ebook img

Reversing the Landauer's erasure: single-electron Maxwell's demon operating at the limit of thermodynamic efficiency PDF

0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reversing the Landauer's erasure: single-electron Maxwell's demon operating at the limit of thermodynamic efficiency

physicastatussolidi Reversing the Landauer’s erasure: single-electron Maxwell’s demon operating at the limit of thermodynamic efficiency DmitriV.Averin*,1 andJukkaP.Pekola2 7 1 DepartmentofPhysicsandAstronomy,StonyBrookUniversity,SUNY,StonyBrook,NY11794-3800 1 2 LowTemperatureLaboratory,DepartmentofAppliedPhysics,AaltoUniversitySchoolofScience,P.O.Box13500,00076Aalto, 0 Finland 2 n ReceivedXXXX,revisedXXXX,acceptedXXXX a PublishedonlineXXXX J 9 1 Keywords: Maxwell’sdemon,single-chargetunneling,nanostructurethermodynamics,fluctuation-dissipationrelations ] ∗Correspondingauthor:[email protected] l l a h - s e According to Landauer’s principle, erasure of informa- Inthecaseoftheeffectivelytwo-levelsystem,whichhas m tion is the only part of a computation process that un- been realized experimentally based on tunneling of in- avoidablyinvolvesenergydissipation.Ifdonereversibly, dividual electron in a single-electron box [1], we also . t such an erasure generates the minimal heat of k T ln2 studiedandminimizedcorrectionstotheidealreversible a B m pererasedbitofinformation.Thegoalofthisworkisto operation of the demon. These corrections include, in discuss the actual reversal of the optimal erasure which particular, the non-adiabatic terms which are described - d can serve as the basis for the Maxwell’s demon operat- by a version of the classical fluctuation-dissipation the- n ing with ultimate thermodynamic efficiency as dictated orem. Theoverall reversibility ofthe Maxwell’s demon o by the second law of thermodynamics. The demon ex- requires,besidethereversibilityoftheintrinsicworking c tracts k T ln2 of heat from an equilibrium reservoir at bodydynamics,thereversibilityofthemeasurementand [ B temperatureT peronebitofinformationobtainedabout feedback processes. The single-electron demon can, in 1 the measured system used by the demon. We have ana- principle,bemadefullyreversiblebydevelopingather- v lyzedthisMaxwell’sdemoninthesituationwhenituses modynamically reversible single-electron charge detec- 6 a general quantum system with a discrete spectrum of tor for measurements of the individual charge states of 6 energylevelsasitsworkingbody. thesingle-electronbox. 2 5 0 Copyrightlinewillbeprovidedbythepublisher . 1 0 7 1 Introduction Thermodynamics of nanostructures, Thefoundationforthephysicsofinformationwaspro- 1 in which quantum mechanics and statistical fluctuations vided by Rolf Landauer in the context of thermodynam- : playanimportantrole,hasrecentlyattractedconsiderable ics of computation. He demonstrated [12] that erasure of v attention,see,e.g.,thereviews[2,3,4,5,6]andreferences informationistheonlypartofacomputationprocessthat i X therein. One of the most interesting issues in this field is unavoidablyinvolvesenergydissipation.Erasureofonebit r realization of Maxwell’s demon [7,1,8,9], and more gen- ofinformationconsistsinbringingatwo-statesystemini- a erally, understanding the role of information in thermo- tially in the most uncertain configuration (both states oc- dynamicprocesses[10].Developmentofthermodynamics cupiedwithprobability1/2)tothepre-determinedconfig- of information is also motivated by practical attempt to uration,whenthesystemisinoneofitsstateswithprob- demonstrate thermodynamically reversible computation – ability 1. This process leads to generation of heat in the see,e.g.,[11]. reservoir at temperature T, with the minimum of gener- atedheat,k T ln2,achievediftheerasureisperformedin B Copyrightlinewillbeprovidedbythepublisher 2 DmitriAverinetal.:ReversibleMaxwell’sdemon theoptimal,i.e.reversible,way,aswasrecentlyconfirmed randomnessandthermalizationwhichrequirefurtherstud- experimentally[13,14,15]. ies. In this work, we illustrate the connection between It has been understood for quite some time (see, e.g., the entropy and information by considering the reversible [16])thattheprincipleofinformationerasure,andnotthe Maxwell’s demon based on a general multi-level quan- energydissipationinthemeasurementprocessasbelieved tum system. The results here generalize to the multi-level previously [17], provides the resolution of the Maxwell’s situation the discussion in Refs. [1,19] of the Maxwell’s demon paradox, reconciling operation of this device with demon operation and thermodynamics properties of the thesecondlawofthermodynamics.Whentheinformation two-state state systems. The description of the Maxwell’s collected by the demon in the process of its operation is demon is also extended by developing the minimization erasedinordertoreturnthesystemtotheinitialstate,this scheme of the heat dissipated in its operation, which can informationerasureprocessdissipatesbackintothereser- beessentialforreachingtheultimatethermodynamiclimit voir in the form of heat the same amount of free energy oftheMaxwell’sdemonefficiency. asextractedbythedemon.Thepurposeofthisworkisto make this relation between the reversible Landauer’s in- 2 Thermodynamicsofthemasterequation formationerasureandMaxwell’sdemonevenmoreclose, 2.1 First and second laws For completeness, we by discussing the actual reversal of the optimal erasure startourquantitativediscussionwithatheoreticaldescrip- process,which,ifcomplementedwithameasurementand tion of thermodynamic properties of the systems, evolu- feedback, produces the Maxwells demon operating with tion of which is governed by a rate equation – see, e.g., thehighestpossiblethermodynamicefficiency.Thedemon [23,1]. Single-charge tunneling in tunnel junction struc- extractsk T ln2ofheatfromanequilibriumreservoirat B tures [18], e.g., in a single-Cooper-pair [24] or single- temperature T at the cost of creating one bit of informa- electron box [25], provides one of the better-known and tionaboutthestateofthesystemwhichservesasitswork- precisely-controlled experimental examples of this case. ingbody.OperationofsuchareversibleMaxwellsdemon The system we consider is assumed to have a discrete set wasdemonstratedrecently[1]usinganindividualelectron of energy states |n(cid:105) with energies E controlled by some chargeonthesingle-electronboxasthetwo-stateworking n time-dependentparametersmakingtheenergiesE (t)also substance.Thisdemonstrationgivesanexampleofagen- n time-dependent,asillustratedinFig.