ebook img

Review All-boron aromatic clusters as potential new inorganic PDF

56 Pages·2006·3.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Review All-boron aromatic clusters as potential new inorganic

CoordinationChemistryReviews250(2006)2811–2866 Review All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry Anastassia N. Alexandrovaa, Alexander I. Boldyreva,∗, Hua-Jin Zhaib,c, Lai-Sheng Wangb,c,∗ aDepartmentofChemistryandBiochemistry,UtahStateUniversity,Logan,UT84322-0300,UnitedStates bDepartmentofPhysics,WashingtonStateUniversity,2710UniversityDrive,Richland,WA99354,UnitedStates cW.R.WileyEnvironmentalMolecularSciencesLaboratoryandChemicalSciencesDivision,PacificNorthwestNationalLaboratory, MSK8-88,P.O.Box999,Richland,WA99352,UnitedStates Received5December2005;accepted11March2006 Availableonline9May2006 Contents 1. Introduction........................................................................................................... 2813 1.1. Boranesandcarboranes.......................................................................................... 2813 1.2. Bareboronclusters.............................................................................................. 2815 2. Methodology.......................................................................................................... 2815 2.1. Theoreticalmethods............................................................................................. 2815 2.2. Photoelectronspectroscopy....................................................................................... 2816 3. Pure-boronclusters..................................................................................................... 2817 3.1. ThediatomicB molecule........................................................................................ 2817 2 3.2. Triatomicclusters:B ,B +,andB −............................................................................... 2819 3 3 3 3.2.1. B ...................................................................................................... 2819 3 3.2.2. B +..................................................................................................... 2820 3 3.2.3. B −anditsphotoelectronspectra.......................................................................... 2820 3 3.3. Tetraatomicclusters:B ,B +,B −,B 2−........................................................................... 2822 4 4 4 4 3.3.1. B ...................................................................................................... 2822 4 3.3.2. B +..................................................................................................... 2824 4 3.3.3. B −anditsphotoelectronspectra.......................................................................... 2825 4 3.3.4. B 2−.................................................................................................... 2827 4 3.4. Pentaatomicclusters:B ,B +,B − ................................................................................ 2828 5 5 5 3.4.1. B ...................................................................................................... 2828 5 3.4.2. B +..................................................................................................... 2828 5 3.4.3. B −anditsphotoelectronspectra.......................................................................... 2829 5 3.5. Hexaatomicclusters:B ,B +,B −,B 2−........................................................................... 2832 6 6 6 6 3.5.1. B ...................................................................................................... 2832 6 3.5.2. B +..................................................................................................... 2833 6 Abbreviations: ADE,adiabaticdetachmentenergy;AO,atomicorbital;B3LYP,ahybridmethod,amixtureofHartree–Fockexchangewithdensityfunctional exchange-correlation;BE,bindingenergy;2c-2e,two-centertwo-electron(bond);3c-2e,three-centertwo-electron(bond);CASSCF,completeactive-spaceself- consistent-field;CCSD(T),coupled-clustermethodattheallsinglesanddoubleslevelwiththenoniterativeinclusionoftripleexcitations;2D,two-dimensional;3D, three-dimensional;DFT,densityfunctionaltheory;GEGA,gradientembeddedgeneticalgorithm;HF,Hartree–Fock;HOMO,highestoccupiedmolecularorbital;IR, infrared;LUMO,lowestunoccupiedmolecularorbital;MO,molecularorbital;MP2,second-orderMøller–Plessetperturbationtheory;MPn,nth-orderMøller–Plesset perturbationtheory;MRCISD,multireferencesinglesplusdoublesconfigurationinteraction;NICS,nucleus-independentchemicalshift;NMR,nuclearmagnetic resonance;NPA,naturalpopulationanalysis;OVGF,outervalenceGreenfunction;PES,photoelectronspectroscopy;RE,resonanceenergy;ROVGF,restricted OVGF;TD-B3LYP,time-dependentB3LYP;UCCSD(T),unrestrictedCCSD(T);UOVGF,unrestrictedOVGF;UV,ultraviolet;VB,valencebond;VDEvertical detachmentenergy;ZPE,zeropointenergy;NBO,naturalbondinganalysis;KE,kineticenergy;ON,occupationnumber;LSD,localspindensity ∗ Correspondingauthors. E-mailaddresses:[email protected](A.I.Boldyrev),[email protected](L.-S.Wang). 0010-8545/$–seefrontmatter©2006ElsevierB.V.Allrightsreserved. doi:10.1016/j.ccr.2006.03.032 2812 A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 3.5.3. B −anditsphotoelectronspectra.......................................................................... 2833 6 3.5.4. B 2−.................................................................................................... 2834 6 3.5.5. LiB −,Li B ,andMB (M=Be,Mg,Ca,andSr)........................................................... 