ebook img

Review Article Goniomitine: An Overview on the Chemistry of This Indole Alkaloid - Hindawi PDF

15 Pages·2015·2.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review Article Goniomitine: An Overview on the Chemistry of This Indole Alkaloid - Hindawi

HindawiPublishingCorporation ISRNOrganicChemistry Volume2013,ArticleID292396,14pages http://dx.doi.org/10.1155/2013/292396 Review Article Goniomitine: An Overview on the Chemistry of This Indole Alkaloid JoséC.F.Alves InstitutodePesquisasdeProdutosNaturaisWalterMors,CentrodeCieˆnciasdaSau´de,BlocoH, UniversidadeFederaldoRiodeJaneiro,21941-902RiodeJaneiro,RJ,Brazil CorrespondenceshouldbeaddressedtoJose´C.F.Alves;[email protected] Received20September2013;Accepted22October2013 AcademicEditors:G.Li,F.Machetti,andJ.Wu Copyright©2013Jose´C.F.Alves. This is an open access article distributed under the Creative Commons Attribution License, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Thispaperreportsanoverviewonthechemistryoftheindolealkaloidgoniomitinefocusing,mainly,onthemethodsofsynthesis relatedtothisnaturalproductandanalogs. 1.Introduction the same plant from where goniomitine had been isolated. Therelativestructureofgoniomitine(1)wassoonaftercon- Theindolealkaloidsbelongtotheclassofnaturalsubstances firmedbyTakanoetal.[8]throughthetotalenantioselective displaying biological activities as well as a broad structural synthesis of the natural form of this alkaloid. It could be diversity.Inviewoftheseimportantproperties,theseprod- evidenced that the absolute structure of the compound 1 is uctsaretargetofstudyintheareasofisolation,identification, enantiomerictotheonethathadbeeninitiallyproposedfor and synthesis [1–5]. Goniomitine (1) (Figure1) is an indole 20S,21Rconfiguration. alkaloid that was isolated and identified by Randriambola et al. [6] and Hashimoto and Husson [7]. The unique structureandbiologicalactivityofgoniomitinehaveattracted 3.BiogenesisofGoniomitine the attention of several groups. This review describes the isolation, biogenesis hypothesis, chemical transformations, Randriambolaetal.[6]proposedthatgoniomitine(1)maybe andsynthesesofthisalkaloidandanalogs. derivedfromtheAspidospermaskeletonofvincadifformine (2)bythesuccessivestepsdepictedinScheme1. 2.IsolationofGoniomitine 4.ChemicalTransformationsand In the course of studies of the alkaloids of the genus SynthesesofGoniomitineandAnalogs Gonioma, Randriambola et al. [6] isolated, from the root bark of Gonioma malagasy, a crystalline compound named 4.1.ChemicalTransformationsofGoniomitine. Fortheocca- goniomitine with melting point of 150∘C (ether-methanol), sion of the structural determination of goniomitine (1) [6], [C𝛼1]9DH2026−N820O∘(H(cRM0.9S,Min+∙C2H98C.2l03)8,0,acnadlcumlaoteledcfuolrar298fo.2rm04u5l)a. t5hiuspcoonmtproeautnmdewntaswtirtahnsAfoc2rmOeidninMtoeOthHeNan-daceintytoldtehreivNat,iOve- Thestructureofgoniomitinewasinitiallyproposedasindi- diacetylderivative6upontreatmentwithAc2Oinpyridine