(1).Ifthesystemisin eraluseofthesingle-chargestructures[18]whichprovide thestaten,anexternalsourceinducingasmallvariationof a convenient setting for studying various aspects of non- theparameterq,slowonthetimescalesetbytheenergies equilibriumnanoscalethermodynamics[19,20,21]. E themselvessoasnottoinduceanytransitionsoutofthe n The main general view on the physics of information staten,doesworkdW =dE onthesystem.Theaverage n that emerged from the original theoretical studies of re- work done is then (cid:104)dW(cid:105) = (cid:80) p dE , where p is the n n n n versible computation and developed recently in details in probabilityforthesystemtobeinthestaten,andtheno- the context of the nanoscale thermodynamics, is that the tation(cid:104)...(cid:105)=(cid:80) p ...willbeusedforallquantities.Asis n n informationcanbeviewedappropriatelyastheentropyof typical for experiments with many nanoscale systems, an acomputingdevice[10].Althoughacomputingdeviceis equilibriumreservoirattemperatureT isassumedtointer- quitedifferentfromagenericstatisticalsysteminthatthe actweaklywiththesystem,inducingstochastictransitions main degrees of freedom in it are well-controlled and not amongtheenergystates|n(cid:105).Theevolutionoftheprobabil- fluctuating in time, intrinsic randomness of bit strings in itiesp isgovernedthenbytheusualrateequation: n the computation process makes it necessary to view them ascarryingentropyinthesamewayasthefluctuatingde- (cid:88) p˙ = (Γ p −Γ p ), (1) n nm m mn n grees of freedom of a statistical system. This view of in- m formationasentropyunitesinasimplewayunderstanding ofmanydifferentphenomenaininformation-assistedther- wheretherateΓ describesthetransitionfromstate|n(cid:105) mn modynamics,andhasmanyimplicationsforthephysicsof tostate|m(cid:105)–seeFig.(1).Intheabsenceofdegeneraciesin computation.Oneexampleisthebasicnotionthatthelog- theenergyspectrumofthesystem,dynamicsofageneral ically irreversible computation that does not conserve in- quantumsystemcanbedescribedwiththerateequationfor formation,discardingapartofitduringthecomputational sufficientlyweakcouplingtothereservoirandsufficiently steps,cannotbeachievedwithoutthedissipationofatleast slowevolutionofthesystem’senergies.Whenadegener- k T ln2ofenergyperdiscardedbit,despiteclaimstothe acyispresent,validityoftherateequationrequiresinaddi- B contrary in the literature [22]. By the second law of ther- tionthattheoperatorcouplingthesystemtothereservoiris modynamics,iftheinformationisentropy,reductionofin- diagonalinthebasisofdegenerateenergyeigenstates,con- formationinthecomputingdeviceshouldbeinevitablyac- ditionthatissatisfiedintheexamplesofthesingle-electron companiedbytheentropyincreaseinthesurroundingen- systems considered in this work. If some of these condi- vironment,theprocessthatcannotbeachievedwithouten- tions is not satisfied, off-diagonal elements of the density ergydissipation.Understandingofinformationasentropy matrix of the system starts playing role in its dynamics – also poses new interesting questions about the nature of see,e.g.,[23].Forthereservoirinequilibrium,thetransi- Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 3 TheentropySofthetotalstructure,includingthesystemof interestandthereservoir,consistsofthetwoparts,Boltz- mann’sentropyS oftheprobabilitydistribution{p }of sys n thesystemoverthestates|n(cid:105): (cid:88) S =−k p lnp , (5) sys B n n n andtheentropyS oftheenvironment.WhileS isnot env env knownwithoutspecifyingexplicitlythemodeloftheenvi- ronment, condition that the environment is in equilibrium at temperature T provides sufficient information about it. Under these conditions, the change of entropy S due env toeachtransition|n(cid:105) → |m(cid:105)canberelateddirectlytothe Figure1Schematicsofageneralsystemwithdiscreteen- heattransferredintotheenvironmentasaresultofthistran- ergyspectrumwithenergiesE (t),E (t),...adiabatically 0 1 sition.Theaverageoverallpossibletransitionsthengives: changing in time. Occupation probabilities of the energy states of the system evolve according to the master equa- (cid:104)dQ(cid:105) 1 (cid:88) dS = = (E −E )Γ p dt. (6) tion(1)duetotransitionswithratesΓmninducedbyather- env T T n m mn n malreservoirinequilibriumattemperatureT. n,m CombiningthesetwopartsofthetotalentropyS,onecan determine its dynamics. The time evolution of the system tion rates Γ satisfy the detailed balance condition linking entropyS followsdirectlyfromthemasterequation(1) theratesofthedirectandreversetransitions: sys (cid:80) andthenormalizationcondition p =1: n n Γmn/Γnm =e(En−Em)/kBT . (2) 1 ∂Ssys =−(cid:88)p˙ (1+lnp ) Each transition from state |n(cid:105) to state |m(cid:105) releases kB ∂t n n n the energy En −Em from the system into the reservoir. (cid:88) = (Γ p −Γ p )lnp (7) Since this process is not associated with any variation of mn n nm m n themacroscopicparametersofthesystem,itrepresentsthe n,m heat flow. This means that quantitatively, the contribution 1(cid:88) = (Γ p −Γ p )(lnp −lnp ). ofthetransitionsofthistypetotheheatdQflowingfrom 2 mn n nm m n m n,m thesystemintothereservoirduringasmalltimeintervaldt canbewrittenasdQ = (En−Em)Γmndt,whereΓmndt Evolution equation for the environment entropy Senv is the probability that the transition |n(cid:105) → |m(cid:105) happens which describes the evolution of Senv resulting from the duringthesmallintervaldt.Takingintoaccountthatfora system dynamics, follows directly from Eq. (6), and can given state n transition can take the system into any state betransformedasfollows: m,wecanwritethetotalheatflowingfromthesysteminto ∂Senv = 1 (cid:88)(E −E )Γ p thereservoir,whenthesystemisinthestaten,as ∂t T n m mn n n,m (cid:88) dQ= (E −E )Γ dt. (3) 1 (cid:88) n m mn = (E −E )(Γ p −Γ p ). (8) m 2T n m mn n nm m n,m Theserelationsforheatandwork,togetherwiththemaster AddingEqs.