2837 6 2 6 6 3.6. Heptaatomicclusters:B ,B +,B −................................................................................ 2839 7 7 7 3.6.1. B +..................................................................................................... 2839 7 3.6.2. B ...................................................................................................... 2840 7 3.6.3. B −anditsphotoelectronspectra.......................................................................... 2840 7 3.6.4. H B −andAu B −...................................................................................... 2844 2 7 2 7 3.7. Octaatomicclusters:B ,B +,B −,B 2−............................................................................ 2847 8 8 8 8 3.7.1. B +..................................................................................................... 2847 8 3.7.2. B ...................................................................................................... 2848 8 3.7.3. B −anditsphotoelectronspectra,B 2−.................................................................... 2849 8 8 3.7.4. LiB −halfsandwichandFe(B ) 2−sandwichstructures..................................................... 2850 8 8 2 3.8. Nonaatomicclusters:B ,B +,B −................................................................................. 2852 9 9 9 3.8.1. B +..................................................................................................... 2852 9 3.8.2. B ...................................................................................................... 2852 9 3.8.3. B − .................................................................................................... 2852 9 3.9. The10-atomicclustersB +,B ,B −............................................................................. 2853 10 10 10 3.9.1. B +.................................................................................................... 2853 10 3.9.2. B ..................................................................................................... 2853 10 3.9.3. B −anditsphotoelectronspectra......................................................................... 2854 10 3.10. The11-atomicclustersB +,B ,B −............................................................................ 2855 11 11 11 3.10.1. B +................................................................................................... 2855 11 3.10.2. B .................................................................................................... 2856 11 3.10.3. B −anditsphotoelectronspectra........................................................................ 2856 11 3.11. The12-atomicclustersB +,B ,B −............................................................................ 2856 12 12 12 3.11.1. B +................................................................................................... 2856 12 3.11.2. B .................................................................................................... 2856 12 3.11.3. B −anditsphotoelectronspectra........................................................................ 2857 12 3.12. The13-atomicclustersB +,B ,B −............................................................................ 2857 13 13 13 3.12.1. B +................................................................................................... 2857 13 3.12.2. B .................................................................................................... 2858 13 3.12.3. B −anditsphotoelectronspectra........................................................................ 2858 13 3.13. The14-atomicclustersB +,B ,B −............................................................................ 2859 14 14 14 3.13.1. B +................................................................................................... 2859 14 3.13.2. B .................................................................................................... 2859 14 3.13.3. B −anditsphotoelectronspectra........................................................................ 2859 14 3.14. The15-atomclustersB ,B − .................................................................................. 2859 15 15 3.14.1. B .................................................................................................... 2859 15 3.14.2. B −anditsphotoelectronspectra........................................................................ 2859 15 3.15. Planar-to-tubularstructuraltransitionatB ....................................................................... 2860 20 3.16. Areallplanarboronclustershighlyaromatic?..................................................................... 2862 4. Conclusions........................................................................................................... 2863 Acknowledgements.................................................................................................... 2864 References............................................................................................................ 