cated in Figure1, with 20S, 21R configuration, based on its (Scheme2). The formation of the acetylated compounds 5 NMRspectra.Itsabsolutestructurewasdeducedthroughthe and6confirmedthepresenceofthegroupsOHandNHin correlationwithotheralkaloidsfromAspidospermafoundin thestructureof 1. 2 ISRNOrganicChemistry OH OH N N S R R S H H 21 20 21 20 H N H N (20R, 21S)-(−)-Goniomitine (1) (20S, 21R)-(+)-Goniomitine (1) (natural) (unnatural) Figure1:Natural(−)-andunnatural(+)-goniomitine(1). 3 14 5 4N 15 HO H N HO H N+ OH 20 19 10 9 68271 H 116718 a-b H c 11 13 N1 2 CO2Me N+ N N 12 H H H H 4 2 3 4 N H + d OH 6 9 8 7 5 10 2 16 11 1 13 N 17 18 12 21 H 20 19 H N4 15 3 14 1 Scheme1:Biogenetichypothesisoftransformationofvincadifformine(2)intogoniomitine(1):(a)oxidativefissionoftheC-5,N-4bond;(b) decarboxylation;(c)retro-Mannichreaction;(d)nucleophilicattackoftheindolenitrogenontheiminiummoiety. OH OH OAc Ac2O Ac2O MeOH Py N N N H H H Ac N H N Ac N 5 1 6 Scheme2:Chemicaltransformationsofgoniomitine(1)intotheacetylderivatives5and6. ISRNOrganicChemistry 3 OH OH OH CH3 a b c d (55%) (57%) (97%) (91%) N H N N N N H H H H TMS 7 8 9 10 11 N N N N Me + Me − I e (59%) OH 11 + N (36 : 23) H Me N (+/−)-12 Scheme3:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),hexane(reflux,6h)and(ii)methyl3-(3-pyridyl)propanoate,THF(−78to ∘ 15C);(b)MeMgI(10equiv),ethyleneoxide(10equiv),Et2O(1h),reflux(2h);(c)MeI,CH2Cl2(reflux,2h);(d)H2,PtO2,MeOH(3h);(e) H2,PtO2,NaOMe,MeOH(3h). 4.2. Synthesis of the Goniomitine Analog (+/−)-12. In order as a result of the attempts to synthesize (+)-goniomitine to ascertain unambiguously the unprecedented structure of (1) from the compound 40, previously obtained from (−)- the alkaloid goniomitine (1), Hashimoto and Husson [7] vincadifformine(2)(Scheme5)[9].InScheme7aredepicted synthesizedthegoniomitineanalog(+/−)-12bythesequence thesequences ofreactionsthatled to thesynthesisofcom- ofreactionsdepictedinScheme3. pound45aswellasotheralkaloidswithtetracyclicskeleton ofgoniomitine(1). 4.3. Total Synthesis of (−)-Goniomitine by Takano. The first enantiocontrolledtotalsynthesisofnatural(−)-goniomitine 4.6.SynthesisoftheGoniomitineAnalogs 52–55 byCycload- (1) was published in 1991 by Takano et al. [8], who estab- dition Reactions. In the year 1996, Gu¨rtler et al. [11] pub- lished the absolute stereochemistry of this alkaloid. This lished the synthesis of the goniomitine analogs 52–55 by total synthesis, depicted in Scheme4, starts with the chiral [4 + 2] cycloaddition reactions between 2-vinylindoles cyclopentadienonesynthon(−)-13. and substituted cyclic enamines, via anodic oxidation (Scheme8). 