(7)and(8),wegettheequationthatgov- equation(1),givethefirstlawofthermodynamicssatisfied ernsthetimeevolutionofthetotalentropyS: by the evolution of the system. Indeed, taking the incre- (cid:80) mentoftheinternalenergyU = nEnpn andusingthe ∂S = 1(cid:88)[k ln pn +En−Em](Γ p −Γ p ). master equation to transform the increment of probability ∂t 2 B p T mn n nm m m p ,wehave n,m n (9) (cid:88) dU = (dEnpn+Endpn) Thisequationcanbesimplifiedfurtherusingthedetailed- n balance condition (2) in the form (En − Em)/kBT = =(cid:104)dW(cid:105)+(cid:88)E (Γ p −Γ p )dt (4) ln(Γmn/Γnm) to transform the last term in the brackets. n nm m mn n Inthisway,Eq.(9)givestherateofthetotalentropypro- n,m ductioninthecourseofthetimeevolutiondescribedbythe (cid:88) =(cid:104)dW(cid:105)+ (Em−En)Γmnpndt=(cid:104)dW(cid:105)−(cid:104)dQ(cid:105). masterequation(1): n,m Toformulatethesecondlawofthermodynamicsforthe ∂S = kB (cid:88)ln Γmnpn(Γ p −Γ p ). (10) system considered here, one needs to define its entropy. ∂t 2 Γnmpm mn n nm m n,m Copyrightlinewillbeprovidedbythepublisher 4 DmitriAverinetal.:ReversibleMaxwell’sdemon This equation shows explicitly that ∂S/∂t ≥ 0, and pro- totheequationsfortheexpansionterms:p˙(k) = γp(k+1). videstheexpressionofthesecondlawofthermodynamics Formally,theseequationscanbesolveddirectlytoproduce fortheevolutiongovernedbythemasterequation. theseriesoftherecursionrelations: 2.2 Adiabatic evolution and dissipated heat and p(k+1) =γ−1p˙(k). (14) work Adiabatic evolution, characterized by the vanish- ingly small rate η of variation of the energies of the sys- However, since the matrix γ of the transition rates has a tem, η ∼ E˙ /E → 0, conserves the total entropy S, non-vanishing kernel, spanned by p(0), its determinant is n n zero,andthecalculationoftheinversematrixγ−1requires and is of the main interest for all reversible processes, in the introduction of a ”generalized” inverse (also some- particular for the subsequent discussion of the reversible times called ”pseudoinverse”) determined by some addi- Maxwell’s demon. In this regime, the rate of the varia- tional conditions. For the solution of the master equation, tion of probabilities p is also small, p˙ ∝ η → 0 and n n the appropriate generalized inverse is the ”group” inverse they in the main approximation are given by the station- (see,e.g.,[26])definedbythefollowingrelations: arysolutionofthemasterequation(1).Inthetypicalcase when the energy spectrum {En} of the system includes γγ−1γ =γ, γ−1γγ−1 =γ−1, γγ−1 =γ−1γ. (15) the state with the lowest energy, such a stationary state corresponds to equilibrium, i.e., all the probability fluxes Combiningthesecondandthethirdoftheserelationsone in the master equation vanish: Γ p = p Γ . For an sees,inparticular,thatthegroupinversehasthefollowing mn n m nm equilibrium reservoir characterized by Eq. (2), this rela- importantproperty: tion implies that the probabilities p indeed maintain the equilibrium form, pn/pm = e[Enn(t)−Em(t)]/T through- γ−1p(0) =0. (16) out the evolution. Equation (10) shows then that the to- Expression for the average of the element of heat dQ tal entropy production vanishes in this case, ∂S/∂t = 0, (3),asitappears,e.g.,inEq.(4),canbewritteninthema- i.e., ∂Ssys/∂t = −∂Senv/∂t, implying that the changes trixformusingthevector-columnE = {En}oftheener- ∆Ssys of the entropy of the system are directly compen- giesEn:(cid:104)dQ(cid:105) = −E†γpdt = −E†p˙dt.Theaverageheat sated by the average heat flow (cid:104)Q(cid:105)(rev) to (or from) the transferredintothereservoirtakesthenthefollowingform reservoir: (cid:90) (cid:90) (cid:104)Q(cid:105)(rev) =−T∆Ssys. (11) (cid:104)Q(cid:105)= (cid:104)dQ(cid:105)=− E†p˙dt. (17) Since the total entropy is conserved, this transfer of heat into the reservoir represents reversible process which can We assume that the adiabatic evolution of the energies beinverted,returningthesystemtotheinitialstateandre- En(t)startsandendsattimestiandtf,withenergiesstay- movingthetransferredheatfromthereservoir. ingconstantoutsideofthistimeinterval.Thetimedepen- While the relation (11) holds in the limit of vanishing denceofenergiesisalsoassumedtobesufficientlysmooth, rateofvariationsinthesystem,η → 0,finiteη makesthe sothatE˙ (t)=0atbothendsoftheevolution,t=t ,t . n i f processirreversible,andgeneratesadditional“dissipated” Substituting the expansion (12) into Eq. (17) one can see heat in the reservoir. To find such heat in a general situ- thatthefirst,equilibrium,termp(0)oftheexpansionrepro- ation, it is convenient to write the master equation (1) in duces Eq. (11) for the reversible heat transfer. To do this, thematrixform,p˙ = γp,wherepisthevectorcolumnof weintegrateEq.(17)bypartsandexpresstheequilibrium the probabilities p , and γ is the matrix of the transition probabilitiesthroughthefreeenergyF = −T lnZ ofthe n rateswiththematrixelementsgivenbythetworelations: system with the help of the relation p(0) = ∂F/∂E to (cid:80) n n γnm = Γnm,forn (cid:54)= m,andγnn = − m(cid:54)=nΓmn.The obtain vectorpcanbeexpandedtheneffectivelyinthepowersof thevariationrateη: (cid:104)Q(cid:105)(rev) =−(cid:90) tf E†p˙(0)dt=(cid:90) tf E˙†p(0)dt ∞ ti ti (cid:88) p= p(k), (12) −E†p(0)(cid:12)(cid:12)tf =(cid:90) tf (cid:88) ∂F dE −(cid:88)E p(0)(cid:12)(cid:12)tf k=0 (cid:12)ti ti n ∂En n n n n (cid:12)ti where p(k) ∝ ηk, and p(0) is the vector of the in- =∆F −∆U =−T∆S . stantaneous equilibrium: p(n0) = e−En(t)/kBT/Z, Z = sys (cid:80) e−En(t)/kBT. Substituting this expansion into the Thesecondtermintheexpansion(12)givesthemain n contributiontothedissipatedheat(cid:104)Q(cid:105)(dis)intheadiabatic equation p˙ = γp, using the fact that the instantaneous evolution: equilibriumsatisfiesthestationarymasterequation: (cid:90) tf (cid:90) tf (cid:104)Q(cid:105)(dis) =− E†p˙(1)dt= dtE˙†p(1) γp(0) =0, (13) ti ti and that the time derivative adds one factor of the rate η, (cid:90) tf = dtE˙†γ−1p˙(0), (18) weseethattheexpansion(12)reducesthemasterequation ti Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 5 where we have used the fact that p(1) = γ−1p˙(0) = 0 at Thehigher-ordertermsintheexpansion(12)givespro- t = t ,t ,becausep˙(0) vanishestogetherwiththederiva- gressively smaller corrections to the heat Q which vanish i f tivesE˙ ofthesystemenergiesattheendsoftheevolution. morerapidlywiththerateηofvariationoftheenergiesof n Calculatingthederivatives thesystem.Thismeansthatintheadiabaticlimit,onecan takeintoaccountonlythefirsttwotermsintheexpansion E˙ Z˙ Eq. (12), limiting the expression for the heat exchanged p˙(0) =− n p(0)− p(0), n k T n Z n betweenthesystemandthereservoirtothetwocontribu- B tions: andmakinguseoftheproperty(16)ofthegroupinverse, (cid:104)Q(cid:105)=(cid:104)Q(cid:105)(rev)+(cid:104)Q(cid:105)(dis) (22) we transform the expression for the heat dissipated irre- which are given by Eqs. (11) and (19), respectively, and versiblyintheadiabaticevolutionintothefinalform: correspondtothereversibleandirreversibleheatgenerated (cid:104)Q(cid:105)(dis) =− 1 (cid:90) tf dt(cid:88)E˙ [γ−1] E˙ p(0). iEnqt.h(e22re)siesrtvhoaitr.thOendeismsiopraeteudsehfeualtrceominacrkidtehsawtfiothllothwef“rdoims- kBT ti n,m m m,n n n sipatedwork”(cid:104)W(cid:105)(dis),whichcanbedefinednaturallyas (19) theworkdoneonthesysteminexcessofthechangeofthe Equation (19) can be used for a system with arbitrary systemfreeenergy.Indeed,combiningEqs.(22)and(11) spectrum E (t), as long as one can calculate the inverse withthefirstlaw(4)weseethat n γ−1 of the transition rate matrix, as defined by Eq. (15). (cid:104)Q(cid:105)(dis) =(cid:104)Q(cid:105)−(cid:104)Q(cid:105)(rev) =(cid:104)W(cid:105) As an example of the application of Eq. (19), we calcu- latethedissipatedheatforanadiabaticevolutionofatwo- −∆U +T∆Ssys =(cid:104)W(cid:105)−∆F =(cid:104)W(cid:105)(dis), (23) statesystemwithstateenergiesE0(t)andE1(t).Thecal- asstatedabove. culation is simplified by the general property of Eq. (19) 2.3 Classical fluctuation-dissipation theorem whichfollowsfromEq.(16):thedissipatedheatdepends, Another feature of the heat dissipated in the adiabatic as should be, only on the energy differences in the en- evolution that is important for operation of the reversible ergy spectrum E (t), i.e., it does not change if all ener- n Maxwell’s demon is the direct relation between the av- gies are shifted by some time-dependent offset δ(t). For erage dissipated heat given in general by Eq. (19), or by atwo-statesystem,thismeansthatthedissipatedheatde- Eq.(21)inthecaseofatwo-statesystem,andthemagni- pends only on the time dependence of the energy differ- tudeofthefluctuationsoftheheatexchangedbetweenthe ence(cid:15)(t)=E (t)−E (t)andnotontheevolutionofthe 1 0 reservoir and the system during the evolution. This rela- individualenergiesE separately.Thismeansthat,effec- 0,1 tion, derived below, shows that in the adiabatic limit, the tively,wecantaketheenergiesofthetwostatestobe0and dissipatedheatvanishesnotonlyonaverage,butforevery (cid:15)(t),andtheEq.(19)isreducedasfollows: instanceoftheevolutionimplyingthatinprinciple,itcan bemadenegligibleineverycycleoftheMaxwell’sdemon (cid:104)Q(cid:105)(dis) =− 1 (cid:90) tf dt(cid:15)˙(t)2[γ−1] p(0). operation. Qualitatively, the relation between the average kBT ti 11 1 dissipatedheatanditsfluctuationscanbeseenasaversion oftheclassicallimitofthefluctuation-dissipationtheorem Foratwo-statesystem,transitionmatrixtakesthefol- connecting the linear heat conductance G and the zero- th lowingexplicitform: frequency spectral density S (0) of the fluctuating heat J fluxinthisconductance(see,e.g.,[27]):S (0)=2T2G . (cid:32) (cid:33) J th γ = −Γ10 Γ01 , Inthecaseofadiabaticevolution,thisrelationisreplaced Γ −Γ bytherelationbetweenthedissipatedheat(cid:104)Q(cid:105)(dis),which 10 01 in this context is an analog of the thermal conductance, andthegroupinversedefinedbytheconditions(15)canbe andthenoiseofthisheat,which(cid:104)Q2(cid:105)replacesthespectral calculateddirectly: density SJ(0). This analogy stems from the fact that the dissipated heat in the adiabatic evolution is produced as γ−1 =γ/Γ2, Γ ≡Γ +Γ . (20) a response to a small deviation from the equilibrium be- Σ Σ 10 01 tweenthesystemandthereservoir,createdbyafiniterate Thisresultmeansthat[γ−1]11 = −Γ01/ΓΣ2,andcombin- ofchangeofenergiesofthesysteminthesamewayasthe ing it with the detailed balance condition (2): Γ10/Γ01 = averageheatflowthroughthethermalconductanceGth is e−(cid:15)/kBT andequilibriumprobabilityp(0) = 1/(e(cid:15)/kBT + producedbyasmalltemperaturebiasacrossit. 1 1) we obtain the heat dissipated in the adiabatic evolu- To derive the relation between the average dissipated tion of the two-state system with energy difference (cid:15)(t) heat (19) and its noise quantitatively, we need to calcu- betweenthestates: latetheheatnoise(cid:104)Q2(cid:105)intheadiabaticevolutiongoverned bythemasterequation(1).Takingtheelementaryheat(3) 1 (cid:90) tf (cid:15)˙2 generatedwhenthesystemisinthestaten,andsumming (cid:104)Q(cid:105)(dis) = dt . (21) 4kBT ti ΓΣcosh2((cid:15)/2kBT) it over all states with their probabilities, we get the total Copyrightlinewillbeprovidedbythepublisher 6 DmitriAverinetal.:ReversibleMaxwell’sdemon elementaryheatexchangedbetweenthesystemandreser- assumptionofsmoothevolutionofthesystemenergies.In voir addition,thecorrelationsamongdifferenttunnelingevents (cid:88) dQ= (E −E )Γ pˆ dt. (24) described by the master equation decay on the time scale n m mn n n,m Γ−1 set by the typical tunneling rate Γ, which is much shorter than the evolution time interval t − t . Because In this expression, pˆ denotes an arbitrary distribution of f i n of this, the fluctuations of the initial and final energies of occupation probabilities which satisfies the rate equation thesystemandthefluctuationsoftheworkdoneduringthe (1),butdoesnotnecessarilycoincidewiththeactualprob- adiabaticevolutionareuncorrelated: ability distribution in the evolution of the system because oitfi,ese.pgˆ.,.dBifefceareunsteionfittihalisc,odnQdithioerneiimspnoostetdheonactthueaplraovbearbagile- (cid:104)Q˜2(cid:105)=(cid:104)E˜2(cid:105)+(cid:104)E˜2(cid:105)+(cid:104)W˜2(cid:105), W =(cid:90) tf (cid:88)E˙ pˆ dt. n i f n n heat as, e.g., in Eq. (4). Equation (24) can be simplified ti n furtherasfollows: (27) (cid:88) ThefluctuationsoftheworkW doneintheadiabaticevo- dQ= (En−Em)(Γmnpˆn−Γnmpˆm)dt/2 lution can be found according to the standard prescrip- n,m tion for the correlation functions in the master-equation- =(cid:88)E (Γ pˆ −Γ pˆ )dt=−(cid:88)E pˆ˙ dt, (25) governedevolution: n mn n nm m n n whne,rme in the last step we used Eq. (1),nsince the time de- (cid:104)W˜2(cid:105)=(cid:90) tf dtdt(cid:48)(cid:88)E˙m(t(cid:48))pm,n(t(cid:48),t)E˙n(t)pn(t). pendenceoftheotherwisearbitraryprobabilitiespˆnshould ti n,m stillbegovernedbythisequation.UsingEq.