2864 Abstract Smallboronclustersasindividualspeciesinthegasphasearereviewed.Whilethefamilyofknownboroncompoundsisrichanddiverse,alarge bodyofhithertounknownchemistryofboronhasbeenrecentlyidentified.Freeboronclustershavebeenrecentlycharacterizedusingphotoelectron spectroscopyandabinitiocalculations,whichhaveestablishedtheplanarorquasi-planarshapesofsmallboronclustersforthefirsttime.This hassurprisedthescientificcommunity,asthechemistryofboronhasbeendiverselyfeaturedbythree-dimensionalstructures.Theplanarityofthe specieshasbeenfurtherelucidatedonthebasisofmultiplearomaticity,multipleantiaromaticity,andconflictingaromaticity. Althoughmostlyobservedinthegasphase,pureboronclustersarepromisingmoleculesforcoordinationchemistryaspotentialnewligandsand formaterialsscienceasnewbuildingblocks.Theuseofpureboronspeciesasnovelligandshascommenced,suggestingmanynewchemistries areaheadofus. ©2006ElsevierB.V.Allrightsreserved. Keywords: Boronclusters;Multiplearomaticity;Multipleantiaromaticity;Conflictingaromaticity;Photoelectronspectroscopy A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 2813 1. Introduction earlyworksrepresentedthefirstexperimentaldemonstrationof closed boron polyhedra in a chemical structure. A subsequent Boron compounds have been known to humankind since relatedworkbyLonguet-HigginsandRoberts[14]usedmolec- ancient times, when it was used to prepare hard glasses and ularorbitaltheorytoshowthatthe[B ]2−unithasaclosed-shell 6 glazes[1].Nowadaystheuseofboroncompoundsrangesfrom electronic arrangement of high stability. Longuet-Higgins and hardmaterialsandsemiconductorstoantitumormedicines,and Roberts[15]alsousedasimilarapproachtostudytheB icosa- 12 itsimportancecannotbeoverestimated.Neighboringcarbonin hedron,adominantstructuralunitofvariousallotropesofboron the periodic table, boron has one electron less than valence [16].TheirworkindicatedthattheB icosahedronhas13skele- 12 orbitals, and that makes a huge difference in determining the tal bonding orbitals and 12 outward pointing external orbitals. chemistryofboron.Althoughboronhasarichanddiversechem- They concluded that a borane, B H , would be stable only 12 12 istry,itdifferssubstantiallyfromthatofcarbon[1,2]. as a dianion, B H 2−, as well as a series of stable cage-like 12 12 boranedianionsofthegeneralformula,B H 2−.Theconclusion n n 1.1. Boranesandcarboranes wassupportedbyexperimentaldataprovidedbyHawthorneand Pitochelli,whosynthesizedsaltsoftheboraneanion,B H 2− 12 12 Boroncompoundsplayedessentialrolesinadvancingchem- [17,18]. From X-ray diffraction experiments, the structure of icalbondingmodels.Afewmilestonesinthehistoryofcontem- the B H 2− anion was indeed shown to be icosahedral [19] 12 12 porary boron chemistry should be pointed out. In 1912 Stock andanotherB H 2−anionwasshowntobeabicappedsquare 10 10 reported his pioneering work on boranes [3], which led to the antiprism[20].Furtherexperiments[21–23]indicatedtheexis- identificationoftheneutralboronhydrideswithformulasB H , tenceofotherdeltahedralboranes,B H 2−,B H 2−,B H 2−, 2 6 11 11 9 9 8 8 B H ,B H ,B H ,andB H .Thesecompoundswerechar- B H 2−,andB H 2−. 4 10 5 9 5 11 6 10 7 7 6 6 acterized as toxic, air-, and water-sensitive gases, or volatile Different rules were developed for the number of atoms, liquids.Alargercompound,B H ,wasisolatedasavolatile bonds,electrons,andorbitalsinstableboranes[24–28].Dixon 10 14 solid. Although the structures of the boranes were established et al. made the first attempt to describe boranes in terms of then, the chemical bonding within them remained unclear, as resonanceofKekule-typestructureswithalternating2c-2eand the stoichiometry of the species contradicted the postulates of 3c-2ebonds[29].In1971Williams[30]recognizedthecloso-, valence theory. Even the reason for the rapid dimerization of nido-,andarachno-structuralmotifsinthechemistryofdelta- BH intoB H wasapuzzle.ThestructureofB H withbridg- hedral boranes. The most spherical deltahedra have a formula 3 2 6 2 6 ing H-atoms was proposed in 1921 by Dilthey [4]. However, B H (orB H 2−).Thelossofavertexfromthiscloso-form n n+2 n n it was not considered seriously until the 1940s, when infrared resultsintheB H (B H 2−)nido-structure.Thearachno- n n+4 n n+2 spectroscopydata[5–7]supportedthestructure.Later,electron structure, B H (B H 2−), can be formed by the removal n n+6 n n+4 diffraction [8] and low-temperature X-ray diffraction [9] also of yet another vertex from the deltahedron. Wade [31] recog- confirmedthebridgedstructureforthediborane.Thechemical nized that this structural relationship could be associated with bondinginboraneswasfirstconsideredbyPitzer,whoproposed thenumberofskeletalelectronsinaborane.Namely,heunder- theconceptofa“protonateddoublebond”[10]. stood that closo-, and the nido- and arachno-shapes, have the Further,Lipscombandco-workers[11]putforwardthecon- same number of skeletal electrons: 2n+2. These species have cept of three-center two-electron (3c-2e) bonding, which, in thesamenumberofmolecularorbitalsbelongingtotheboron thecaseoftheB H diborane,consistedoftwo3c-2eB–H–B skeleton: closo-boranes have to have n+1 MOs, nido-boranes 2 6 bonds involving the bridging hydrogen atoms. Lipscomb also havetohaven+2MOs,andarachno-boraneshavetohaven+3 explained the structure of all known boron hydrides, in which MOs. This set of rules is known as Wade’s rules for boranes thebridgingB–H–Bbondappearedtobethekeystructuralunit andcarboranes.Gellespieetal.alsoproposedanotherscheme, [9].Inthe3c-2ebondingthreeatomssupplythreeorbitals,one in which skeletal electron pairs (2n electrons) remained local- oneachatom.Theseatomicorbitalsinteracttoformonebond- ized on each vertex, whereas two electrons participated in the ing and two antibonding orbitals. The two available electrons delocalizedbondingoverthesphericallysymmetricpolyhedron may thus fill the bonding orbital to form a 3c-2e bond. In the [32].Furthermore,therelativestabilitiesofdeltahedralboranes n-atomicspecies,therearenatomicorbitals,andonlyn/3bond- formaseries[33]: ingmolecularorbitals,whichcanbeoccupiedby2n/3electrons. Thus,thereasonforcertainboranestoexhibitspecialstability B H 2−> B H 2−> B H 2− 12 12 10 10 11 11 was elucidated. In principle, Lipscomb’s