4.4.TheFirstBiomimeticApproachtotheSkeletonofGoniomi- tine from an Aspidosperma Alkaloid. The results from the 4.7.ProposalofSynthesisofGoniomitinebyAlves. Intheyear study of biomimetic transformation of an Aspidosperma alkaloid (2) into the substances 39-40, with the skeleton 2000,Alves[12]presentedhisqualificationexamofdoctorate of goniomitine (1), were published in 1995 by Lewin et al. aboutaplanofsynthesisoftheindolealkaloidgoniomitine (1). The convergent strategies and synthetic routes for the [9]. The sequences of reactions for the discovery of a new synthesis of this alkaloid, idealized on that occasion, are biomimeticinvitrorearrangementaredepictedinScheme5. described in the supplementary material of this review, Scheme6 displays the proposed mechanism [9] for the transformation of compound 36 into the alkaloids 39 and availableonlineathttp://dx.doi.org/10.1155/2013/292396. 40. 4.8. Syntheses of Cytotoxic Bisindole Alkaloids. In the year 4.5. Semisynthesis of (+)-(16S,20S,21R)-16-Hydroxymethyl- 2000,Lewinetal.[13]publishedanarticleaboutaslightmod- goniomitine from (−)-Vincadifformine. In continuation to ificationoftheBorchreductiveaminationmethod(delayed the studies of chemical transformations of vincadifformine addition of NaBH3CN) [14, 15], applied to compound 40, (2) into alkaloids analogs to goniomitine (1), Lewin and analogofthenaturalalkaloidgoniomitine(1).Asaresultof Schaeffer[10]publishedin1995thesemisynthesisof(+)-16- thisreaction,aseriesofnewcytotoxicbisindolealkaloidswas hydroxymethyl-goniomitine(45).Thisalkaloidwasobtained prepared,asdepictedinScheme9. 4 ISRNOrganicChemistry H a-c H d O e-f S O H (53%) H (72%⇒14) S (−)-13 14 O O 15 16 I g-h (75%) O 20 HN OEt O O O MeO j-k MeO i MeO (82%⇒17) 19 18 17 O S l (81%) H S CO2Me + O m N OEt (81%) N N 21 H 22 H O (11 : 70) 23 O OMe n-p CN N r-s q N O (78%⇒25) N O N O (65%⇒23) N NH2 H H H 27 HN 26 HN 25 HN 24 O t H OH CN CN O u v-x y N (84%⇒27) N N (40%⇒29) N 21 Cl− + H H H HN HN HN HN 28 29 30 z 31: C21-H𝛽 (82%) (−)-1: C21-H𝛼 Scheme4:Reagentsandconditions:(a)Zn(5.0equiv),AcOH-EtOH(1:3),reflux(4h);(b)EtI(2.0equiv),t-BuOK(1.2equiv),THF(−70to −30∘C,15min);(c)allylbromide(2.0equiv),t-BuOK(1.2equiv),THF(−30∘C,5min);(d)o-dichlorobenzene(reflux,24h);(e)LiAlH4(1.0 equiv),CuI(0.5equiv),HMPA-THF(1:4),−75∘C(15min);(f)propane-1,3-diyldithiotosylate(1.5equiv),t-BuOK(3.0equiv),t-BuOH-THF ∘ ∘ (1:4),0C;(g)KOH(5.0equiv),t-BuOH(70C,12h);(h)CH2N2,Et2O;(i)MeI(1.0equiv),CaCO3(5.0equiv),10%aq.MeCN(reflux,1h); (j)Ph3P(4.0equiv),CBr4(2.0equiv),Et3N(3.0equiv),CH2Cl2(0∘C,5min);(k)LDA(3.0equiv),THF(−78∘C,10min);(l)compound20(1.1 equiv),PdCl2(PPh3)2(2%),CuI(5%),Et3N(reflux,30min);(m)NaOEt(10equiv),Et3N(5%),EtOH(reflux,3h);(n)(i)dicyclohexylborane ∘ ∘ (1.5equiv),THF(0C,30min),(ii)10%NaOH(1.0equiv),30%H2O2(3.0equiv),0C(30min);(o)phthalimide(1.3equiv),Ph3P(1.3equiv), (i-PrO2CN)2(1.3equiv),THF(0∘C,10min);(p)NH2NH2⋅H2O(4.0equiv),EtOH(reflux,2h);(q)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t., ∘ 