(25)todefine (28) anexpressionfortheheatQexchangedwiththereservoir Herepn(t)istheactualprobabilitiesintheevolutionpro- duringthefullevolutionweget: cess, and pm,n(t(cid:48),t) is the distribution of probabilities evolvingattimet(cid:48) outoftheinitialconfigurationatt(cid:48) = t Q=(cid:90) tf dQ=−(cid:88)(cid:90) tf E pˆ˙ dt in which the system occupies with certainty the state n: n n p (t,t)=δ .SinceEq.(28)alreadycontainstherate ti n ti m,n m,n of change of energies squared, the probabilities in it can =(cid:88)(cid:104)−E pˆ (cid:12)(cid:12)tf +(cid:90) tf E˙ pˆ dt(cid:105). (26) be calculated in the quasistatic approximation, in which n n(cid:12) n n n ti ti pn(t) = p(n0)(t), and the master equation that determines theprobabilitiesp (t(cid:48),t):∂p/∂t(cid:48) = γ(t(cid:48))p,canbesim- Equation (26) represents the heat generated in the m,n plified by essentially neglecting the time dependence of reservoir as the difference between the work W done on the transition rates, i.e. reducing it to the following form: the system and the change of the system energy in the ∂p/∂t(cid:48) =γ(t)p.Formalsolutionofthisequationcanthen evolutionprocess,Q=W −(E −E ).Sincethesystem f i bewrittendownimmediately: randomlyoccupiesdifferentenergylevelsintheevolution, the work W is a fluctuating quantity similarly to the sys- tem energies Ef,i. They all contribute to the fluctuations pm,n(t(cid:48),t)=(cid:2)eγ(t)|t(cid:48)−t|(cid:3)m,n. (29) ofthegeneratedheatdefinedasusualas The fact that this expression is the same for t(cid:48) < t as for (cid:104)Q˜2(cid:105)=(cid:104)Q2(cid:105)−(cid:104)Q(cid:105)2. t(cid:48) > t is dictated by the fact that in the quasistationary approximation, the correlation functions should be sym- Similarly to the average dissipated heat (19), we find metric with respect to the interchange of the two times, thesefluctuationsinthefirstorderinthesmalltypicalrate t ↔ t(cid:48).CombiningEq.(29)withEq.(28),andtakinginto E˙ of the variation of the system energies. Note that al- accountthattheothertermsintheintegralsevolveonthe n thoughEq.(19)containsthetermsproportionaltoE˙2 un- timescalemuchlongerthanthatsetbythetunnelingrates, n dertheintegralovertime,areasonableadiabaticevolution we can take the integral over t(cid:48) in Eq. (28) by effectively changesthesystemenergiesconsiderably,i.e.(cid:82)tf dtE˙ ∼ integratingonlytheprobabilities(29): ti n E , so effectively, the dissipated heat (19) is of the first ornder in the evolution rate E˙n. In this approximation, the (cid:104)W˜2(cid:105)=−2(cid:90) tf dt(cid:88)E˙nE˙mp(n0)[γ−1]m,n. (30) fluctuations of the initial and final energies of the sys- ti n,m tem are given by their standard equilibrium expressions, (cid:104)E˜2 (cid:105)=C T2,whereC aretheheatcapacitiesofthe Comparing Eq. (30) to Eqs. (19) and (23) of the pre- i,f i,f i,f systembeforeandaftertheadiabaticevolution,asfollows viousSubsection,weseethatthefluctuationsofthework from the following considerations. First, corrections p(1) done on the system are directly related to the dissipated totheequilibriumprobabilitiesp(0),whichcouldproduce partofthework: anon-equilibriumcontributionstofluctuationsofE van- i,f ish at t = t ,t according to Eq. (14) under the adopted (cid:104)W˜2(cid:105)=2k T(cid:104)W(cid:105)(dis). (31) i f B Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 7 Theenergy-fluctuationtermscanberemovedfromEq.(27) E is well separated from the excited states, so that there 0 for the heat noise by averaging over the initial and final is a range of temperatures T in which the system occu- statesoftheadiabaticevolution.Alternatively,insomesit- piesthegroundstatewithnearcertainty,sothattheentropy uations,e.g.theonerelevantforthemostbasicformofthe (5)ofthesystemeffectivelyvanishes.Theadiabaticevolu- reversible Maxwell’s demon discussed below, the energy tionshouldstartthenwiththesystemintheuniqueground fluctuationsbecomenegligibleautomatically.Inthatcase, state and should bring it to another equilibrium configu- fluctuationsoftheinitialenergyE vanishbecausetheevo- rationwiththeleveloccupationprobabilitiesp ,inwhich i n lutionofthesystemstartsfromthedefinite(ground)state theentropy(5)isincreasedtoanonvanishingvalueS . sys ofthesystemseparatedbylargeenergygap∆E (cid:29) k T AccordingtoEq.(11),inthecourseofthisevolution,the B from the excited states, which suppresses all transitions heat (cid:88) that could change the system energy. The fluctuations of (cid:104)Q(cid:105)=−k T p lnp (33) B n n thefinalenergyE vanishbecausetheevolutionendswith f n the equally occupied two degenerate states of the system. isextractedonaveragefromthereservoir.Asfollowsfrom Although the transitions between these two states are not the discussion in the previous Section, in the adiabatic suppressed,theydonotcauseanyexchangeofenergywith limit,thefluctuationsoftheextractedheatinthiscaseare thereservoir,sincetheenergiesofthetwostatesofthesys- determinedbythefluctuationsofthesystemenergyatthe temarethesame.Allotherstatesareagainseparatedfrom final point of the evolution. If there are no energy fluctu- thetwodegeneratestatesbylargeenergygapsuppressing ations at the final point, the fluctuations of Q vanish and the transitions to these states. For vanishing fluctuations extracted heat Q is given by Eq. (33) for each individual of the energies E , Eq. (31) can be extended directly i,f cycle, Q = (cid:104)Q(cid:105). The adiabatic evolution considered here to the relation for the noise of the heat transferred to the is reversible and generates entropy S in the system’s reservoir: sys (cid:104)Q˜2(cid:105)=2k T(cid:104)Q(cid:105)(dis), (32) states. If the system represents a computing device, this B entropy corresponds to the information stored in this de- which can be viewed as an analog of the classical vice.Thereversaloftheadiabaticevolutionjustdescribed fluctuation-dissipation theorem