(r.t.,20h);(d)Ac2O,Py(r.t.,48h);(e) Ac2O,Py(r.t.,3h);(f)CH2O,NaBH3CN,AcOH(r.t.,2h);(g)LiAlH4,THF(reflux,3h). ISRNOrganicChemistry 9 O O R1 R2 X Bn CO2Et O N (82b.,8 c%) N + CO2Et (74f%) N Bn N a 65: R1= R2= H d, e 67: X = OH 69 OMe H (83%) 66: R1= Et, R2= Bn (70%) 68: X = CN 70 g (98%) CO2Et O O O i h Bn Bn N NH (97%) N N (75%) N N H H H 25 72 71 j (trace) j (70%) CN CN O O i Bn N NH (97%) N N H H 27 73 k (70%) OH OH CN l m (44%) (79%) N N N H 21 H 21 H 21 20 20 20 HN HN HN 29 31 (+/−)-Goniomitine (1) Scheme10:Reagentsandconditions:(a)(i)n-BuLi(2.0equiv),THF(−78∘C),(ii)EtI(1.0equiv),−78∘C(1h),(iii)BnBr(1.0equiv),r.t. (overnight);(b)(i)LDA(1.0equiv),THF(−78∘C,15min),(ii)BrCH2CH2OTHP(1.1equiv),r.t.(overnight);(c)TsOH(0.1equiv),MeOH(ice- brinebath,4h);(d)Et3N(2.1equiv),MsCl(1.0equiv),CH2Cl2(0∘Ctor.t.,3h);(e)NaCN(2.0equiv),MeCN,120∘C(𝜇w,8h,900rpmstirring); (f)Nitrile68(1.0equiv),cyclopropane69(2.9equiv),TMSOTf(1.0equiv),EtNO2(−30∘C,24h);(g)5%Pd-C(0.03equiv),mesitylene(reflux, 24h);(h)NaOH(10equiv),EtOH-H2O(1:1),150∘C(𝜇w,3h,900rpmstirring);(i)Na(5.0equiv),liq.NH3(0.042molL−1),THF(−78∘C, ∘ 10min);(j)(i)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t.,15min),(ii)MeI(40equiv),MeOH(r.t.,10min),(iii)NaCN(1.3equiv),DMF(100C, 10min);(k)(i)POCl3(6.0equiv),toluene(reflux,2h),(ii)NaBH4(2.0equiv),MeOH(0∘C,30min);(l)(i)DIBAL(1.5equiv),CH2Cl2(−78∘C, −1 ∘ 10min),(ii)0.75molL H2SO4,(iii)NaBH4(2.2equiv),EtOH(0C,30min);(m)TsOH(cat.),Et3N-MeOH(3:5,v/v),reflux(30min). 4.13. Synthesis of (+)- and (−)-Goniomitine by Lewin. In thesameconditionsdescribedinScheme15.Theevaluation the year 2013, Lewin et al. [25] have published the first oftheantiproliferativeeffectof(+)-and(−)-goniomitine(1), biomimetic semisynthesis of goniomitine (1), in nine steps undertakenonfivehumancancercelllines,hasdemonstrated with 11% overall yield, starting from vincadifformine (2). that unnatural (+)-goniomitine is more potent than its Natural (−)- and unnatural (+)-goniomitine were prepared enantiomer(−)-goniomitine[25],inoppositiontoMizutani from(+)-and(−)-vincadifformine,respectively.Thestepsfor etal.’sresultsonacaninekidneycellline(MDCKII)[21]. thesynthesisofunnatural(+)-goniomitine(1)aredepictedin Scheme15. 4.14. Synthesis of (+/−)-Goniomitine by Zhu. In the year Lewin et al. [25] have synthesized the natural (−)-goni- 2013, Xu et al. [26] have published a seven-step total omitine(1),startingfrom(+)-vincadifformine(ent-2),using synthesis of (+/−)-goniomitine (1) through two key steps: 10 ISRNOrganicChemistry H Cbz Cbz Cbz Cbz Cbz N O a N O b N c N O d N H O e N H O (67%) (93%) (76%) (91%) (93%) OMe OEt OH N 74 75 