concept of the 3c-2e bond, along with aromaticity, is one of the ways of describ- > B9H92−∼ B8H82−∼ B6H62−> B7H72− ingelectrondeficientbonding,eventhougharomaticityismore common in chemistry and, in a way, more clear. The work of In 1959 Lipscomb et al. [34] proposed the term “superaro- Lipscomb on the chemical bonding of the boranes eventually maticity”toexplainthe3DaromaticityofB H 2−.Chenand 12 12 ledtohiswinningoftheNobelPrizeandopenedthegatewayto Kingrecentlyreviewed[35]theintroductionof3Daromaticity understandingthechemistryofboron. in chemistry. Explicitly, the idea of aromaticity of deltahedral Allardin1932[12],andPaulingandWeinbaumin1934[13] boranes was put forward by Aihara [36], and by King and showed the existence of regular octahedra of boron atoms in Rouvray [37] in 1978. Carboranes of the formula C2Bn−2Hn several metal hexaborides of the general formula MB . These also exhibit deltahedral topology, and the chemical bonding 6 2814 A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 Fig.1. (A–E)Lowest-energyisomersoftheLi6B6H6saltmoleculeattheB3LYP/6-311++G**leveloftheory.(ReprintedwithpermissionfromRef.[41].Copyright 2004AmericanChemicalSociety.) within them can be described in the same manner [38]. The planarandnonplanarisomersinvolvingB H 6− hasbeenper- 6 6 onlydifferenceintheborane-carborane-electronicrelationship formed[41b].SaltslikeLi B H withtheB H 6−benzene-like 6 6 6 6 6 is that C2B3H5, being an electronic analog of B5H52−, is a analog are still a theoretical prediction, but Fehlner and co- knowncompound,whileB5H52−itselfhasnotbeensynthesized. workers[43]recentlyreportedsynthesisandcrystalstructuresof Thethree-dimensionalaromaticityinboranes,BnHn2−,closo- remarkabletriple-decker(Cp*ReH2)B5Cl5and(Cp*)2B6H4Cl2 − monocarborane anions, CBn−1Hn , and closo-dicarboranes, compounds containing planar B5Cl5 and B6H4Cl2 structural C2Bn−2Hn was also computationally studied by Schleyer and fragments,respectively(Fig.2). Najafian [39], who used the NICS index values as criteria of It is believed that the planar B Cl and B H Cl structural 5 5 6 4 2 aromaticity.Theauthorsshowedthegeneraltrendinsuchsys- fragments in Felhner’s compounds acquire six electrons from tems:thestabilityincreaseswithincreasingvertecesfrom5to theReatomsformallyandthusbecomesix(cid:1)-electronaromatic 12. The comparison of the chemistry of boron and carbon on compoundssimilartothepredictedB H 6−andB H 6−build- 5 5 6 6 the example of boron and carbon hydrides was also discussed ingblocksintheLi B H andLi B H saltmolecules. 6 5 5 6 6 6 byJemmisandJayasree[40]. Beyond boranes and carboranes a very rich family of In2003,Boldyrevandco-workerstheoreticallypredictedthe metallocarboranes has been synthesized and characterized newfamilyofplanararomatichighlychargedboranes,suchas [1,2,38,43–47]. One of the exciting new applications of these B6H66− stabilized by six Li+ cations surrounding the species species was a demonstration of rotary motion of a carborane (structureA,Fig.1)[41]. cage ligand (7,8-dicarbollide) around a nickel axle controlled Importantly, the planar B6-fragment has been previously byelectricalorlightenergy,thusmovingusclosertoinorganic known to be the building block of the MgB2 solid, which is a nanomachines[45].Boronatomscanalsobeincorporatedinto recentlydiscoveredhigh-temperaturesuperconductor[42].An transitionmetalclusters[44–47]furtherextendingtherichboron extendedanalysisofthechemicalbondinginthelowestenergy chemistry. Fig.2. Molecularstructuresof:(Cp*ReH)2B5Cl5and(Cp*Re)2B6H4Cl2.(ReprintedwithpermissionfromRef.[43a].Copyright2004AmericanChemicalSociety.) A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 2815 1.2. Bareboronclusters all-boronclusterswiththehopethatthelatestexperimentaland theoretical understanding may stimulate further investigations Experimental studies of bare boron clusters have been sur- leadingtonovelcoordinationcompoundscontainingtheplanar prisinglylimiteddespiteitsproximitytocarbonintheperiodic all-boronclustersasligandsornewbuildingblocks. tableandtheextensiveresearcheffortoncarbonclustersandthe fullerenes([48–52]andreferencestherein).Untilveryrecently 2. Methodology the only experimental studies on boron clusters were carried out by Anderson and co-workers in the late 1980s [53–55]. 2.1. Theoreticalmethods Theseauthorsproducedboronclustercationsusinglaservapor- izationandstudiedtheirchemicalreactivityandfragmentation Oneofthemajorchallengesinanyclustertheoreticalstudy properties [53–59]. Their observation of the prominent B + istofindreliablytheglobalminimumstructure.Differentthe- 13 peak in mass spectra stimulated further computational efforts oreticalstudiessometimespredictdifferent“globalminimum” [60–64]. In 1992, La Placa et al. reported a mass spectrum of structures because of human bias. A number of methods have bareboronclustersconsistingof2–52atoms,generatedbylaser beendevelopedtosearchforglobalminimumstructures,which vaporization of a boron nitride target in an effort to produce aredesignedtoexcludehumanbias,suchastheCar–Parrinello BNclusters[65].Littleinformationregardingthestructuraland method, molecular dynamics methods with density functional electronic properties of boron clusters can be drawn from the theory for energy calculations, Monte Carlo annealing meth- mass-spectrometry-basedstudies.Andtherehavebeennospec- ods, and genetic algorithms for global minimum searches. We troscopicstudiesuntilveryrecently. recently developed a new genetic algorithm method for the Startingfrom2001,wehaveconductedextensivephotoelec- search for global minima, called ab initio gradient embedded tron spectroscopy (PES) studies on a series of boron cluster genetic algorithm (GEGA). The GEGA program was written − anions,B (n=3–20),whichwerecombinedwithstate-of-the- by Alexandrova and described in details in Refs. [78,79]. The n art computational studies to elucidate the structural and elec- hybridmethod,knownasB3LYP[80–82],withrelativelysmall tronicpropertiesandchemicalbondinginthespecies[66–72]. basisset,3-21G,isusuallyemployedthroughouttheexecution These works established for the first time experimentally pla- oftheGEGA.Forlargeclusters,wealsousethesemiempirical narity or quasi-planarity in small boron clusters for as large PM3method. as 20 atoms. Among our findings are the observation and Briefly, within the GEGA procedure, the initial geometries characterizationofthehepta-andocta-coordinatedpureboron ofindividuals(structures)inapopulation(setofstructures)are molecular wheels in B and B [70], the observation of an randomly generated and further optimized to the nearest local 8 9 unusually large HOMO–LUMO gap in B [71], and the dis- minimaonthepotentialenergysurface,usingtheGaussian03 12 covery that the planarity or quasi-planarity of boron clusters package[83].Ifasaddlepointisencounteredthenormalmodeof canbeexplainedonthebasisofmultiple(cid:2)-and(cid:1)-aromaticity, thefirstimaginaryfrequencyisfolloweduntilalocalminimumis multiple (cid:2)- and (cid:1)-antiaromaticity, and conflicting aromaticity found.Thepopulation,composedofthethusselectedgoodindi- (simultaneouspresenceof(cid:2)-aromaticityand(cid:1)-antiaromaticity viduals(structureswiththelowestenergies),undergoesbreeding or(cid:2)-antiaromaticityand(cid:1)-aromaticity)[66–72].Wealsofound andmutations.Duringthe“matingprocess”someofthegeomet- thatthe(cid:1)-aromaticityinsmallboronclustersupton=15seems ricfeaturesofgoodindividualsinthepopulation(“parents”)are to follow the Hu¨ckel’s rules, analogous to hydrocarbons [71]. combined and passed to new individuals (“children”). Parents We showed that the B neutral cluster appears to possess a arelocalminimumstructuresobtainedeitherduringtheinitial 20 ring-like 3D ground state geometry although both planar and orsubsequentiterations.Childrenarenewstructuresmadeout − 3D structures are nearly isoenergetic for the B anion [72]. of two parent structures. Probabilities to be bred (to produce 20 TheB neutralthereforerepresentstheplanar-to-tubulartran- child structures) are assigned to parents according to the best- 20 sitioninsmallboronclustersandmaybeviewedastheembryo fitcriterion(i.e.,thelowestenergy).Basedontheprobabilities, of the thinnest single-walled boron nanotubes with a diameter couplesofparentsarerandomlyselected.Thegeometriesofthe assmallas5.2A˚ [72].Veryrecently,severalotherexperimental parentsarecutbyarandomcuttingplane(XY,XZ,orYZ),and effortshavealsoappearedonboronclusters[73–77]. the thus obtained halves (“genes”) are then recombined either In spite of the enormous variety of boron chemical com- inasimpleorinahead-to-tailmannertoforma“child”(anew pounds and their great influence on developing modern chem- structure).Thenumberofatomsinthenewlygeneratedgeome- ical bonding theory, bare boron clusters as ligands in chemi- tryischecked,andthenewstructureisoptimizedtothenearest cal compounds are still absent. Given the fact that our recent localminimum. − spectroscopic and theoretical studies have shown that isolated Fig. 3A shows a typical breeding procedure using the B 9 boronclustershaveplanargeometriesandexhibitaromaticand clusterasanexample.Inthiscase,theYZplaneischosenasthe antiaromatic electronic properties analogous to hydrocarbons, cuttingplaneandrecombinationofthehalvesoccursinasim- itisbelievedthatbareboronclusterscouldpotentiallybenew plemanner,i.e.,thepartofgeometryofparentstructure1taken ligandsorbuildingblocksofnewsolids.Itisworthmentioning fromtheleftofthecuttingplaneisrecombinedwiththepartof − thataplanararomaticcyclopentadienanionC H isoneofthe geometryofparentstructure2takenfromtherightofthecutting 5 5 mostcommonligandsincoordinationchemistry.Inthisreview plane.Thenumberofatomsinthenewlygeneratedgeometryis wesummarizetheoreticalandspectroscopicstudiesofisolated checked,andthechildstructureisoptimizedtothenearestlocal 2816 A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 atoms)weusethreelevelsoftheoryforcalculatingtheVDEs: U(R)CCSD(T)/6-311+G(2df), the outer valence Green Func- tionmethod(OVGF/6-311+G(2df))[92–95]attheCCSD(T)/6- 311+G*geometries,aswellasthetime-dependentDFTmethod [96,97] (TD-B3LYP/6-311+G(2df)) at the B3LYP/6-311+G* geometries. Core electrons were frozen in treating the elec- tron correlation at the CCSD(T) and OVGF levels of theory. Forthelargeboronclusters(>9atoms),weusedprimarilythe TD-B3LYP/6-311+G*leveloftheorytocalculatetheVDEs. Natural Bond Order (NBO) analysis [98] was employed to examine the detailed chemical bonding. Molecular orbitals (MOs) were calculated at the HF/6-311+G* level of theory. B3LYP, HF, and CCSD(T) calculations were performed using Gaussian2003andNWChem[99]programs.Molecularorbitals Fig.3. IllustrationoftheGEGAprocedure.(A)Breeding,whenXYplaneis picturesweremadeusingtheMOLDEN3.4program[100]. randomlychosen,geometriesoftwoselectedparentsarecutbyXY,andpartsof parentsarerecombinedinasimplemanner;theobtainedchildisthenoptimized 2.2. Photoelectronspectroscopy tothenearestminimum.