for the thermal conduc- would remove this information from the device by bring- tance in the situation of adiabatic evolution. The main ing it to the definite prescribed state, and therefore coin- consequenceofthisrelationforthesubsequentdiscussion cides with the Landauer information erasure discussed in ofthereversibleMaxwell’sdemonisthefactthatthestan- theIntroduction.Thus,thefirststepoftheoperationofour darddeviationoftheheatnoisevanishestogetherwiththe Maxwell’sdemonisthereversaloftheinformationerasure average dissipated heat, and as a result, in the adiabatic protocol. limit,thedissipatedheatvanishesnotonlyonaverage,but The second step of the MD operation is the measure- foreachrealizationoftheadiabaticevolution. mentoftheactualstateofthesystemattheendoftheevo- lution.Sincewearelimitingthediscussionheretoclassi- 3 Reversible Maxwell’s demon The discussion of calsituations,theonlytwoimportantfeaturesofthemea- adiabatic evolution in the previous Section illustrates ex- surement is whether it is precise, and whether it is done plicitly the standard understanding that thermodynami- reversibly,withouttheavoidableenergydissipation.Ifthe cally optimum processes require sufficiently slow, adia- measurementisidealinbothrespects,thenthestateofthe batictransformations,whichminimizedissipatedheatand systemattheendoftheevolutionisdeterminedprecisely, work and make the whole process effectively reversible. andtheonlythermodynamicpricepaidforthisistheneed Here we consider “Maxwell’s demon” (for reviews, see to physically record this information I about the state of [28]),adevicewhichextractsenergyfromthermalfluctu- thesystem.Foranidealmeasurement,thestatisticsofthe ations in an equilibrium statistical system at temperature measurementoutcomesexactlyrepeatsthestatisticsofthe T andtransformsthisthermalenergyintofreeenergy.All occupationoftheenergylevelsofthesystem,andischar- this is achieved by means of a process the central part of acterized by the probabilities p . This means that in the n which is a measurement done on a fluctuating statistical limit of large number of MD operation cycles, each mea- systeminthermalequilibrium,andapplicationofthefeed- surementgeneratesonaveragetheamountofinformation back control pulses which depend on the outcome of this (cid:88) measurement.Inprinciple,Maxwell’sdemon(MD)canbe I =− p lnp (34) n n realizedusinganarbitraryquantumsystemwiththeenergy n spectrum E weakly interacting with a thermal reservoir, n as considered in the previous Section. The simplest cycle which coincides with the system entropy before the mea- thatrealizesthedemonoperationconsistsofthreesteps. surement.Thisfactillustratesthegeneralunderstandingof Thefirststepisanadiabaticevolutionofthesystemex- information as the entropy of the computing system that tracting heat from a thermal reservoir in equilibrium. For wasdiscussedintheIntroduction. simplicity, we assume that the system has a configuration ThelaststepoftheMDcycleistheapplicationofthe of the energy levels E such that the ground state energy sequenceofpulsestothesystemthatdriveitquicklyfrom n Copyrightlinewillbeprovidedbythepublisher 8 DmitriAverinetal.:ReversibleMaxwell’sdemon theactualobservedstateattheendoftheadiabaticevolu- tion into the configuration when the occupied state is the unique ground state of the system, similar to the starting point of the evolution. The pulses should be applied in a time much shorter than the typical transition rates. Since theenergyspectrumofthesystemiscontrolledbytheex- ternalpulses,thegroundstatecaningeneralbeadifferent stateineachcycle(dependingontheoutcomeofthemea- surement) but can be made to have the same energy each time. Such a rapid return to the ground states completes Figure 2 Typical qualitative time dependence of the en- the MD cycle. It does not generate any heat in the reser- ergy difference between the two states of an effectively voir,sincenotransitionshavetimetohappenduringit.The two-statesystem,e.g.single-electronbox,thatcorresponds netresultofonecycleofMDoperationisthentheextrac- to several cycles of the operation of reversible Maxwell’s tionoftheheat(33)fromthereservoir,which,bythefirst demon.Twopartsofeachcyclethatcanbeexplicitlyseen law, was transformed into the free energy of the external in the diagram are: (1) adiabatic ramp of the energy dif- source manipulating the energy states of the system. This ference starting from initial value that is much larger in transformation was achieved at a cost of creation of the magnitudethanthethermalenergykBT andendingatthe information (34) about the actual state of the fluctuating degeneracy point where the energy difference vanishes; systemattheendoftheadiabaticevolution.Theseexpres- and (2) abrupt return from the degeneracy point to the sionsshowsthattheoperationofsuchaoptimalreversible ground state. At the beginning of the ramp, the system is demondoesnotcontradictthesecondlaw.Reversibleera- with certainty in the ground state, while at the degener- sureoftheinformation(34)dissipatesbackintoheatpre- acy point both states are occupied with equal probability cisely the energy k TI extracted by the demon from the 1/2.Whethertheappliedfeedbackmakesthestaten = 0 B thermalreservoir. or n = 1 the ground state in a given cycle depends on theactualstatethemeasurementfindsthesysteminatthe Thedemonoperationjustdescribedreliesontheexis- degeneracy point in this cycle. The heat kBT ln2 is ex- tenceoftheaccuratemeasurementsofthestatesofthesys- tractedfromthereservoirduringeachadiabaticrampand tem that are distinguished by their energies E (t). While converted into the free energy transferred to the external n theoreticallytheenergyisanabsolutelylegitimateobserv- sourcewhichmanipulatestheenergiesofthesystem. able,experimentally,thenon-invasivemeasurementsofen- ergypresentsconsiderableproblems.Inthisrespect,prac- ticalimplementationoftheMDcycleisonlypossiblewhen In the two-state regime, only the two charge states, theenergystatesnofthesystemcanalsobedistinguished n=0andn=1,havethenon-vanishingoccupationprob- bysomeotherphysicalquantitythatisdirectlymeasurable. abilities. These states differ by one extra electron charge This is the case for the single-electron