30min);(r)MeI,MeOH(r.t.,10min);(s)NaCN(1.3equiv),DMF(100C,10min);(t)POCl3(6.0equiv),toluene(reflux,2h);(u)NaBH4, MeOH,0∘C;(v)DIBAL(1.5equiv),CH2Cl2(−75∘C,10min);(x)dil.H2SO4;(y)NaBH4;(z)30%HCl-MeOH(1:10),reflux(30min). ISRNOrganicChemistry 5 + Ar O O N MeO N N N 5 O 5 3 steps a H H H H (82%) Cl Cl Cl N CO2Me N CO2Me N CO2Me N CO2Me H 2 32 33 34 Ar =m-Cl-C6H4 O CHO CHO O N Ar O N HO 5 O 5 CO2Me CO2Me e H b H (53%) Cl (71%) Cl N + N N CO2Me N CO2Me H H 35a: C5-H𝛼 HO N (42 : 11) N O 36 35b: C5-H𝛽 (3 : 1) 40 f 39 (40%) c (100%) g (52%) O Ar O N O 5 h H (48%) N CO2Me H 37 d (18%) O N HO 5 H N 38 −1 Scheme5:Reagentsandconditions:(a)m-CPBA(1.1equiv),CH2Cl2(r.t.,3h);(b)0.2molL NaOH-MeOH(r.t.,5min);(c)NaI(3.0equiv), −1 ∘ AcOH(r.t.,1.5h);(d)11molL HCl(105C,10min);(e)TFA(16equiv),CH2Cl2(r.t.,20min);(f)TFA(r.t.,4h);(g)TFA(16equiv),CH2Cl2 (r.t.,15h);(h)TFA(12.5equiv),CH2Cl2(r.t.,45h). In continuation to the studies of synthesis of cytotoxic synthesis of racemic (+/−)-goniomitine (1), accomplished bisindole alkaloids, Raoul et al. [16] published, in the year in 17 linear steps with 5.2% overall yield starting from 2001, an article with a novel series of these alkaloids pre- commercially available 𝛿-valerolactam (65). Their synthetic pared by reductive amination of the compound 40 with approachincludestheapplicationofaformal[3+2]cycload- various anilines, using the modified Borch amination con- dition between the highly functionalized nitrile 68 and the ditionsdescribedinScheme9(delayedaddition(20min)of activated cyclopropane 69 to prepare the indole nucleus NaBH3CN)[15].Theinfluenceofsubstitutionofthestarting (Scheme10). aniline on the reaction and on cytotoxicity of produced dimersisdiscussedinthepaper. 4.10. Total Synthesis of (+/−)-Goniomitine by Waser. De Simoneetal.[18]publishedthesynthesisofracemicgoniomi- 4.9.TotalSynthesisof(+/−)-GoniomitinebyPagenkopf. Inthe tine (1) with the first study of its bioactivity, revealing year 2008, Morales and Pagenkopf [17] published the total significant cytotoxicity against several cancer cell lines [18, 6 ISRNOrganicChemistry CHO + − O N HO N: O N CO2Me HO TFA OHC OHC Cl H H CH2Cl2 N Cl Cl Cl H N CO2Me N CO2Me N CO2Me − + O N 36 36a H 36b 36b CHO CHO CHO CO2Me CO2Me CO2Me b + a N N N b H H H − N O N O −O +N 36d 36c 39 a TFA CHO CHO CHO CO2Me CO2Me CO2Me .. OCOCF3 N N+ H N H H H HO N −O N HO N 39a 39b 40 Scheme6 OH OH CHO CO2Me CO2Me CO2H N a N b N (62%) (43%) H H H HO N HO N HO N 40 41 42 c (57%) OH OH OH OH OH OH OH CH3 H H N d N e N f N H (35%) H (66%) H (75%) H HO N HO N H N H N 43 44 45 46 ∘ Scheme7:Reagentsandconditions:(a)NaBH3CN,AcOH(r.t.,1.5h);(b)NaOH-MeOH(120C,1h);(c)LiAlH4(excess),THF(reflux,3h); ∘ (d)H2(1atm),10%Pd-C,MeOH(r.t.,5h);(e)TiCl3-H2O,MeOH(r.t.,20h);(f)30%HCl-MeOH(120C,1.5h). ISRNOrganicChemistry 7 Me CN N Me H CO2Me Me N 55 d(62%) Me R1 R3 Me CN c CN + R2 N a CN (91%) (68%) N Me NH N Me HHN CO2Me 49: R2= H, R3= CN HHN CN 47: R1= Me 50: R2= H, R3= CO2Me 54 48: R1= (CH2)2OEt 51: R2= Me, R3= CO2Me 52 b (53%) OEt CN N Me H CN H N 53 Scheme 8: Reagents and conditions: (a) vinylindole 47 (1.0 equiv), enamine 49 (2.37 equiv), CH3CN, LiClO4 (0.1mol L−1), electrolysis (480mVversusAg/AgNO3,current(20to2mA),200min);(b)vinylindole48(1.0equiv),enamine49(6.17equiv),CH3CN,LiClO4(0.1mol L−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min);(c)vinylindole47(1.0equiv),enamine50(1.4equiv),CH3CN, LiClO4(0.1molL−1),electrolysis(480mVversusAg/AgNO3,current(20to2mA),40min);(d)vinylindole47(1.0equiv),enamine51(2.1 −1 equiv),CH3CN,LiClO4(0.1molL ),electrolysis(480mVversusAg/AgNO3,current(20to2mA),200min). 19]. The strategy of this synthesis is based on cyclization Using the synthetic route described in Scheme13, but of aminocyclopropanes [20], applied to cyclopropyl ketone startingfromtheenantiomerofthelactam97(ent-97)Mizu- 83 to lead to compound 84 with tetracyclic skeleton of tani et al. [21] synthesized the unnatural (+)-goniomitine goniomitine(Scheme11). (ent-1).Withtheracemic,natural,andunnaturalgoniomitine inhand,theauthors[21]executedthepreliminarybioactive assays, which revealed that natural (−)-goniomitine has 4.11. Total Syntheses of (+/−)-, (−)-, and (+)-Goniomitine by strongerantiproliferativeactivityinMockandMDCK/MDR1 Mukay. In the year 2011, Mizutani et al. [21] published the cellsthanitsenantiomer. syntheses of both racemic and optically active goniomitine, whoseprincipalstepsarethepreparationoftheindoleskele- tonbytheirowndevelopedprocedure[22]andalkenecross- 4.12. Total Synthesis of (+/−)-Goniomitine by Bach. In the metathesis. The synthesis of racemic (+/−)-goniomitine (1) year 2012, Jiao et al. [23] published the total synthesis of was performed, as a preliminary study, by the sequence of racemic goniomitine (1), using the strategy of C-2 alkyla- reactionsdepictedinScheme12. tion of indoles catalyzed by palladium via a norbornene- The convergent total synthesis of the natural (−)-goni- mediated C–H activation [24]. The steps for the synthesis omitine(1)[21]wascompletedbythesequenceofreactions of (+/−)-goniomitine (1), by this strategy, are depicted in depictedinScheme13. Scheme14. 8 ISRNOrganicChemistry MeO2C MeO2C Me N HN N N CO2Me H N CO2Me H N HO AcO N N H 63 H 62 HO N AcO N e(68%) f (64 %) MeO2C HN HN Ph CHO N CO2Me CO2Me CO2Me H N NH2·HCl HO N + N + N 58 b H a H H (45%) HO N (51%) HO N HO N 40 56 57 (23 : 28) 58 c(38%) g %) (32 OH MeO2C HN HN OH N N H N CO2Me H N HO H N N H H HO N H N 64 59 d %) (70 MeO2C MeO2C HN Ac N N N CO2Me N + CO2Me H N Ac Ac N N H H Ac N (48 : 22) Ac N 61 60 Scheme9:Reagentsandconditions:(a)compound56(5.0equiv),NaBH3CN(immediateaddition),MeOH(r.t.,16h);(b)compound56(5.0 equiv),NaBH3CN(delayedaddition,20min),MeOH(r.t.,16h);(c)TiCl3-H2O(6.0equiv),MeOH(r.t.,20h);(d)Ac2O,Py(r.t.,48h);(e) Ac2O,Py(r.t.,3h);(f)CH2O,NaBH3CN,AcOH(r.t.,2h);(g)LiAlH4,THF(reflux,3h). ISRNOrganicChemistry 9 O O R1 R2 X Bn CO2Et O N (82b.,8 c%) N + CO2Et (74f%) N Bn N a 65: R1= R2= H d, e 67: X = OH 69 OMe H (83%) 66: R1= Et, R2= Bn (70%) 68: X = CN 70 g (98%) CO2Et O O O i h Bn Bn N NH (97%) N N (75%) N N H H H 25 72 71 j (trace) j (70%) CN CN O O i Bn N NH (97%) N N H H 27 73 k (70%) OH OH CN l m (44%) (79%) N N N H 21 H 21 H 21 20 20 20 HN HN HN 29 31 (+/−)-Goniomitine (1) Scheme10:Reagentsandconditions:(a)(i)n-BuLi(2.0equiv),THF(−78∘C),(ii)EtI(1.0equiv),−78∘C(1h),(iii)BnBr(1.0equiv),r.t. (overnight);(b)(i)LDA(1.0equiv),THF(−78∘C,15min),(ii)BrCH2CH2OTHP(1.1equiv),r.t.(overnight);(c)TsOH(0.1equiv),MeOH(ice- brinebath,4h);(d)Et3N(2.1equiv),MsCl(1.0equiv),CH2Cl2(0∘Ctor.t.,3h);(e)NaCN(2.0equiv),MeCN,120∘C(𝜇w,8h,900rpmstirring); (f)Nitrile68(1.0equiv),cyclopropane69(2.9equiv),TMSOTf(1.0equiv),EtNO2(−30∘C,24h);(g)5%Pd-C(0.03equiv),mesitylene(reflux, 24h);(h)NaOH(10equiv),EtOH-H2O(1:1),150∘C(𝜇w,3h,900rpmstirring);(i)Na(5.0equiv),liq.NH3(0.042molL−1),THF(−78∘C, ∘ 10min);(j)(i)[Me2N=CH2]Cl(1.5equiv),CH2Cl2(r.t.,15min),(ii)MeI(40equiv),MeOH(r.t.,10min),(iii)NaCN(1.3equiv),DMF(100C, 10min);(k)(i)POCl3(6.0equiv),toluene(reflux,2h),(ii)NaBH4(2.0equiv),MeOH(0∘C,30min);(l)(i)DIBAL(1.5equiv),CH2Cl2(−78∘C, −1 ∘ 10min),(ii)0.75molL H2SO4,(iii)NaBH4(2.2equiv),EtOH(0C,30min);(m)TsOH(cat.),Et3N-MeOH(3:5,v/v),reflux(30min). 4.13. Synthesis of (+)- and (−)-Goniomitine by Lewin. In thesameconditionsdescribedinScheme15.Theevaluation the year 2013, Lewin et al. [25] have published the first oftheantiproliferativeeffectof(+)-and(−)-goniomitine(1), biomimetic semisynthesis of goniomitine (1), in nine steps undertakenonfivehumancancercelllines,hasdemonstrated with 11% overall yield, starting from vincadifformine (2). that unnatural (+)-goniomitine is more potent than its Natural (−)- and unnatural (+)-goniomitine were prepared enantiomer(−)-goniomitine[25],inoppositiontoMizutani from(+)-and(−)-vincadifformine,respectively.Thestepsfor etal.’sresultsonacaninekidneycellline(MDCKII)[21]. thesynthesisofunnatural(+)-goniomitine(1)aredepictedin Scheme15. 4.14. Synthesis of (+/−)-Goniomitine by Zhu. In the year Lewin et al. [25] have synthesized the natural (−)-goni- 2013, Xu et al. [26] have published a seven-step total omitine(1),startingfrom(+)-vincadifformine(ent-2),using synthesis of (+/−)-goniomitine (1) through two key steps: 10 ISRNOrganicChemistry H Cbz Cbz Cbz Cbz Cbz N O a N O b N c N O d N H O e N H O (67%) (93%) (76%) (91%) (93%) OMe OEt OH N 74 75 76 77 78 79 Me OH OTIPS OTIPS f g (100%) h (48%) N N N H H 80 81 82 COOH OH OTIPS OTIPS + H j O O i (77%) (93%) N N N H H H H H N Cbz N N Cbz (+/−)-Goniomitine (1) 84 83 ∘ ∘ Scheme11:Reagentsandconditions:(a)(i)n-BuLi(2.2equiv),THF(0C,30min),(ii)EtI(1.5equiv),0C(20min),(iii)benzylchloroformate ∘ ∘ (1.05equiv),0C(20min);(b)(i)NaBH4(1.05equiv),MeOH(0C,15min),(ii)conc.H2SO4,Et2O(r.t.,1h);(c)N2CH2COOEt(4.0equiv), (CuOTf)2⋅C7H8 (0.02equiv),CH2Cl2 (18h);(d)(i)BF3⋅OEt2 (0.15equiv),CH2Cl2 (−20to0∘C),(ii)NaOH(9.0equiv),H2O-THF-EtOH ∘ ∘ (1:1:3),0Cto60C(2h);(e)(i)DMTMM(1.5equiv),THF(r.t.,60min),(ii)MeNHOMe.HCl(1.0equiv),NMM(2.0equiv),r.t.(36h);(f) ∘ ∘ TIPSCl(1.05equiv),imidazole(2.1equiv),DMF(r.t.,1h);(g)(i)n-BuLi(1.2equiv),Et2O(0Cthenreflux,2h),(ii)CO2(0C,30min),(iii) H3O+(pH2);(h)(i)t-BuLi(3.0equiv),compound82(1.5equiv),TMEDA(2.0equiv),THF(−78∘C,3h),(ii)amide79(1.0equiv),THF(0∘C, ∘ 20min);(i)TsOH(0.2equiv),CH2Cl2(r.t.,10min);(j)(i)NaBH4,MeOH(0Ctor.t.,3h),(ii)Ac2O,Py(r.t.,overnight),(iii)H2,Pd-C(0.1 equiv),EtOH,(iv)TBAF(4.4equiv),THF(r.t.,30min). (i) a novel palladium-catalyzed decarboxylative coupling of new efficient enantioselectivesynthetic strategies for this reaction between the potassium nitrophenyl acetate 118 indolealkaloid,withlowoperationalcosts,isstillatargetto and the vinyl triflate 115 for a rapid production of the bereached. functionalized cyclopentene 119; (ii) a late-stage construc- tion of the whole tetracyclic scaffold of goniomitine (1) from the functionalized cyclopentene 120 by a one-pot Abbreviations integratedoxidation/reduction/cyclization(IORC)sequence (Scheme16). Ac: Acetyl 9-BBN: 9-Borabicyclo[3.3.1]nonane Boc: tert-Butoxycarbonyl 5.Conclusions Bn: Benzyl n-Bu: n-Butyl In summary, it may be concluded that this brief survey on the chemistry of goniomitine has covered the literature t-Bu: tert-Butyl relative to this alkaloid and analogs from 1987 to the first Bz: Benzoyl semester of the year 2013. Taking into account the results DIAD: Diisopropylazodicarboxylate published in this period, a considerable progress on the DIBAL: Diisobutylaluminumhydride synthesis of this alkaloid has been verified in the last years DMF: N,N-Dimethylformamide (2008–2013) with the publications of five racemic and two DMSO: Dimethylsulfoxide enantiomericsyntheses.Itisalsoimportanttoemphasizethe recent pioneering works on the bioactive assays performed DMTMM: 2,4-Dimethoxy-6-(4-methylmorpholin-4- with the racemic mixtures as well as both enantiomers of ium-4-yl) chloride goniomitine. In spite of these progresses, the development DPPA: Diphenylphosphorylazide

Description:
Review Article. Goniomitine: An Overview on the Chemistry of. This Indole Alkaloid. José C. F. Alves. Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Bloco H,. Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil. Correspondence shoul
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.