(B)Mutations,whentherandomnumberofkicksis introducedtodistortthestructurestronglyenoughtocrossthebarrieronthe potentialenergysurface,andtheobtainedmutantisthenoptimizedtothelocal The photoelectron spectroscopic studies were carried out minimum. usingamagnetic-bottletime-of-flightPESapparatusequipped with a laser vaporization supersonic cluster source [101,102]. minimum.Ifthenumberofatomsisincorrect,thecuttingplane Detailsofthisapparatushavebeenreportedelsewhere,andFig.4 is shifted so that the child structure has the correct number of showsaschematicviewofit. − atoms.Afterthenumberofindividualsinthepopulationisdou- TheB clusteranionswereproducedbylaservaporization n bled within the breeding process, the best-fit group is selected ofanisotopicallyenriched10Bdisktargetinthepresenceofa andconvergenceofthealgorithmischecked.TheGEGAiscon- heliumcarriergas.Theclusteranionsweremassanalyzedusing sidered converged if the current lowest energy species (global atime-of-flightmassspectrometerandtheclusterofinterestwas minimumoratleastverystablelocalminimum)remainsfor20 mass selected and decelerated before being photodetached. A iterations.Iftheconvergenceisnotyetmet,thehighestenergy varietyofdetachmentlaserphotonenergieshavebeenusedin speciesinthepopulationundergomutations.Themutationrateis thecurrentexperiments(532nm,355nm,266nm,and193nm). setto33.33%.Mutationsareshiftsofrandomatomsofaspecies Photoemitted electrons are collected by the magnetic-bottle at in random directions, with the purpose of changing the initial nearly 100% efficiency and analyzed in a 3.5m long electron geometrysoastopushthestructureoutofthecurrentlocalmin- time-of-flighttube.Thephotoelectrontime-of-flightspectraare − − imumtoanotherwellonthepotentialenergysurface(Fig.3B). calibrated using the known spectra of Rh or Au and con- Mutants(structuresobtainedfrommutations)areoptimizedto verted to kinetic energy (KE) spectra. The reported binding thenearestlocalminima.Afterthatthealgorithmproceedswith energy (BE) spectra are obtained by subtracting the KE spec- the new cycle of breeding. All low-lying isomers are detected tra from the photon energy (hν) using Einstein’s photoelectric and stored throughout the execution and they are reported to equation:BE=hν−KE.Highphotonenergyspectraarepartic- the user at the end of the run. A few runs of GEGA are done on the system in order to confirm the found global minimum structure. Thegeometryandvibrationalfrequenciesofthethusidenti- fiedglobalminimum,aswellaslow-lyingisomers,arefurther refinedathigherlevelsoftheory.TheB3LYPandthecoupled- cluster CCSD(T) [84–86] methods with the polarized split- valencebasissets(6-311+G*)[87–89]areusuallyusedforthis purpose.Finalrelativeenergiesforthefewloweststructuresare calculatedattheCCSD(T)/6-311+G(2df)leveloftheoryusing theCCSD(T)/6-311+G*geometry.Wealsoruncalculationsfor the global minimum structure at the CASSCF(X,Y)/6-311+G* [90,91](XisanumberofactiveelectronsandYisanumberof activeorbitals)leveloftheory,inordertotesttheapplicabilityof theoreticalmethodssuchasMPn,CCSD(T),andotherswhich arebasedontheone-electronapproximation. The next step is to calculate the ab initio vertical detach- ment energies (VDEs), which will facilitate comparison with Fig.4. Schematicviewofthelaservaporizationmagnetic-bottledtime-of-flight the experimental PES data. For small systems (three to nine photoelectronspectroscopyapparatus. A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 2817 ularlyimportantbecausetheyrevealmoreelectronictransitions, bondingofsmallboronclusterstobedeterminedandunderstood whichareessentialtofacilitatecomparisonswiththeoreticalpre- [66–72]. dictions. Low photon energies in general yield better-resolved spectraforthegroundstatetransitions,allowingmoreaccurate 3. Pure-boronclusters determination of adiabatic detachment energies (ADEs) of the neutralspeciesandvibrationalresolutioninfavorablecases.The 3.1. ThediatomicB molecule 2 resolutionofourapparatusis(cid:2)KE/KE∼2.5%,i.e.,∼25meV for1eVelectrons. The diatomic B molecule provides the first example of 2 Itshouldbepointedoutthatalthoughitwasnotdifficultto unusual chemical bonding in boron species. It is known observemassspectrawithawidesizerangeofBn−clustersby [106,107] that B2 has a 3(cid:3)g− ground electronic state with the laservaporization,itturnedouttoberatherchallengingtoobtain 1(cid:2)21(cid:2)21(cid:1)22(cid:2)0electronicconfiguration.Thiselectronicconfig- g u u g highqualityPESdata,primarilyduetothelowphotodetachment urationcontradictstheconventionalchemicalbondingpicture, cross-sectionsoftheselightclustersandthedifficultyobtaining because the 1(cid:1) bonding orbital is occupied before the 2(cid:2) u g coldclusteranions.Thekeytothecurrentprogresswastheuse bondingorbitalisoccupied.Thefirsttwo(cid:2)-MOs,1(cid:2)2and1(cid:2)2, g u of a large waiting-room nozzle, which could more efficiently are pairs of bonding and antibonding orbitals formed primar- cool cluster anions [103–105]. The temperature effects were ily by the 2s-AOs (with rather small s–p hybridization) and furthercontrolledbytuningthefiringtimingofthevaporization do not contribute to bonding significantly. Thus, most of the laserrelativetothecarriergasandselectingclustersthathavea ∼70kcal/molbondingenergyinB comesprimarilyfromchem- 2 longerresidencetimeinthenozzleforphotodetachment.These icalbondingofthe1(cid:1)2 orbital.Earlieroccupationofthe1(cid:1) - u u − effortshaveallowedustoobtainwell-resolvedPESdataforBn MOisinconsistentwiththegeneralconceptionofhowchemical clustersatdifferentphotodetachmentenergies. bonding should occur in molecules. According to the conven- Asanexample,Fig.5showsthedramatictemperatureeffects tionalchemicalbondmodel,acovalentbondisformedwhena − observedintheB20 speciesatthreedifferentdetachmentpho- portionofanatomicorbitalofoneatomoverlapsaportionofan tonenergies.Clearly,onlythe“cold”spectra(toppanel)yielded atomicorbitalofanotheratom.Ina(cid:2)-bond,anorbitaloverlap the rich and well-resolved PES features, which represent the occursalongtheaxisjoiningtwonuclei.Ina(cid:1)-bondanorbital electronicfingerprintoftheunderlyingclusters.Asmanyasnine overlap is formed by parallel p-orbitals. Because of the lesser definitive spectral features (X–H) were readily resolved in the degreeoftheorbitaloverlapsforming(cid:1)-bond,comparedwith coldspectrumofB20−at193nm,whichwereotherwisesmeared those forming (cid:2)-orbitals, (cid:1)-bonds are generally weaker than out in the “hot” spectra even under the same instrumental res- (cid:2)-bonds,and,therefore,(cid:2)-orbitalsshouldbeoccupiedbefore(cid:1)- olution. The well-defined and well-resolved PES spectra have orbitals.Theconventionalchemicalbondingmodelwasinitially been used to compare with theoretical calculations, allowing developed for organic molecules, where this prediction holds the structural and electronic properties, isomers, and chemical ratherwell.However,forelectropositiveandelectrondeficient Fig.5. PhotoelectronspectraofB20−atdifferentsourceconditionstodemonstratethesignificanttemperatureeffectsonthephotoelectronspectra.Toppanel,cold clusters;bottompanel,hotclusters.Notethathotclustersresultinbroadspectra,smearingoutthespectralfeaturesevenunderhighinstrumentalresolution.(a,c, ande)Coldand(b,d,andf)hot. 2818 A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 atoms,suchasB,itdoesnotworkwell,notonlyforthediatomic 2(cid:3) + (1(cid:2)21(cid:2)22(cid:2)11(cid:1)0). However, one can see that the 21(cid:3) + g g u g u g B2 molecule, but also for larger clusters, as we will show stateofB withthe1(cid:2)21(cid:2)22(cid:2)21(cid:1)0 electronicconfigurationis 2 g u g u belLowow. -lying excited states for B , B +, B 2+, and B − from about 1.46eV higher than the 3(cid:3)g− ground state. We believe 2 2 2 2 thatthereasonwhyB andotherdiatomicmoleculescomposed BrunaandWright[108]aresummarizedinFig.6.B +isshown 2 2 ofelectropositiveatomshaveunconventionalgroundelectronic to have conventional bonding with the ground electronic state Fig.6. Low-lyingstatesof:(a)B2,(b)B2+,(c)B22+,and(d)B2−.(ReprintedwithpermissionfromRef.[108].Copyright1990Elsevier.) A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 2819 Table1 MolecularpropertiesoftheB3(D3h,2A(cid:3)1)cluster B3LYP/6-311+G*a UCCSD(T)/6-311+G*a,b CASSCF/DZPc CASSCF-MRCISD/aug-cc-pvTZd Experiment Etotal(a.u.) −74.298272 −74.065078 −73.906715 e Re(B–B)(A˚) 1.548 1.586 1.587 1.5706 1.60377(106)f ω1(a(cid:3)1)(cm−1) 1223 1165 1214 e 1020(50)a ω2(e(cid:3))(cm−1) 934 871 869 e a Ref.[66]. b Etotal=−74.091367auatRCCSD(T)/6-311+G(2df)//RCCSD(T)/6-311+G*. c Ref.[110]. d Aug-cc-pvTZbasissetwasaugmentedbytwosandonepfunctionsatthebondcenters(Refs.[75,76]). e Propertywasnotcalculatedatthisleveloftheory. f R0(B–B),B=1.19064(157)cm−1andC=0.59532(79)cm−1(Ref.[76]). states with (cid:1)-orbitals being occupied before (cid:2)-orbitals is due electron excitation from HOMO-1 to HOMO. The D 2A(cid:3)(cid:3) 3h 2 tothelowvalenceatomiccharges.B2 simplycannotfavorably species was theoretically predicted to be 0.66eV higher in support six (cid:2) valence electrons. As we will show below this energythantheglobalminimum(CCSD(T)/6-311+G(2df)level factor is crucial for understanding the unusual planar shape of oftheory)[66]andthatnumberreasonablyagreeswiththeexper- all-boronclusters. imental value of 0.74eV [66]. An extensive ab initio study of alternativestructuresofB indifferentspectroscopicstateshas 3 3.2. Triatomicclusters:B ,B +,andB − beencarriedoutbyHernandezandSimons[110].Theoverview 3 3 3 of the theoretically identified spectroscopic states of the trian- 3.2.1. B gular,distorted,andlinearspeciesisshowninFig.8. 3 ThefirstabinitiostudyonB isdated1981,whenWhiteside Nospecieswithstablegeometrieswerefoundtohavesym- 3 performedunrestrictedHartree–FockandUMP4calculationson metrylowerthanC2v.TheZPE-correctedbarriersbetweenthe clustersofberylliumandboron[109].Sincethen,thetriatomic minimawerealsocalculated[110]. boronclusterhasreceivedasignificantattentionintheliterature A spectroscopic study of B3 has been performed by Maier [53,54,60–62,66,75–77,109–130]. andco-workers[75,76].Theyassignedtwobandswithorigins There is a consensus in the literature that the neutral B is at736nmand458nmtotheX2A(cid:3) →12E(cid:3) andX2A(cid:3) →22E(cid:3) 3 1 1 a D 2A(cid:3) (1a(cid:3)21e(cid:3)41a(cid:3)(cid:3)22a(cid:3)1) triangular radical species in its transitions,respectively,onthebasisoftheirabinitiocalcula- 3h 1 1 2 1 groundelectronicstate.Molecularpropertiesoftheglobalmin- imum B structure computed at various levels of theory and 3 experimentallydeterminedaregiveninTable1[66]. TheB valenceMOsareshowninFig.7. 3 TheHOMO(2a(cid:3))ofB isa(cid:2)-MO,formedbytheradialover- 1 3 lapofthe2p-atomicorbitalsonboronatoms,asschematically illustrated in Fig. 7. The HOMO is a completely delocalized orbital with single occupation in neutral B , giving rise to a 3 (cid:3)(cid:3) three-center one-electron (3c-1e) bond. The HOMO-1 (1a ) is 2 a(cid:1)-MO,formedbytheout-of-planeoverlapof2p -AOsfrom z the three B atoms. We localized the remaining set of valence (cid:3) (cid:3) MOs (1e-HOMO-2 and 1a -HOMO-3) into three 2-center 2- 1 electron(2c-2e)B–Bbondswiththeoccupationnumbers(ON) 1.89eusingNBOanalysisattheRHF/6-311+G*leveloftheory in the putative B 3+ cation (1a(cid:3)21e(cid:3)4 electronic configuration) 3 1 at the geometry of the neutral B cluster [130]. The strong 3 s–p hybridization in the B 3+ cation (occupation numbers are 3 2s0.962p1.03)isresponsibleforbondingcharacterofthelowest threevalenceMOs(correctiontoourstatementintheRef.