circuits, where the residing either on the left or on the right electrode of the dominant energy of the system is the electrostatic energy, SEB. In this respect, the SEB Maxwell’s demon is simi- andthedifferentenergystatesaredistinguishedalsobythe lar to the Szilard engine [35], in which the states of the excess number of individual electron charges on the elec- Maxwell’sdemonworkingsubstancearedistinguishedby trodes of the system. The charge states can be measured twopossiblepositionsofoneparticle.Thiscorrespondence directly with any of the several existing single-charge de- betweentheenergyandchargestatesalsomakesitpossi- tectors,DC[30,31,32]orRF[33]single-electrontransis- bletomeasuredirectlytheactualstateofthesystemwitha tors,orquantum-pointcontacts[34].SuchaMaxwell’sde- chargedetector.TheenergiesE0andE1ofthetwocharge monoperatingwithindividualelectronshasbeenrealized statescanbecontrolledbytheappliedtime-dependentgate [1] using the most basic single-electron system, single- voltage(formoredetaileddescriptionofthesystem–see, electron box (SEB) [24,25]: two electrodes connected by e.g.,[29].AspartlydiscussedinthepreviousSection,the a small tunnel junction that allows electrons to tunnel be- thermodynamicpropertiesofatwo-statesystem,including tween them. An advantage of this system is that at low now the characteristics of the MD cycle, depend only on temperatures,kBT (cid:28) EC,whereEC isthecharacteristic theenergydifference(cid:15)=E1(t)−E0(t)andnotonthein- electrostaticenergyassociatedwithoneelectroncharging dividualenergiesE0,1 separately.Thegate-voltage-driven the system, its dynamics can be naturally reduced to that typical qualitative time dependence of the energy differ- of a two-state system, simplifying the measurement and encethatcorrespondstoseveralcyclesofMDoperationas controlpartoftheMDcycle.Moreover,theenergiesE describedaboveisshowninFig.2. 0,1 ofthetworemainingstatesofthetwo-statesystemcanbe Each cycle starts with an adiabatic ramp that slowly gate-voltagedrivenback-and-forthbetweentheregimesof drives the system from the state with |(cid:15)| (cid:29) k T, when B large |E −E | (cid:29) k T, and small, |E −E | (cid:28) k T, the ground state is occupied with near absolute certainty, 0 1 B 0 1 B energy separation, as needed for the MD operation - see tothedegeneracypoint(cid:15) = 0,wherethetwostatesofthe Fig.2andthediscussionbelow. system are equally occupied. This means that the entropy Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 9 ofthesystemisincreasedby∆S =k ln2andtheheat Integratingthisequationoverthetimeintervalofadiabatic sys B Q = k T ln2,asinEq.(11),isextractedfromthereser- evolution, from t = 0, when the energy difference ac- B i voir during each ramp. Note that under the conditions of quiressomelargevalue(cid:15)(0) = (cid:15) (cid:29) T,tot = τ,when i f thiscycle,therearenoequilibriumfluctuationsoftheheat (cid:15)(τ)=0,oneobtainstheconditionthatgivestheconstant attheendpointoftheramp,andtherefore,noheatfluctu- heatfluxJ duringtheevolution: ationsatallintheadiabaticlimit,i.e.,theextractedheatis thesameineachcycle.ThecycleofMDoperationiscom- (cid:112) (cid:90) (cid:15)i d(cid:15) 4k TJτ = , (37) pletedbythemeasurementoftheactualstateofthesystem B (cid:112)Γ ((cid:15))cosh((cid:15)/2k T) 0 Σ B at degeneracy point, and application of the corresponding feedbackpulseofgatevoltagewhichswiftlyturnsthemea- andtherefore,determinesthetotaldissipativeheat(cid:104)Q(cid:105)(dis) sured state into the ground state of the system. Since the (21)intheadiabaticramp: pulse is fast on the time scale set by the transition rates, noheatisexchangedwiththereservoirinthisreturntothe (cid:104)Q(cid:105)(dis) =Jτ. (38) groundstate,sothenetresultofthecycleistheextraction of the heat during the adiabatic ramp, which is converted To obtain the explicit solution of Eq. (37), one needs into the free energy transferred to the source of the con- to specify the energy dependence of the total tunneling trol pulses. For instance, in the case of SEB, this means rate Γ ((cid:15)) in the two-state system. An important exam- Σ thatthebatteryproducingthegatevoltage,ideally,should ple is provided by the hybrid SEB based on the normal bechargedbytheMDoperation.Thermodynamiccostof metal/insulator/superconductor (NIS) tunnel junction as this transformation of heat into free energy is creation of usedintheexperiment([1]).Single-electrontunnelingrate onebitofinformationabouttheactualstateofthesystem intheNISjunctionis(see,e.g.,[29]) at degeneracy; for the SEB, position of the extra electron ontheleftorrightelectrodeofthebox.Ifthisinformation Γ ((cid:15))=2Γ cosh2{(cid:15)/2k T}, (39) Σ m B is erased in an optimal, reversible, fashion, precisely the sameamountoffreeenergyasextractedbytheMaxwell’s whereΓmisthetunnelingrateatdegeneracy,when(cid:15)=0, demonisconvertedbackintoheat,ensuringthatthesecond 1 lawofthermodynamicsissatisfied. Γ = (2π∆k T)1/2e−∆/kBT . m R e2 B 3.1 Minimization of the dissipated heat Ideal op- T erationoftheMaxwell’sdemondiscussedsofarisaffected Here R is the normal-state resistance of the NIS tunnel T ingeneralbyseveralpossibleimperfection.Themostfun- junctionand∆isthesuperconductingenergygapinthesu- damentallimitationisimposedbythefiniterateoftheadi- perconductingelectrodeofthejunction.Withtherate(39), abaticrampwhich,inadditiontothereversibleextraction integralinEq.(37)canbecalculatedexplicitlytofindthe of the heat (11) from the reservoir, dissipates irreversibly minimum Q of the dissipated heat (cid:104)Q(cid:105)(dis) (21) for the m theheat(19).InthecaseoftheMDcyclebasedonatwo- optimumadiabaticrampsatisfyingthecondition(36): statesystem,e.g.theSEBdescribedabove,theirreversibly dissipatedheatisgivenbyEq.(21)andcanbeminimized k T (cid:15) Q =Jτ = B tanh2 i . (40) by appropriate choice of the profile of the energy differ- m 2τΓ 2k T m B ence ramp (cid:15)(t). To do this, one needs to minimize the in- tegral in Eq. (21) with respect to the function (cid:15)(t). Since Thisequationshowsthat,qualitatively,thedissipatedheat theintegralinEq.