76 77 78 79 Me OH OTIPS OTIPS f g (100%) h (48%) N N N H H 80 81 82 COOH OH OTIPS OTIPS + H j O O i (77%) (93%) N N N H H H H H N Cbz N N Cbz (+/−)-Goniomitine (1) 84 83 ∘ ∘ Scheme11:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),THF(0C,30min),(ii)EtI(1.5equiv),0C(20min),(iii)benzylchloroformate ∘ ∘ (1.05equiv),0C(20min);(b)(i)NaBH4(1.05equiv),MeOH(0C,15min),(ii)conc.H2SO4,Et2O(r.t.,1h);(c)N2CH2COOEt(4.0equiv), (CuOTf)2⋅C7H8 (0.02equiv),CH2Cl2 (18h);(d)(i)BF3⋅OEt2 (0.15equiv),CH2Cl2 (−20to0∘C),(ii)NaOH(9.0equiv),H2O-THF-EtOH ∘ ∘ (1:1:3),0Cto60C(2h);(e)(i)DMTMM(1.5equiv),THF(r.t.,60min),(ii)MeNHOMe.HCl(1.0equiv),NMM(2.0equiv),r.t.(36h);(f) ∘ ∘ TIPSCl(1.05equiv),imidazole(2.1equiv),DMF(r.t.,1h);(g)(i)n-BuLi(1.2equiv),Et2O(0Cthenreflux,2h),(ii)CO2(0C,30min),(iii) H3O+(pH2);(h)(i)t-BuLi(3.0equiv),compound82(1.5equiv),TMEDA(2.0equiv),THF(−78∘C,3h),(ii)amide79(1.0equiv),THF(0∘C, ∘ 20min);(i)TsOH(0.2equiv),CH2Cl2(r.t.,10min);(j)(i)NaBH4,MeOH(0Ctor.t.,3h),(ii)Ac2O,Py(r.t.,overnight),(iii)H2,Pd-C(0.1 equiv),EtOH,(iv)TBAF(4.4equiv),THF(r.t.,30min). (i) a novel palladium-catalyzed decarboxylative coupling of new efficient enantioselectivesynthetic strategies for this reaction between the potassium nitrophenyl acetate 118 indolealkaloid,withlowoperationalcosts,isstillatargetto and the vinyl triflate 115 for a rapid production of the bereached. functionalized cyclopentene 119; (ii) a late-stage construc- tion of the whole tetracyclic scaffold of goniomitine (1) from the functionalized cyclopentene 120 by a one-pot Abbreviations integratedoxidation/reduction/cyclization(IORC)sequence (Scheme16). Ac: Acetyl 9-BBN: 9-Borabicyclo[3.3.1]nonane Boc: tert-Butoxycarbonyl 5.Conclusions Bn: Benzyl n-Bu: n-Butyl In summary, it may be concluded that this brief survey on the chemistry of goniomitine has covered the literature t-Bu: tert-Butyl relative to this alkaloid and analogs from 1987 to the first Bz: Benzoyl semester of the year 2013. Taking into account the results DIAD: Diisopropylazodicarboxylate published in this period, a considerable progress on the DIBAL: Diisobutylaluminumhydride synthesis of this alkaloid has been verified in the last years DMF: N,N-Dimethylformamide (2008–2013) with the publications of five racemic and two DMSO: Dimethylsulfoxide enantiomericsyntheses.Itisalsoimportanttoemphasizethe recent pioneering works on the bioactive assays performed DMTMM: 2,4-Dimethoxy-6-(4-methylmorpholin-4- with the racemic mixtures as well as both enantiomers of ium-4-yl) chloride goniomitine. In spite of these progresses, the development DPPA: Diphenylphosphorylazide
Description: