ebook img

Review Article Archaea Signal Recognition Particle Shows the Way PDF

12 Pages·2014·1.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review Article Archaea Signal Recognition Particle Shows the Way

HindawiPublishingCorporation Archaea Volume2010,ArticleID485051,11pages doi:10.1155/2010/485051 Review Article Archaea Signal Recognition Particle Shows the Way ChristianZwieb1andShakhawatBhuiyan2 1DepartmentofMolecularBiology,UniversityofTexasHealthScienceCenteratTyler,11937USHighway271,Tyler, TX75708-3154,USA 2DepartmentofBiology,DivisionofBusinessandSciences,JarvisChristianCollege,P.O.Box1470,Hawkins,TX75765,USA CorrespondenceshouldbeaddressedtoChristianZwieb,[email protected] Received15April2010;Accepted14May2010 AcademicEditor:JerryEichler Copyright©2010C.ZwiebandS.Bhuiyan.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. ArchaeaSRPiscomposedofanSRPRNAmoleculeandtwoboundproteinsnamedSRP19andSRP54.Regulatedbythebinding andhydrolysisofguanosinetriphosphates,theRNA-boundSRP54proteintransientlyassociatesnotonlywiththehydrophobic signalsequenceasitemergesfromtheribosomalexittunnel,butalsointeractswiththemembrane-associatedSRPreceptor(FtsY). ComparativeanalysesofthearchaeagenomesandtheirSRPcomponentsequences,combinedwithstructuralandbiochemical data,supportaprominentroleoftheSRPRNAintheassemblyandfunctionofthearchaeaSRP.The5emotif,whichineukaryotes bindsa72kilodaltonprotein,ispreservedinmostarchaeaSRPRNAsdespitethelackofanarchaeaSRP72homolog.Theprimary functionofthe5eregionmaybetoserveasahinge,strategicallypositionedbetweenthesmallandlargeSRPdomain,allowing theelongatedSRPtobindsimultaneouslytodistantribosomalsites.SRP19,requiredineukaryotesforinitiatingSRPassembly, appearstoplayasubordinateroleinthearchaeaSRPormaybedefunct.TheN-terminalAregionandanovelC-terminalRregion ofthearchaeaSRPreceptor(FtsY)arestrikinglydiverseorabsentevenamongthemembersofataxonomicsubgroup. 1.Introduction the SRP delays or blocks the translation of the to-be- targeted polypeptides. Translation resumes when the SRP- Protein sorting fundamentally maintains the identity and bound ribosome nascent chain complex (RNC) binds to function of every cell with participation of the signal the membrane-associated FtsY (filamentous temperature recognition particle (SRP). SRP components have been sensitive Y) or, in eukaryotes, the alpha subunit of the found in nearly all organisms [1]. Except in chloroplasts, SRP receptor (SRα). The interaction between SRP54 and SRP is a ribonucleoprotein [2]. The SRP RNA is typically the SR increases the affinity of the proteins for guanosine composed of about 300 nucleotide residues and forms a triphosphate, promotes the release of the signal from the complex with an extraordinarily conserved protein named SRP, and interjects the signal sequence of the nascent SRP54inarchaeaandeukaryaorFfh(fifty-fourhomolog)in polypeptide into the protein-conducting channel (PCC) of thebacteria.A19kDaprotein,SRP19,ispresentinarchaea thecellmembrane.Translationandproteintranslocationor andeukarya,butabsentinthebacteria.Polypeptideswhich membrane insertion take place during ongoing translation are homologous to the eukaryal SRP9/14 and SRP68/72 (cotranslationaltranslocation),and,uponhydrolysisoftwo heterodimers have not been found in the archaea genome GTP molecules, the SRP returns to its free cytosolic state sequencesgivingrisetoanarchaeaSRPwhichisdominated ready to initiate another protein targeting cycle (Figure 1) byRNA[3,4]. [5–9]. SRPinteractswithsecretorysignalormembrane-anchor Eventhougharchaeamembranesdiffersignificantlyfrom sequences upon their emergence from the ribosomal exit the cell membranes of eukaryotes and bacteria with regard tunnel. In vitro and in vivo experiments carried out totheuseofglycerol-etherlipidsandisoprenoidsidechains in eukaryotic protein sorting systems have shown that [10,11],noobviousadaptationsforsurvivalunderextreme 2 Archaea S-layer 4 Membrane PCC N 2GTP ? E PA FtsY 2GDP+2Pi SRP E PA 5(cid:2) 3(cid:2) E PA 5(cid:2) 3(cid:2) 3 N E PA 5(cid:2) 3(cid:2) 2 5(cid:2) 3(cid:2) Cytoplasm Ribosome 1 Figure1:HypotheticalstepsintheSRP-mediatedtargetingofarchaeaproteins.Step1:Aribosome(gray,withA,PandEtRNAbinding sites)inthecytoplasmtranslatesamRNAmolecule(black,5(cid:2)and3(cid:2)endsareindicated)whichencodesaN-terminalsignalormembrane- anchorsequence(blackdots).Step2:Asthesignalemergesfromthelargeribosomalsubunit,itisrecognizedbytheelongatedSRPand furthertranslationmaybehalted.Step3:TheSRP-boundribosomenascentchaincomplex(RNC)bindstofreeormembrane-associated FtsY(arrow).Step4:AfterGTPhydrolysis,SRPhasbeenreleased,translationresumes,andthetargetedproteinisthreadedthroughthe protein-conducting channel (PCC). The surface (S) layer, present in most archaea, is anchored to a glycerol-ether lipids-containing cell membrane. conditionsareapparentintheSRPcomponents.Likebacte- archaeaaswellascertainbacteria(e.g.,BacilliandClostridia) ria,archaeacontainonlyoneSRPreceptorpolypeptide,FtsY, pairtheirterminalregionstoformahelix1.Helix7hasbeen ahomologoftheeukaryalSRαsubunit.Thesignalsequences foundonlyineukaryalSRPRNAswhereitismostprominent ofthearchaeaandbacteriaareinterchangeable[12,13],and insomefungiandprotozoans[1]. archaeasignalpeptidaseswhichremovethesignalsequence Using the previously described sequence identification afterproteintranslocationhavebeenidentified[14].Archaea procedures and covariation rules (see Methods) we aligned lack homologs of the bacterial and eukaryal translocation 81archaeaSRPRNAsequencesandarrangedthemaccording ATPases SecA and Kar2p/BiP. They possess, however, Sec61 to NCBI’s taxonomy [35]. The shared alignment pairing (the PCC) and a Tat translocase system [15]. These SRP maskallowstodeducephylogeneticallysupportedSRPRNA independent means of protein delivery have been discussed secondarystructuresforeachofthealignedsequences.With recently[16,17]andwillnotbereviewedhere. afewexceptions,asequencecorrespondstoaknownspecies. Solving the structures of numerous archaea SRP com- The apical loops of SRP RNA helices 3 and 4 form a ponents and their complexes at high resolution (Table 1) tertiary interaction which is well supported by covarying has been crucial for understanding the intricacy of protein compensatory base changes. The UGUNR sequence motif targetinginallorganisms.Withinthisstructuralframework, (N is A, C, G or U, R is a purine) located between these the increasing number of newly identified archaea genome helices(labeledUGUinFigure2(a))ispartofastructurally sequences provides an opportunity to review and discover important U-turn. Both features promote the high degree not only archaea-specific SRP features, but also draw phy- of compactness of the small SRP domain. It remains to be logenic distinctions which may pave the way for a better determined how similar the structure of the protein-free understandingofthefunctionandevolutionofeverySRP. small domain of the archaea SRP is to the solved crystal structureofthemammalianAludomainincomplexwiththe 2.ArchaealSRPRNA SRP9/14proteinheterodimer[36]. As previously noted and confirmed by mining of the Unlike the bacterial and eukaryal SRP RNAs, their archaea largercollectionofarchaeaSRPRNAsequences,deviations counterparts vary little in shape and size (approximately fromtheUGUNRmotifoccurinseveralgroups[37].Con- 300nucleotideresidues).Thismaybeduetorelativelyslow spicuouserosionsofthesmalldomaintakeplaceintheSRP evolutionary rates as has been observed previously when RNAs of several Desulfurococcales and in Nitrosopumilus the relative conservation of archaea protein sequences was maritimus SCM1. Base pairs which typically participate in investigated [31]. Archaea SRP RNA secondary structures theformationofhelices1and3areabsentinthesesequences, possessextensivelybasepairedregionswhichformapromi- whileotherresiduesperhapsformanextendedhelix4.Due nentcentralhelixflankedbyasmall(orAlu)andalarge(or totherelativelysmallnumberofavailablesequenceswithin S)domain(Figure2(a)).Thus,theyresemblethesecondary thesesubgroupsitisnotyetpossibletoconclusivelyproveor structuresofthemammalianSRPRNAs.Heliceshavebeen disproveplausiblebasepairs. assignednumbersfromonetoeight,andhelicalsectionare Another hydrogen-bonded tertiary interaction engages designatedwithlettersatof[32,33].TheSRPRNAsofmost twoadenosineswithintheapicaltetraloopsofhelices6and8 Archaea 3 Table1:High-resolutionstructuresofarchaealSRPcomponents.Indicatedarethearchaeasubdomains(CrenarchaeotaorEuryarchaeota), speciesnames,components,andmethods(X-RaydiffractionofNMR)usedforstructuredetermination.ThepdbIDsalloweasyretrieval ofthecoordinates[18].Theprotein-conductingchannelisabbreviatedasPCC.AdditionalnonarchaeaSRPhigh-resolutionstructuresare listedathttp://rnp.uthct.edu/rnp/SRPDB/srpstructures.html. Subdomains Species Components Methods pdb References Crenarchaeota Acidianusambivalens SRP54NG X-Ray 1J8M,1J8Y [19] Sulfolobussolfactaricus SRP54withhelix8 X-Ray 1QZW [20] SRP54dimer X-Ray 1QZX [20] SRP54withsignalpeptide X-Ray 3KL4 [21] SRP19withhelix6andhelix8 X-Ray 3KTV,3KTW [22] Euryarchaeota Archaeoglobusfulgidus SRP19 NMR 1KVN,1KVV [23] SRP54M NMR 2JQE [24] Methanococcusjannaschii SRP19withSRP54withRNA X-Ray 2V3C [25] SRP19withhelix6andhelix8 X-Ray 1LNG [26] Helix6andhelix8 X-Ray 1Z43 [27] PCC X-Ray 1RHZ,1RH5 [28] Pyrococcusfuriosus SRP19 X-Ray 3DLU,3DLV,3DM5 [29] SRP54 X-Ray 3DLU,3DLV,3DM5 [29] FtsY X-Ray 3E70,3DM9,3DMD [30] Table2:TaxonomicdistributionofarchaeaSRPfeatures.Indicatedarethearchaeasubdomains,thenumberofspeciesidentifiedineach group,andarepresentativespecies.FeaturesaretheUGUNRmotif(NisanynucleotideandRisapurineresidue),helices(typically1to 4)inthesmallSRPdomain(SD),theGNARtetranucleotideloop(tetraloop)ofhelix6,theGGAAtetraloopofhelix8,proteinsSRP19 and SRP54 (SRP19/54), and the acidic (A) domain of the FtsY receptor (FtsY-A). “+” shows presence, “−” absence, and “±” indicates that this feature is present only in a subset of the group members. Sequences deviating from the top-listed motif (e.g., the GGGA in theThermoproteales)aregiven.Thestructuralalignmentsofthe81identifiedarchaeaSRPRNAsandtheproteinalignmentsofSRP19, SRP54andFtsYareprovidedonlineaslistedinSupplementaryMaterials2availableonlineatdoi:10.1155/2010/485051andareavailableat http://rnp.uthct.edu/rnp/SRPDB/srprna.html.FeaturesoftheSRPRNAinallthreedomainsoflifehavebeenrecentlydescribedindetailin [1]. Subdomains Groups(n) PrototypicalSpecies UGUNR SDhelices GNAR GGAA SRP19/54 FtsY-A some Crenarchaeota Desulfurococcales(5) Pyrodictiumoccultum − + + + − absent Sulfolobales(12) Sulfolobussolfataricus ± + + + + +,varies Thermoproteus Thermoproteales(4) − + + GGGA + − neutrophilusV24Sta Euryarchaeota Archaeoglobales(2) Archaeoglobusfulgidus + + + + + ± Halobacteriumspecies ±,some Halobacteriales(10) − + + + + NRC-1 long Methanobacterium +,some Methanobacteriales(3) + + + + + thermoautotrophicum long Methanocaldococcus Methanococcales(12) + + varies + + ± jannaschiiDSM2661 Methanomicrobiales Methanoculleus UAUAA + + + + ± (1) marisnigriJR1 Methanosarcina Methanosarcinales(5) + + + + + ± acetivorans Methanopyruskandleri Methanopyrales(1) + + + GAGA + − AV19 Pyrococcushorikoshii ±,some Thermococcales(14) + + + + + OT3 long Thermoplasma Thermoplasmatales(3) − + AAAG + + − acidophilum Candidatus CandidatusKorarchaeum Korarchaeota − + + + + − Korarchaeum(1) cryptofilumOPF8 Nitrosopumilus some Thaumarchaeota Nitrosopumilales(1) − + GGGA + − maritimusSCM1 absent 4 Archaea GNAR GA T-loop GC GG160 motif C G C G G C Archaeoglobus fulgidus SRP RNA U U C G 150 G U 6 G C G C CCGCCGAU50 CCG GC170 Tertiary interaction UmGotUif 434300UAAAGAAUCCCCUGCGCCCG GCCGGG GGGGGGUUGGCGA22CG010GC60GCAUCGG GAGU5AGUGCGG(cid:2)C5CGCC3Aa0GCCC0A3G17(cid:2)GA301CG0CGCGAGGA2CG9UG0GCGC80AUCGGGU5bA CA AAUG28GC0CGCG9CG0GCCG5CGcGCAAA2CG7UC0UGACG10GU0GUGCGC5UAdCG26CG0GCUAhGC1i1GCn0AGgGCeAGG AGUAGC25GC1052G Ue0GC mCGGUUo5G etGCGifGC24GC0CGCGUA1U3CG0GGCG5GC2fGC30CGS1CG4AR0GC82PCGa2A05GGUAUUGG4CC CCAAUCCAUAUUAGCCGGGGGGG1GC810AA90 Tertiary interaction binding G C G C motif A+C 8b C+A 210 G+G A+G G C G C 200 G C A G Small (Alu) domain Large (S) domain AG (a) Consensus Sulfolobales Thermoproteales Eukaryota GN - - C C GC - - C C GU- - C C GN- - C C C N GG C N GG C N GG C N GG NNN NCU CCG NNA Archaeoglobales Halobacteriales Methanobacteriales Protein GU- - C C GU- -C C GU- - C C SRP72 C G GG C G GG C A R G UGG CUR A YU Methanococcales Methanosarcinales Thermococcales Desulfurococcales Thermoplasmata Korarchaeota GU- - C C GU- - Y C GU--C C GY- -C C GU- -C C GU- -C C C G GG C A R G C A R G C N GG C G GG C G GG NNG YYR NNG N3-4 NN NN (b) (c) Figure2:ArchaeaSRPRNAfeatures.(a)SecondarystructureofArchaeoglobusfulgidusSRPRNA.(b)Consensus-matching5emotifssorted bytheirtaxonomicmembership.(c)Mismatching5emotifs.Helicesarenumberedfrom1to8andhelicalsectionsarelabeledwithlettersa tof[33].Forexample,helix1iscomposedofresiduesonetosevenwhicharebasepairedwithresidues303to310;helix2consistsofresidues atpositionstento13basepairedwiththeresiduesatpositions59to62.Theextendedhelix5containssixhelicalsections,5ato5f.Helix7is lackingintheSRPRNAsofthearchaea.The5(cid:2)-and3(cid:2)-endsareshown,andresiduesarelabeledinten-residueincrements.Basepairswere determinedbycomparativesequenceanalysis[32]andbyconsideringhigh-resolutiondata(Table1).Theapproximateextentsofthelarge (S)andthesmall(Alu)domainsareindicated.ShownindarkgrayaretheUGUNRmotif(labeledUGU)inthesmalldomain,the5emotif withinhelicalsection5eattheindicatedhinge[34],theGNARapicaltetraloopofhelix6andtheSRP54bindingmotifofhelix8inthelarge domain.Dashedlinessuggesttertiaryinteractions. (A159andA205inArchaeoglobusfulgidus,Figure2(a)).This and likely exists in all archaea and eukaryotic SRP RNAs. long-rangeinteractionwasfirstseeninthecrystalstructures The participating adenosine of helix 6 is presented within ofMethanococcusjannaschiiSRPRNAfromthelargedomain a GNAR tetranucleotide loop (tetraloop) in most archaea (Table 1). The adenosine clamp severely constraints the SRPRNAs,butdeviates(AAAG)fromtheconsensusinthe arrangement of helices 6 and 8. It is highly conserved four SRP RNA sequences of the Thermoplasmatales. The Archaea 5 interacting helix 8 has a GRRA loop with GGAA being the Such an interpretation is supported by the finding that 5e mostfrequentlyrepresentedtetranucleotide.GGGAisfound ispresentinSRPRNAswithastandardsetofhelicesintheir intheThermoprotealesandThaumarchaeota(Nitrosopumi- smallSRPdomain[38].Conversely,Figure2(c)andthedata lales), and GAGA in the Methanopyrales. These helix 8 shown in Table 2 suggest that SRP RNAs deviate from the tetraloopsequencesareprobablyusefulwhenattemptingto 5econsensuswhentheylacktheUGUNRmotiforwhenthe identifyandclassifythearchaeaSRPRNAs(Table2). smallSRPdomainiseroded.Thesehinge-impairedarchaea SRPRNAsmayfunctioninamodewhichresemblestheSRP- mediatedproteintargetingofthemajorityofbacteriawhich 3.The5eMotif:ACaseforMolecular lackthesmallSRPdomain. Exaptation The11-nucleotide5eelementisthemostrecentlydiscovered 4.ProteinSRP19,IsItRequired? SRP RNA motif and has been helpful in the prediction of SRP RNA genes [38]. The motif consists of four base pairs AlthoughproteinSRP19wasthoughttobeabsentincertain interruptedbyathree-nucleotideloop.Twoofthebasepairs archaea genomes [3], its genes (91 sequences) have now are symmetrically arranged G-C pairs. The comparison of been identified in all archaea subgroups (Table 2). SRP19 141 eukaryal and 28 archaea sequences shows that the first coexist with SRP RNA helix 6 as part of the large SRP residue of the eukaryotic 5e loop is a conserved adenosine domain. Mainly due to the reduced size of its loop 4, (A240 in human SRP RNA) in the eukarya (Figure 2(b)) the archaea SRP19 is generally somewhat shorter than its [39]. In the archaea, the corresponding nucleotide can be eukaryotichomolog(Figure3,top,graytriangle).TheNMR anyresidue,andonlytwohalobacterialsequences(Haloferax structureofArchaeoglobusfulgidushasbeensolved[23],and volcanii,GenBankAccessionAF395888,andHalomicrobium severalcrystalstructuresofthefreeandRNA-boundSRP19 mukohataei, GenBank Accession CP001688) possess an have been determined (Table 1) revealing a single-domain adenosine. compactlyfoldedprotein. Systematic site-directed mutagenesis of the 5e region Certain conserved amino acid residues (Y/W and GR showed that human SRP RNA with a single A240G change in loop 1; Figure 3, top) participate in the binding to the wasunabletoformacomplexwithfull-lengthhumanSRP72 SRP RNA through induced fit mechanisms involving both [39]. The 5e RNA was found to bind a 56 amino acid- the protein and the RNA. For example, loop 3 (Figure 3, residue polypeptide of human SRP72 which contained the top) of Archaeoglobus fulgidus SRP19 reorders and adopts consensussequencePDPXRWLPXXER(Xisforanyamino a single conformation upon binding to RNA [23]. In the acid residue) [40]. Bioinformatic analyses identified two Thermococcales, loop 3 is enlarged and disordered and, relativelypoorconsensussequencematchesinthegenomes uponbinding,rearrangestoassistintheproperfoldingofthe of archaea, one with a methyl coenzyme M reductase of SRP RNA [29]. This mechanism of mutual conformational an uncultured methanogenic archaeon (GenBank Acces- adjustmenthasbeenobservedinseveralotherprotein-RNA sion ABI18429), the other with a hypothetical protein of complexes[44]. Pyrobaculum islandicum DSM 4184 (GenBank Accession Ineukaryoticcells,SRPisassembledinthenucleolusand ABL88435). These relationships are likely coincidental and, transported to the cytosol where it associates with SRP54 untilprovenotherwise,areconsistentwiththenotionthata [45, 46]. Archaea SRPs contain only two proteins, SRP19 functional equivalent of the eukaryotic SRP72 is lacking in and SRP54, and assemble in the cytosol. The mammalian thearchaea. SRP19 is required to position SRP RNA helices 6 and 8 in Theconservedadenosineinthe5emotifoftheeukaryal, a side-by-side fashion and expose the SRP54 binding site butnotthearchaealSRPRNAssuggeststhatthe5eelement through a conformational collapse in helix 8. In contrast, was recruited in evolution to supply a new function to the archaea SRP RNA binds SRP54 even in the absence of protein-rich eukaryotic SRP thereby providing a striking SRP19[47,48].RNasesusceptibilitymeasurementsofwild- exampleformolecularexaptation,definedastheutilization type and mutant Archaeoglobus fulgidus SRP RNAs show of a feature for a function which differs from what it was that the conserved adenosine of the GNAR tetraloop in originally developed for [41, 42]. Because human SRP72 helix 6, and not SRP19, is responsible for a compactly binds strongly to the Haloferax volcanii SRP RNA [40], the arranged large SRP domain [49]. Indeed, helices 6 and structures of the 5e region of archaea and eukaryotes are 8 are closely packed in the protein-free crystal structures apparentlyverysimilar. of Methanococcus jannaschii and Sulfolobus solfataricus SRP The 5e RNA fragment is remarkably resistant towards RNAs[22,27]. ribonucleolytic attack [39] indicating that it is compactly Figure 4 indicates that helix 6 and helix 8 interact with folded and may resemble the structure of an RNA kink- eachothernotonlythroughtheirdistaltetraloopadenosines turn [43]. Although 5e conforms only loosely to the K- but also via internal looped-out residues. However, the turnconsensussecondarystructure,3Dmolecularmodeling asymmetric internal loop of helix 8 engages in distinctly demonstrates compatible structures (Zwieb, unpublished). different ways. In the human SRP RNA, two adenosines Thissuggestthat5eispartofthebendorhingewhichallows protrude from the short strand of the asymmetric loop to theelongatedSRPtoadjusttothecurvatureoftheribosome form A-minor motifs with helix 6 [50]. In contrast, in the and bind simultaneously to separate ribosomal sites [34]. MethanococcusjannaschiiRNAstructures,twoadenosinesof 6 Archaea SRP19 Thermococcales Eukarya insert insert Y L1 L2 L3 L4 W GR N C 1 20 40 60 80 100 120 140 Helix6 Helix8 Halobacteriales Thermococcales insert Sulfolobales insert GLMD Methanococcales insert LEKEV insert SRP54 I-box GY RXLGXGD GG FL N G M N C 1 50 100 150 200 250 300 350 400 450 FtsY-NG Signal Helix8 Unculturedmarine crenarchaeotarepeats Nitrosopumilus EPVP FtsY I-box maritimusrepeats EPTP DV P GKTT GR GG A N G R N C 1 250 300 350 400 450 500 550 600 800 SRP54-NG Figure3:FeaturesofSRP19(top),SRP54(center)andtheFtsYSRPreceptor(bottom).IndicatedaretheN-andC-termini.Helicesare shownascylinders,beta-sheetsasarrows,andsomeloopsarelabeledwithanarchandtheletterL.Invariantorhighlyconservedresidues areshownboxed,andseveralaminoacidresidueinsertswhicharecharacteristicfortheindicatedtaxonomicgroupsareshownasbold letters.NumberingisaccordingtothecolumnpositionsofeachproteinalignmentaccessibleaslistedinSupplementaryMaterials2and attheSRPdatabaseathttp://rnp.uthct.edu/rnp/SRPDB/SRPDB.html).RegionsandsiteswhichinteractwithotherSRPcomponentsorthe signalsequencearemarkedwithbracketsbeloweachpanel. helix 6 are bulged out and interact in the minor groove of 5.SRP54 helix8[25]. Deletion of the yeast SRP19 homolog Sec65 was shown SRP54,oritsbacterialhomologFfh,ispresentinallorgan- to be lethal to the eukaryote Yarrowia lipolytica [51]. In isms,includingthechloroplastSRPswhichlackanSRPRNA the archaea, structural and biochemical data as well as the [2].DeletionoftheHaloferaxvolcaniiSRP54generesultsin deviation from the GNAR tetraloop motif observed within thelossofcellviabilityasproofofthecentralroleofSRP54 the Thermoplasmatales (Table 2) suggest that SRP19 is in archaea protein targeting [52, 53]. Sequence and three- not required for SRP assembly and dispensable for protein dimensional structure (Table 1) of the protein are highly sorting and survival. In fact, deletion of SRP19 from the conserved. These properties are readily explained by the Haloferaxvolcaniigenomehadnoeffectonproteintranslo- numerous interactions which engage SRP54 in the binding cationormembraneinsertion.Increasedlevelsofmembrane not only to the SRP RNA, but also the signal sequence bacterioruberin were detected in the deletion mutant and andtheFtsYSRPreceptor.Theobservedexceptionallyhigh significant amounts of SRP19 mRNA were observed in level of conservation likely reflects the need to carry out nonmutatedcells[52]suggestingarelativelyminorpossibly multiple binding reactions in a coordinated dynamically regulatory function for SRP19. Although the protein might GTP-regulated way to ensure proper and efficient delivery participateinamoresubstantivewaywhenHaloferaxvolcanii ofawidevarietyofsignalsequence-taggedproteinsintothe is challenged to survive in external environments, the data PCC. demonstrate the diminished importance of the archaea The functions of SRP54 are brought about by three SRP19whencomparedtoitssignificantroleforthesurvival domains. The N-terminal (N) domain is composed of ofeukaryoticcells. a bundle of four alpha helices, the GTPase (G) domain Archaea 7 Membrane exceptional conservation of SRP54 throughout all domains A R oflifesuggeststhatarchaeaemployasimilarifnotidentical N G FtsY signalrecognitionmechanism.TheNGregioncanbeinclose N proximity to SRP RNA helix 8 and, in archaea, appears to G engagealsohelix6[25]. SRP54 Signal The alignment of 103 archaea SRP54 sequences reveals M several group-specific amino acid residue insertions, for 19 8 example a GY in the G domain of Sulfolobales which 6 might modulate the GTPase activity. Into the M domain, ThermococcalesinsertthesequenceLEKEV,Halobacteriales GLMD, and Methanococcales GG (Figure 3). These amino acidresidueshavethepotentialtocontributetothebinding Figure 4: Interactions between the components of archaea SRP- oftheproteintotheSRPRNA,tosignalpeptiderecognition mediated protein targeting. Schematic drawing of the coaxially- or other yet to be specified enhanced functions. Regardless arranged SRP RNA helices 6 and 8 bound together by SRP19 oftheirpotentialsignificance,theseshortpeptidesequences and two tertiary interactions (dashed lines). The M-domain of are useful for assigning SRP54 sequences to their proper the SRP54 protein (dark gray) binds to SRP RNA helix 8 as well as the signal sequence (black). The NG-domains of SRP54 and taxonomicgroup. theFtsYSRPreceptorarearrangedquasisymmetricallyandpoised to separate upon the hydrolysis of two G-domain-bound GTP molecules.TheN-terminalregionlabeledA(foracidic)andtheC- 6.FtsY:TheSRPReceptor terminalrepeatregion(R)ofFtsYarevariableormaybeabsent(see Table2). The SRP receptor (SR) of the eukarya is composed of the peripheral membrane SRα and the integral membrane SRβ proteins. Bacteria and archaea possess only FtsY, a contains a unique insertion (I-box) which serves as a homolog of SRα [60]. Sequence comparisons of FtsY with guanine nucleotide-exchange factors (GEFs) and stabilizes SRP54 suggest a gene duplication event [61] and support the nucleotide free protein [54, 55], and the methionine- the classification into the three domains of life as well as rich (M) domain binds to the SRP RNA and the signal thecloserootingofarchaeaandeukarya[62].ArchaeaFtsY sequence(Figure3,center).Thepredominantlyalphahelical sharesitsconservedNGregionwithNGofSRP54,including M domain contains an extended segment (the so-called the I-box, but differs from SRP54 with respect to several fingerloop) which delineates or is folded into a groove short amino acid stretches as revealed by the alignment of which accepts signal sequences [20, 21, 56]. This wide 95archaeaFtsYsequences(Figure3,SupplementaryMaterial and short hydrophobic groove was observed also in the 1). The NG regions are symmetrically arranged in three crystal structure of the RNA-bound Escherichia coli Ffh dimensions to constitute the structural and functional core [57]. The NMR structure of the Archaeoglobus fulgidus of signal sequence release and nascent polypeptide delivery SRP54 M domain [24] is similar to these crystal structures intothecellmembrane(Figure4)bymutuallycatalyzingthe and disfavors another proposed mode whereby the signal hydrolysisofGTP[63–65]. sequencebindswithinalongandnarrowgrooveofSRP54M As has been observed within the bacterial genomes [28, 50]. The conformations of the fingerloop in solution [66, 67] several archaea FtsY sequences consist only of the suggest that it adaptively binds and stabilizes the signal NG domain and lack an N-terminal acidic (A) domain. sequences.Bindingisweak[24]andlikelyreversibleinorder Diversity with respect to the A domain is observed even topermitsignalsequencereleaseuponthebindingofSRP54 within a single archaea subgroup (Table 2). Full-length to the SRP receptor. The molecular details of the contacts HaloferaxvolcaniiFtsYaswellaspolypeptideslackingtheA made by a signal peptide with the Sulfolobus solfataricus domain were shown to bind to inverted membrane vesicles SRP54havebeenrevealedrecentlyandsuggestthatportions indicating that the A domain is dispensable for attaching of the fingerloop may adopt an alpha helical conformation FtsY to the membrane. Instead, the A domain may play [21]. a role in recruiting SRP to the haloarchaeal membrane Adding to the intricacy of signal sequence recognition, [68, 69]. Assuming a pool of free FtsY in the cytosol the M domain and the NG region of SRP54 are joined [70, 71] (Figure 1) these findings are particularly relevant. together via a flexible linker. This region has the consensus On the other hand, fluorescence microscopy showed that sequence RXLGXGD and allows the RNA-bound SRP54 to almostalloftheEscherichiacoliFtsYassociatesinvivowith undergosubstantialstructuralrearrangementsuponbinding the inner membrane, and any soluble FtsY is unlikely to toasignalsequence[20,22].Consistentwiththisassertion, contributetoproteintargeting[72].AlthougharchaeaFtsY site-directed mutagenesis experiments of mammalian SRP might interact with the membrane in similar manners as [58] and a recent crosslinking study of the Escherichia has been observed in bacteria and chloroplast [2, 73–76], coli SRP [59] demonstrate the involvement of the signal themoleculardetailsofthebindingcouldbequitedifferent sequence not only with the M domain, but also the NG given the differences in membrane lipid composition. FtsY region. No evidence for the binding of NG to signal might also interact directly with a cytosolically exposed sequences has been provided in the archaea. However, the portion of the PCC [77, 78]. In either case, one would 8 Archaea expectfunctionalsynchronicitybetweenGTPhydrolysisand theconserved5emotifanditsrelationshiptoaflexiblehinge deliveryofproteinintothePCC[79]. or a bend in the elongated SRP? It will also be important IntheFtsYsequencesoftheunculturedmarineCrenar- to further elucidate the role of the archaea FtsY, its role in chaeota we discovered a C-terminal proline-rich extension, thecytosolaswellasthemolecularfeatureswhichpromote named R for its motif repetitions (see Figures 3 and 4). its association with archaea membranes. As in the past, the Up to 12 EPVP repeats (accession numbers ABZ10052, studiesofthearchaeaSRPareexpectedtocontributeinmany ABZ08863, ABZ09152, ABZ09615) and five EPVV repeats ways to our grasp of SRP-mediated protein targeting in all (ABZ098531)werepresentintheRregion.Similarmultiple organism. repeats with the sequence EPTP were seen also in the FtsY oftheThaumarchaeotumNitrosopumilusmaritimusSCM1. 9.Methods Details of the R-regions can be inspected in an updated archaealFtsYalignmentprovidedattheSRPDB[37].Aswith Sets of representative sequences were used as input to Perl much of our limited understanding of the role of FtsY in scripts written to identify sequence homologs in the NCBI thearchaea,itremainstobedeterminediftheserepeatsare databases[90].RNAsequenceswerealignedsemiautomati- expressedandhaveafunctioninproteinexport. callywithSARSE[91];proteinsequenceswerealignedusing MUSCLE [92] followed by manual adjustments in Jalview 7.ArchaeaSRPFunctionandEvolution [93]. The alignments are available through the links listed inSupplementaryMaterial2.Inaddition,theSRPdatabase During the past years, several interesting puzzle pieces providestablesofalphabeticallyandphylogeneticallysorted with respect to SRP-mediated protein translocation and sequencesathttp://rnp.uthct.edu/rnp/SRPDB/SRPDB.html. membrane insertion in the archaea have been assembled. TheSRPsoftheCrenarchaeotumAcidianusambivalensand Acknowledgments theEuryarchaeotaArchaeoglobusfulgidus,Pyrococcusfuriosus and Haloferax volcanii have been reconstituted [47, 48, 80– TheauthorsaregratefultotheAmericanHeartAssociation, 82], and the ability of an archaea SRP54 to participate in SouthCentralAffiliate,forsupport(no.09GRNT2080038). signal sequence recognition has been demonstrated [81]. S.Bhuiyan is supported by a UNIMET grant from the Nevertheless, the role of SRP within the archaeal cell is National Aeronautics and Space Administration and the stillpoorlyunderstood.Examplesofbothproteinsynthesis- United Negro College Fund Special Programs Corporation linked (cotranslational) and posttranslational translocation NASA Science and Technology Institute for Minority Insti- have been provided [83–87], but to what degree these tutionProjectNNA06CB14H. findingsarerepresentativeremainstobeinvestigatedfurther [16]. The proposal that signal sequences might interact with References the SRP RNA has fed the imagination that the primitive [1] M. A. Rosenblad, N. Larsen, T. Samuelsson, and C. Zwieb, SRPwascomposedonlyofRNA[57,88].However,because “KinshipintheSRPRNAfamily,”RNABiology,vol.6,no.5, of the proteinaceous nature of the signal, a scenario in pp.508–516,2009. whichSRPRNAcoemergedwithevolutionaryprecursorsof [2] K. F. Stengel, I. Holdermann, P. Cain, C. Robinson, K. SRP54/Ffh/FtsYappearstobemoreplausible.Furthermore, Wild, and I. Sinning, “Structural basis for specific substrate the recent structure of the signal peptide-bound Sulfolobus recognition by the chloroplast signal recognition particle solfataricusSRP54(Ffh)showsthatthesignalpeptideistoo protein cpSRP43,” Science, vol. 321, no. 5886, pp. 253–256, farremovedfromtheSRPRNAtomakedirectcontact[21]. 2008. If the small (Alu) SRP domain was a feature of the [3] C.ZwiebandJ.Eichler,“Gettingontarget:thearchaealsignal primitive SRP which subsequently was lost in evolutionary recognitionparticle,”Archaea,vol.1,no.1,pp.27–34,2002. time;themajorityofthebacteriaismoredifficulttodiscern. [4] R. G. Moll, “The archaeal signal recognition particle: steps Asanotherpossibilityarchaeaandcertainbacteriamayhave toward membrane binding,” Journal of Bioenergetics and Biomembranes,vol.36,no.1,pp.47–53,2004. been faced independently with the need to enlarge a small [5] H. G. Koch, M. Moser, and M. Mu¨ller, “Signal recogni- primitive SRP, maybe to slow down translation rates and tion particle-dependent protein targeting, universal to all provide more time for ensuring the delivery of proteins to kingdoms of life,” Reviews of Physiology, Biochemistry and themembraneashasbeenobservedineukarya[89]. Pharmacology,vol.146,pp.55–94,2003. [6] K. Nagai, C. Oubridge, A. Kuglstatter, E. Menichelli, C. Isel, andL.Jovine,“Structure,functionandevolutionofthesignal 8.FutureDirections recognitionparticle,”EMBOJournal,vol.22,no.14,pp.3479– 3485,2003. With respect to the RNA-rich archaea SRP it would be [7] J. A. Doudna and R. T. Batey, “Structural insights into the desirabletobetterunderstandthestructureandfunctionof signal recognition particle,” Annual Review of Biochemistry, the protein-free small SRP domain. For example, what, in vol.73,pp.539–557,2004. moleculardetail,allowsthesmalldomaintofoldbackonto [8] M.HalicandR.Beckmann,“Thesignalrecognitionparticle helix5inordertoapproximatetheshapeanddimensionsof anditsinteractionsduringproteintargeting,”CurrentOpinion theeukaryalSRP[36]?Whatisthefunctionalsignificanceof inStructuralBiology,vol.15,no.1,pp.116–125,2005. Archaea 9 [9] S.-O.ShanandP.Walter,“Co-translationalproteintargeting [26] T. Hainzl, S. Huang, and A. E. Sauer-Eriksson, “Structure bythesignalrecognitionparticle,”FEBSLetters,vol.579,no. of the SRP19-RNA complex and implications for signal 4,pp.921–926,2005. recognitionparticleassembly,”Nature,vol.417,no.6890,pp. [10] G.D.Sprott,“Structuresofarchaebacterialmembranelipids,” 767–771,2002. JournalofBioenergeticsandBiomembranes,vol.24,no.6,pp. [27] T. Hainzl, S. Huang, and A. E. Sauer-Eriksson, “Structural 555–566,1992. insights into SRP RNA: an induced fit mechanism for SRP [11] J.L.C.M.VandeVossenberg,A.J.M.Driessen,andW.N. assembly,”RNA,vol.11,no.7,pp.1043–1050,2005. Konings,“Theessenceofbeingextremophilic:theroleofthe [28] W. M. Clemons Jr., K. Gowda, S. D. Black, C. Zwieb, uniquearchaealmembranelipids,”Extremophiles,vol.2,no. and V. Ramakrishnan, “Crystal structure of the conserved 3,pp.163–170,1998. subdomain of human protein SRP54M at 2.1 A˚ resolution: [12] G. von Heijne, “The signal peptide,” Journal of Membrane evidenceforthemechanismofsignalpeptidebinding,”Journal Biology,vol.115,no.3,pp.195–201,1990. ofMolecularBiology,vol.292,no.3,pp.697–705,1999. [29] P. F. Egea, J. Napetschnig, P. Walter, and R. M. Stroud, [13] M. Pohlschro¨der, M. I. Gime´nez, and K. F. Jarrell, “Protein “Structures of SRP54 and SRP19, the two proteins that transport in Archaea: Sec and twin arginine translocation organizetheribonucleiccoreofthesignalrecognitionparticle pathways,”CurrentOpinioninMicrobiology,vol.8,no.6,pp. fromPyrococcusfuriosus,”PLoSOne,vol.3,no.10,ArticleID 713–719,2005. e3528,2008. [14] S. Y. M. Ng, B. Chaban, D. J. VanDyke, and K. F. Jarrell, [30] P.F.Egea,H.Tsuruta,G.P.deLeon,J.Napetschnig,P.Walter, “Archaealsignalpeptidases,”Microbiology,vol.153,no.2,pp. andR.M.Stroud,“Structuresofthesignalrecognitionparticle 305–314,2007. receptorfromtheArchaeonPyrococcusfuriosus:Implications [15] S.-V.Albers,Z.Szabo´,andA.J.M.Driessen,“Proteinsecretion forthetargetingstepatthemembrane,”PLoSOne,vol.3,no. intheArchaea:multiplepathstowardsauniquecellsurface,” 11,ArticleIDe3619,2008. NatureReviewsMicrobiology,vol.4,no.7,pp.537–547,2006. [31] J.M.KollmanandR.F.Doolittle,“Determiningtherelative [16] D.CaloandJ.Eichler,“CrossingthemembraneinArchaea,the ratesofchangeforprokaryoticandeukaryoticproteinswith thirddomainoflife,”BiochimicaetBiophysicaActa.Inpress. ancientlyduplicatedparalogs,”JournalofMolecularEvolution, [17] J.Yuan,J.C.Zweers,J.M.vanDijl,andR.E.Dalbey,“Protein vol.51,no.2,pp.173–181,2000. transport across and into cell membranes in bacteria and [32] N.LarsenandC.Zwieb,“SRP-RNAsequencealignmentand archaea,” Cellular and Molecular Life Sciences, vol. 67, no. 2, secondarystructure,”NucleicAcidsResearch,vol.19,no.2,pp. pp.179–199,2010. 209–215,1991. [18] A. Kouranov, L. Xie, J. de la Cruz et al., “The RCSB PDB [33] C. Zwieb, R. W. Van Nues, M. A. Rosenblad, J. D. Brown, information portal for structural genomics,” Nucleic Acids andT.Samuelsson,“Anomenclatureforallsignalrecognition Research,vol.34,pp.D302–305,2006. particleRNAs,”RNA,vol.11,no.1,pp.7–13,2005. [19] G. Montoya, K. te Kaat, R. Moll, G. Scha¨fer, and I. Sinning, [34] M.Halic,T.Becker,M.R.Pooletal.,“Structureofthesignal “ThecrystalstructureoftheconservedGTPaseofSRP54from recognition particle interacting with the elongation-arrested the archaeon Acidianus ambivalens and its comparison with ribosome,”Nature,vol.427,no.6977,pp.808–814,2004. relatedstructuressuggestsamodelfortheSRP-SRPreceptor [35] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, complex,”Structure,vol.8,no.5,pp.515–525,2000. andE.W.Sayers,“GenBank,”NucleicAcidsResearch,vol.37, [20] K.R.Rosendal,K.Wild,G.Montoya,andI.Sinning,“Crystal databaseissue,pp.D26–D31,2009. structureofthecompletecoreofarchaealsignalrecognition [36] O.Weichenrieder,K.Wild,K.Strub,andS.Cusack,“Structure particle and implications for interdomain communication,” and assembly of the Alu domain of the mammalian signal ProceedingsoftheNationalAcademyofSciencesoftheUnited recognitionparticle,”Nature,vol.408,no.6809,pp.167–173, StatesofAmerica,vol.100,no.25,pp.14701–14706,2003. 2000. [21] C.Y.Janda,J.Li,C.Oubridge,H.Herna´ndez,C.V.Robinson, [37] E.S.Andersen,M.A.Rosenblad,N.Larsenetal.,“ThetmRDB andK.Nagai,“Recognitionofasignalpeptidebythesignal and SRPDB resources,” Nucleic acids research., vol. 34, pp. recognitionparticle,”Nature,vol.465,no.7297,pp.507–510, D163–168,2006. 2010. [38] M.Regalia,M.A.Rosenblad,andT.Samuelsson,“Prediction [22] K. Wild, G. Bange, G. Bozkurt, B. Segnitz, A. Hendricks, of signal recognition particle RNA genes,” Nucleic Acids and I. Sinning, “Structural insights into the assembly of Research,vol.30,no.15,pp.3368–3377,2002. the human and archaeal signal recognition particles,” Acta [39] E. Iakhiaeva, J. Wower, I. K. Wower, and C. Zwieb, “The 5e CrystallographicaSectionD,vol.66,no.3,pp.295–303,2010. motifofeukaryoticsignalrecognitionparticleRNAcontainsa [23] O. N. Pakhomova, S. Deep, Q. Huang, C. Zwieb, and A. P. conservedadenosineforthebindingofSRP72,”RNA,vol.14, Hinck,“SolutionstructureofproteinSRP19ofArchaeoglobus no.6,pp.1143–1153,2008. fulgidus signal recognition particle,” Journal of Molecular [40] E. Iakhiaeva, J. Yin, and C. Zwieb, “Identification of an Biology,vol.317,no.1,pp.145–158,2002. RNA-bindingdomaininhumanSRP72,”JournalofMolecular [24] U. Ilangovan, S. H. Bhuiyan, C. S. Hinck et al., “A. fulgidus Biology,vol.345,no.4,pp.659–666,2005. SRP54M-domain,”JournalofBiomolecularNMR,vol.41,no. [41] C. Darwin, “Modes of transition,” in The Origin of Species, 4,pp.241–248,2008. chapter6,JohnMurray,London,UK,1859. [25] T. Hainz, S. Huang, and A. E. Sauer-Eriksson, “Interaction [42] S.J.GouldandE.S.Vrba,“Exaptation—amissingterminthe ofsignal-recognitionparticle54GTPasedomainandsignal- scienceofform,”Paleobiology,vol.8,no.1,pp.4–15,1982. recognition particle RNA in the free signal-recognition par- [43] S. Nolivos, A. J. Carpousis, and B. Clouet-d’Orval, “The K- ticle,” Proceedings of the National Academy of Sciences of the loop,ageneralfeatureofthePyrococcusC/DguideRNAs,is United States of America, vol. 104, no. 38, pp. 14911–14916, anRNAstructuralmotifrelatedtotheK-turn,”NucleicAcids 2007. Research,vol.33,no.20,pp.6507–6514,2005. 10 Archaea [44] R. Stefl, L. Skrisovska, and F. H.-T. Allain, “RNA sequence- [60] J. D. Miller, H. D. Bernstein, and P. Walter, “Interaction andshape-dependentrecognitionbyproteinsintheribonu- of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that cleoproteinparticle,”EMBOReports,vol.6,no.1,pp.33–38, of mammalian signal recognition particle and its receptor,” 2005. Nature,vol.367,no.6464,pp.657–659,1994. [45] J.C.Politz,S.Yarovoi,S.M.Kilroy,K.Gowda,C.Zwieb,and [61] S.Althoff,D.Selinger,andJ.A.Wise,“Molecularevolutionof T. Pederson, “Signal recognition particle components in the SRPcyclecomponents:functionalimplications,”NucleicAcids nucleolus,”ProceedingsoftheNationalAcademyofSciencesof Research,vol.22,no.11,pp.1933–1947,1994. theUnitedStatesofAmerica,vol.97,no.1,pp.55–60,2000. [62] S. Gribaldo and P. Cammarano, “The root of the universal [46] T.S.MaityandK.M.Weeks,“AthreefoldRNA-proteininter- treeoflifeinferredfromancientlyduplicatedgenesencoding face in the signal recognition particle gates native complex components of the protein-targeting machinery,” Journal of assembly,” Journal of Molecular Biology, vol. 369, no. 2, pp. MolecularEvolution,vol.47,no.5,pp.508–516,1998. 512–524,2007. [63] P.F.Egea,S.-O.Shan,J.Napetschnig,D.F.Savage,P.Walter, [47] H.Maeshima,E.Okuno,T.Aimi,T.Morinaga,andT.Itoh, and R. M. Stroud, “Substrate twinning activates the signal “AnarchaealproteinhomologoustomammalianSRP54and recognition particle and its receptor,” Nature, vol. 427, no. bacterial Ffh recognizes a highly conserved region of SRP 6971,pp.215–221,2004. RNA,”FEBSLetters,vol.507,no.3,pp.336–340,2001. [64] A. Zelazny, A. Seluanov, A. Cooper, and E. Bibi, “The NG [48] I.Tozik,Q.Huang,C.Zwieb,andJ.Eichler,“Reconstitution domainoftheprokaryoticsignalrecognitionparticlereceptor, of the signal recognition particle of the halophilic archaeon FtsY, is fully functional when fused to an unrelated integral Haloferaxvolcanii,”NucleicAcidsResearch,vol.30,no.19,pp. membranepolypeptide,”ProceedingsoftheNationalAcademy 4166–4175,2002. ofSciencesoftheUnitedStatesofAmerica,vol.94,no.12,pp. [49] J. Yin, Q. Huang, O. N. Pakhomova, A. P. Hinck, and C. 6025–6029,1997. Zwieb,“Theconservedadenosineinhelix6ofArchaeoglobus [65] E. Bibi, A. A. Herskovits, E. S. Bochkareva, and A. Zelazny, fulgidussignalrecognitionparticleRNAinitiatesSRPassem- “Putative integral membrane SRP receptors,” Trends in Bio- bly,”Archaea,vol.1,no.4,pp.269–275,2004. chemicalSciences,vol.26,no.1,pp.15–16,2001. [50] A.Kuglstatter,C.Oubridge,andK.Nagai,“Inducedstructural [66] S.A.LadefogedandG.Christiansen,“AGTP-bindingprotein changes of 7SL RNA during the assembly of human signal ofMycoplasmahominis:asmallsizedhomologtothesignal recognitionparticle,”NatureStructuralBiology,vol.9,no.10, recognitionparticlereceptorFtsY,”Gene,vol.201,no.1-2,pp. pp.740–744,2002. 37–44,1997. [51] M. Sa´nchez, J.-M. Beckerich, C. Gaillardin, and A. [67] I.V.ShepotinovskayaandD.M.Freymann,“Conformational Dom´ınguez,“IsolationandcloningoftheYarrowialipolytica changeoftheN-domainonformationofthecomplexbetween SEC65 gene, a component of the yeast signal recognition the GTPase domains of Thermus aquaticus Ffh and FtsY,” particle displaying homology with the human SRP19 gene,” Biochimica etBiophysica Acta, vol. 1597, no. 1, pp. 107–114, Gene,vol.203,no.1,pp.75–84,1997. 2002. [52] S. Yurist, I. Dahan, and J. Eichler, “SRP19 is a dispensable [68] T. Lichi, G. Ring, and J. Eichler, “Membrane binding of component of the signal recognition particle in Archaea,” SRPpathwaycomponentsinthehalophilicarchaeaHaloferax JournalofBacteriology,vol.189,no.1,pp.276–279,2007. volcanii,”EuropeanJournalofBiochemistry,vol.271,no.7,pp. [53] R. W. Rose and M. Pohlschro¨der, “In vivo analysis of an 1382–1390,2004. essentialarchaealsignalrecognitionparticleinitsnativehost,” [69] A.Haddad,R.W.Rose,andM.Pohlschro¨der,“TheHaloferax JournalofBacteriology,vol.184,no.12,pp.3260–3267,2002. volcaniiFtsYhomologiscriticalforhaloarchaealgrowthbut [54] C. Moser, O. Mol, R. S. Goody, and I. Sinning, “The signal doesnotrequiretheAdomain,”JournalofBacteriology,vol. recognitionparticlereceptorofEscherichiacoli(FtsY)hasa 187,no.12,pp.4015–4022,2005. nucleotide exchange factor built into the GTPase domain,” [70] J.Luirink,C.M.TenHagen-Jongman,C.C.vanderWeijden ProceedingsoftheNationalAcademyofSciencesoftheUnited etal.,“AnalternativeproteintargetingpathwayinEscherichia StatesofAmerica,vol.94,no.21,pp.11339–11344,1997. coli:StudiesontheroleofFtsY,”EMBOJournal,vol.13,no. [55] P.J.RapiejkoandR.Gilmore,“EmptysiteformsoftheSRP54 10,pp.2289–2296,1994. andSRαGTPasemediatetargetingofribosome-nascentchain [71] H.-J.Dong,J.-Y.Jiang,andY.-Q.Li,“Thedistinctanchoring complexestotheendoplasmicreticulum,”Cell,vol.89,no.5, mechanismofFtsYfromdifferentmicrobes,”CurrentMicro- pp.703–713,1997. biology,vol.59,no.3,pp.336–340,2009. [56] R. J.Keenan, D. M. Freymann, P. Walter, and R.M. Stroud, [72] M. Mircheva, D. Boy, B. Weiche, F. Hucke, P. Graumann, “Crystal structure of the signal sequence binding subunit of andH.-G.Koch,“Predominantmembranelocalizationisan thesignalrecognitionparticle,”Cell,vol.94,no.2,pp.181– essential feature of the bacterial signal recognition particle 191,1998. receptor,”BMCBiology,vol.7,articleno.76,2009. [57] R.T.Batey,R.P.Rambo,L.Lucast,B.Rha,andJ.A.Doudna, [73] E.deLeeuw,D.Poland,O.Moletal.,“Membraneassociation “Crystalstructureoftheribonucleoproteincoreofthesignal ofFtsY,theE.coliSRPreceptor,”FEBSLetters,vol.416,no.3, recognition particle,” Science, vol. 287, no. 5456, pp. 1232– pp.225–229,1997. 1239,2000. [74] E.deLeeuw,K.teKaat,C.Moseretal.,“Anionicphospholipids [58] J.A.NewittandH.D.Bernstein,“TheN-domainofthesignal areinvolvedinmembraneassociationofFtsYandstimulateits recognitionparticle54-kDasubunitpromotesefficientsignal GTPaseactivity,”EMBOJournal,vol.19,no.4,pp.531–541, sequencebinding,”EuropeanJournalofBiochemistry,vol.245, 2000. no.3,pp.720–729,1997. [75] R. Parlitz, A. Eitan, G. Stjepanovic et al., “Escherichia coli [59] E.M.Cle´rico,A.Szymanska,andL.M.Gierasch,“Exploring signalrecognitionparticlereceptorFtsYcontainsanessential the interactions between signal sequences and E. coli SRP and autonomous membrane-binding amphipathic helix,” by two distinct and complementary crosslinking methods,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 32176– Biopolymers,vol.92,no.3,pp.201–211,2009. 32184,2007.

Description:
Features of the SRP RNA in all three domains of life have been recently . interrupted by a three-nucleotide loop. These hinge-impaired archaea.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.