(21)doesnotcontainanyderivativesof isindeedminimizedforslowadiabaticramps,whentheto- (cid:15)(t)ofhigherthanthefirstorder,thisminimizationprob- talramptimeτ islarge,τ (cid:29)Γ−1,andthatinthislimit,the m lem is equivalent to the one encountered, e.g., in the La- dissipatedheatcaninprinciplebemadenegligibleincom- grangian formulation of classical mechanics, and leads to parison with the reversible heat k T ln2 extracted from B theLagrangeequationforthefunction(cid:15)(t)minimizingthe thereservoirintheidealMDcycle. dissipatedheat: It is instructive to compare Eq. (40) to the result that would be obtained without the minimization of the dissi- d ∂J ∂J (cid:15)˙2 pated heat, e.g., for the linear time dependence of the en- = , J ≡ . dt ∂(cid:15)˙ ∂(cid:15) 4k TΓ ((cid:15))cosh2((cid:15)/2k T) ergydifference(cid:15)(t)intheadiabaticevolutionshownqual- B Σ B itatively in Fig. 2. Evaluating the integral in Eq. (21) for (35) (cid:15)˙ = const = (cid:15) /τ and the total tunneling rate (39), one Calculatingthederivatives,onecanseethattheLagrange i obtains: equation can be transformed into the form requiring that theintegrandinEq.(21)isconstantintime: (cid:104)Q(cid:105)(dis) = (cid:15)i tanh (cid:15)i (cid:2)1− 1tanh2 (cid:15)i (cid:3). 4τΓ 2k T 3 2k T dJ (cid:15)˙ (cid:112) m B B (41) =0, i.e. =− 4k TJ. dt (cid:112)Γ ((cid:15))cosh((cid:15)/2k T) B Weseethatintherelevantlimitoflargeinitialenergy(cid:15) (cid:29) Σ B i (36) k T,non-optimizeddissipativeheat(41)islargerthanthe B Copyrightlinewillbeprovidedbythepublisher 10 DmitriAverinetal.:ReversibleMaxwell’sdemon optimizedheat(40)byalargefactor(cid:15)i/3kBT.Thisshows [10]E. Lutz and S. Ciliberto, Phys. Today 68, Issue 9, p. 30 thattheoptimizationprocedurecanplayquiteanimportant (2015);D.V.Averin,ibid.69,Issue8,p.12(2016). roleintheMDoperation. [11]J. Ren, V.K. Semenov, Yu.A. Polyakov, D.V. Averin, and Wecanalsofindexplicitlythetimedependenceofthe J.S.Tsai,IEEETrans.Appl.Supecond.19,961(2009). energy difference ramp (cid:15)(t) for which the dissipated heat [12]R.Landauer,IBMJ.Res.Devel.3,183(1961);Nature335, (cid:104)Q(cid:105)(dis) reaches the minimum (40). Integrating Eq. (36) 779(1988). [13]A.Be´rut,A.Arakelyan,A.Petrosyan,S.Ciliberto,R.Dil- withtheNIStunnelingrate(39),weobtain lenschneider,andE.Lutz,Nature483,187(2012). t/τ =1−tanh((cid:15)(t)/2T)/tanh((cid:15) /2k T). [14]Y.Jun,M.Gavrilov,andJ.Bechhoefer,Phys.Rev.Lett.113, i B 190601(2014). Finally,solvingthisequationfor(cid:15)(t),onefindstheprofile [15]J.P.S.Peterson,R.S.Sarthour,A.M.Souza,I.S.Oliveira, of the optimum adiabatic ramp that minimizes the dissi- J. Goold, K. Modi, D.O. Soares-Pinto, and L.C. Ce´leri, patedheatinthehybridSEB: Proc.R.Soc.A472,20150813(2016). [16]C.H.Bennett,StudiesinHist.andPhil.ofMod.Phys.34, (cid:104) 2τ −(1−e−(cid:15)i/kBT)t (cid:105) 501(2003). (cid:15)(t)=kBT ln 2τe−(cid:15)i/kBT +(1−e−(cid:15)i/kBT)t . (42) [17]L.Brillouin,ScienceandInformationTheory,(Acad.Press, 1960),Ch.13. In this case, as one can see from Eqs. (36) and (39), [18]D.V.AverinandK.K.Likharev,in:MesoscopicPhenomena |(cid:15)˙| ∝ cosh2{(cid:15)/2k T}, i.e., qualitatively, Eq. (42) de- inSolids,ed.byB.Al’tshuler,P.LeeandR.Webb(Elsevier, B Amsterdam,1991),p.173. scribes more rapid variation of the energy difference (cid:15)(t) [19]D.V. Averin and J.P. Pekola, Europhys. Lett. 96, 67004 at large (cid:15), where the total tunneling rate is larger, and (2011). slowervariationinthevicinityofthedegeneracypoint. [20]B.Ku¨ng,C.Ro¨ssler,M.Beck,M.Marthaler,D.S.Golubev, Y.Utsumi,T.Ihn,andK.Ensslin,Phys.Rev.X2,011001 4 Conclusions In this work, we have discussed the (2012). reversal of the optimal Landauer’s information erasure. [21]O.-P.Saira,Y.Yoon,T.Tanttu,M.Mo¨tto¨nen,D.V.Averin ThisreversalservesasthecentralelementoftheMaxwell’s andJ.P.Pekola,Phys.Rev.Lett.109,180601(2012). demonoperatingatthelimitofthermodynamicefficiency. [22]M.Lo´pez-Sua´rez,I.Neri,andL.Gammaitoni,Nat.Comm. The limit is consistent with the second law of thermody- 7,12068(2016). namics and corresponds to extraction of kBT ln2 of en- [23]Ph. Strasberg, G. Schaller, T. Brandes, and M. Esposito, ergyfromanequilibriumthermalreservoirattemperature Phys. Rev. Lett. 110, 040601 (2013); Phys. Rev. E 88, T peronebitofgeneratedinformationabouttheworking 062107(2013). substanceofthedemon.ThereversibleMaxwell’sdemon [24]M.Bu¨ttiker,Phys.Rev.B,36,3548(1987). consideredherecanbeimplementednotonlywithindivid- [25]P.Lafarge,H.Pothier,E.R.Williams,D.Esteve,C.Urbina, ualelectronsinsingle-chargestructuresasin[1],butalso andM.H.Devoret,Z.Phys.B85,327(1991). in other nanostructures, e.g. molecular systems, or in the [26]S.L.CampbellandC.D.Meyer,Generalizedinversesoflin- Josephsonjunctionstructuresbasedonthedynamicsofin- eartransformations(SIAM,Philadelphia,2009). dividualmagneticfluxquanta. [27]E.M.LifshitzandL.P.Pitaevskii,StatisticalPhysics,PartII (Pergamon,Oxford,1980),Sec.88. Acknowledgements This work was supported in part by [28]H.S. Leff and A.F. Rex (eds.), Maxwell’s Demon 2 (IOP the U.S. NSF under the grant PHY-1314758 (D.V.A.) and by Publishing,2003). AcademyofFinlandunderthegrantno.272218(J.P.P.). [29]J.P. Pekola, O.-P. Saira, V.F. Maisi, A. Kemppinen, M. Mo¨tto¨nen, Yu.A. Pashkin, and D.V. Averin, Rev. Mod. References Phys.85,1421(2013). [30]D.V.AverinandK.K.Likharev,J.LowTemp.Phys.62,345 [1]J.V.Koski,V.F.Maisi,J.P.Pekola,andD.V.Averin,Proc. (1986). Nat.Acad.Sci.111,13786(2014). [31]T.A.FultonandG.J.Dolan,Phys.Rev.Lett.59,109(1987). [2]C.Bustamante,J.Liphardt,andF.Ritort,Phys.Today58, [32]O.-P.Saira,M.Mo¨tto¨nen,V.F.Maisi,andJ.P.Pekola,Phys. 43(2005). Rev.B82,155443(2010). [3]M.Campisi,P.Ha¨nggi,andP.Talkner,Rev.Mod.Phys.83, [33]R.J.Schoelkopf,P.Wahlgren,A.A.Kozhevnikov,P.Dels- 771(2011). ing,D.E.Prober,Science280,1238(1998). [4]U.Seifert,Rep.Prog.Phys.75,126001(2012). [34]M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. [5]J.P.Pekola,Nat.Phys.11,118(2015). Frost,G.A.C.Jones,andD.G.Hasko,Phys.Rev.Lett.70, [6]J.MillenandA.Xuereb,NewJ.Phys.18,011002(2016). 1311(1993). [7]S.Toyabe,T.Sagawa,M.Ueda,E.Muneyuki,andM.Sano, [35]L.Szilard,Z.Phys.53,840(1929). Nat.Phys.6,988(2010). [8]J.V.Koski,A.Kutvonen,I.M.Khaymovich,T.Ala-Nissila, andJ.P.Pekola,Phys.Rev.Lett.115,260602(2015). [9]J.P.Pekola,D.S.Golubev,andD.V.Averin,Phys.Rev.B 93,024501(2016). Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.