[66]). Thetwoelectronsinthefullydelocalized(cid:1)HOMO-1makeB 3 (cid:1)-aromatic,obeyingthe4n+2Hu¨ckel’sruleforn=0.Although nottechnicallyobeyingthe4n+2Hu¨ckel’sruleforaromaticity, B isalsopartially(cid:2)-aromaticderivedfromthesingleoccupa- 3 tionofthefully(cid:2)-delocalizedHOMO. 1a(cid:3)2T1hee(cid:3)41sae(cid:3)(cid:3)c1o2nad(cid:3)2 elolewctersotn-eicnecrgoynfigsutaratetionDa3hrise2sAf(cid:3)2r(cid:3)omwitthhe otnhee Foribgi.t7al.sMgiovleencuinlaarcocrobridtaalncpeicwtuirtehoRf(Uth)eOBV3G(FD/36h-321A1(cid:3)1+)Gc(l2udstfe)rc.aTlchuelaotridoenrs.ofthe 1 2 1 2820 A.N.Alexandrovaetal./CoordinationChemistryReviews250(2006)2811–2866 LinearB excitedisomerswerefirstidentifiedbyPellegatti 3 etal.[119]intheirCI-calculationsandhavebeenlaterfurther studiedbyHernandesandSimons[113]andCaoetal.[120].All linearisomersaresignificantlyhigherinenergythantheglobal minimumstructure. The hydrogenation of B has been studied by Hernandez 3 and Simons [113]. Two stable B H, and three stable and one 3 metastable B H species have been identified. The hydro- 3 2 gen atom abstraction (B +H →B H+H) was found to be 3 2 3 endothermicandlessfavorablethantheB +H →B H reac- 3 2 3 2 tion.B H (x=0–3)havebeenobservedbymassspectrometry 3 x andalternativestructuresandtheirstabilitieshavebeenstudied viaMOcalculations[114]. 3.2.2. B + 3 Theclosed-shellcationicB + clusterwaspredictedcompu- 3 tationallytohaveaD symmetrywiththe1A(cid:3) (1a(cid:3)21e(cid:3)41a(cid:3)(cid:3)2) 3h 1 1 2 ground electronic state. It originates from B by removing an 3 electronfromthesinglyoccupiedHOMO[116,120,122–128]. TheoreticalmolecularparametersofthegroundstateofB +are 3 presentedinTable2[131]. Otherspectroscopicstatesofthetriangularstructureandthe Fig.8. Low-lyingstatesinB3.Curvesrepresentstatesthathavebeengeomet- linear isomers of B + were found to be higher in energy. The ricallyoptimized.Thehorizontallinesrepresentstatesforwhichenergiesare 3 knownbutwhosegeometrieshavenotbeenoptimized.(Reprintedwithpermis- atomization energy for B3+ (B3+(1A(cid:3)1)→2B(2P)+B+(1S)) sionfromRef.[110].Copyright1991AmericanInstituteofPhysics.) attheCCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*+ZPElevel is 151kcal/mol [131]. Positively charged boron clusters B + n tions. The two low-lying 12E(cid:3) and 22E(cid:3) states were assigned (n=2–6)werestudiedbyGarcia-Molinaetal.[126].Theauthors analyzed theoretically the effect of stopping power due to the as originating from the ground electronic state through the 2a(cid:3)-HOMO→2e(cid:3)-LUMO and 1e(cid:3)-HOMO-1→2a(cid:3)-HOMO geometricstructuresofpure-boroncationicclustersincidenton 1 1 anamorphouscarbontarget.Thestoppingpowerwasfoundto excitations, respectively, though with the substantial mixing betweenthetwo.Thecomplexvibrationalstructureinthe12E(cid:3) increasewithincreasingclustersize. ThemolecularorbitalpictureoftheglobalminimumofB + statewasinterpretedonthebasisofthestrongJahn–Tellerdistor- 3 tion.The22E(cid:3)stateundergoesonlyarelativelyweakJahn–Teller icsomveprlyetseilmyiblaorndtointghaftulolyf tdheelonceaulitzraeldB(cid:1)3-MclOust(e1ra(cid:3)((cid:3)F)iigs.n7o)w. Tthhee distortionandshowsashortprogressionwithanobservedfre- 2 quency of 981(10)cm−1 which compares favorably with the HOMO,whichisdoublyoccupied.Thecationthusremains(cid:1)- theoreticalfrequencyof973cm−1.Thecalculatedpositionsfor aromatic according to the 4n+2 Hu¨ckel’s rule, but it is not a the12E(cid:3) and22E(cid:3) bandoriginsattheCASSCF-MRCISD/aug- (cid:2)-aromatic species anymore. The cation still has three 2c-2e B–Bbonds. cc-pvTZ (augmented by 2s1p bond functions) level of theory were found to be T =12,829cm−1 and 22,272cm−1 which 00 − are in reasonable agreement with the experimentally observed 3.2.3. B3 anditsphotoelectronspectra 13,587cm−1and21,828cm−1,respectively[75,76]. The anionic Bn− clusters have received considerably less TheatomizationenergyfortheB clusterinthegroundstate attentionthantheneutralandcationicspecies.However,anionic 3 wasfirstcalculatedbyMartinetal.[115]tobe193kcal/moland clustersareespeciallyimportantforthecontemporaryinorganic 189kcal/molattheG1andmodifiedG1levelsoftheory,respec- chemistry,sincepotentiallytheycanbeusedasnewinorganic tively. Our value at the CCSD(T)/6-311+G(2df)/CCSD(T)/6- ligands, for example, by coordination to cationic metal atoms. 311+G*+ZPEleveloftheoryis185kcal/mol[131]. Onlyalimitednumberofexperimentalandtheoreticalstudies − An experimental electron resonance spectrum of B3 was havebeendoneontheanionicB3 cluster[66,75,120,130].The recorded by Weltner and co-workers [111] and a follow-up anionic B − species has D symmetry with 1a(cid:3)21e(cid:3)41a(cid:3)(cid:3)21a(cid:3)2 3 3h 1 2 1 theoretical study (MC-SCF) on the isotropic and anisotropic closed-shell electronic configuration. Molecular properties of − components of the hyperfine coupling tensor of B was car- theB clusteraregiveninTable2[66]. 3 3 ried out [117]. The authors of the theoretical work concluded Kuznetsov and Boldyrev [130] predicted the vertical one- − thatinnoblegasmatricesB rotatesrapidlyarounditsC -axis, electrondetachmentenergiesforB .Zhaietal.obtainedthe 3 3 3 − andthehyperfinecouplingpredictedtheoreticallyiscompletely firstPESspectraofB atvariousphotonenergies,asshownin 3 averaged out by such free rotation. Reis et al. performed DFT Fig.9[66]. calculationsondipolepolarizabilitiesandhyperpolarizabilities Allfeatures(exceptpeakB)ofthespectracorrespondtothe ofboronclusters[118]. previously predicted VDEs [130]. However, the peak B with

Description:
hedral boranes. The most spherical deltahedra have a formula BnHn+2 (or BnHn 2
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.