ebook img

Reverse mathematics: proofs from the inside out PDF

199 Pages·2018·2.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reverse mathematics: proofs from the inside out

REVERSE MATHEMATICS ■■■■■ REVERSE MATHEMATICS proofs from the inside out ■■■■■ John Stillwell princeton universit y press princeton and oxford Copyright©byJohnStillwell RequestsforpermissiontoreproducematerialfromthisworkshouldbesenttoPermissions, PrincetonUniversityPress PublishedbyPrincetonUniversityPress,WilliamStreet,Princeton,NewJersey IntheUnitedKingdom:PrincetonUniversityPress,OxfordStreet,Woodstock,Oxfordshire OXTR press.princeton.edu JacketimagescourtestyofShutterstock AllRightsReserved LibraryofCongressCataloging-in-PublicationData Names:Stillwell,John,author. Title:Reversemathematics:proofsfromtheinsideout/JohnStillwell. Description:Princeton:PrincetonUniversityPress,[]|Includes bibliographicalreferencesandindex. Identifiers:LCCN|ISBN(hardback) Subjects:LCSH:Reversemathematics.|BISAC:MATHEMATICS/History& Philosophy.|MATHEMATICS/General.|MATHEMATICS/Logic.|SCIENCE/History. Classification:LCCQA..S|DDC.–dcLCrecordavailableat https://lccn.loc.gov/ BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinMinionPro Printedonacid-freepaper.“ PrintedintheUnitedStatesofAmerica           To Elaine ■■■■■ Contents ■■■■■ Preface xi  HistoricalIntroduction  . EuclidandtheParallelAxiom  . SphericalandNon-EuclideanGeometry  . VectorGeometry  . Hilbert’sAxioms  . Well-orderingandtheAxiomofChoice  . LogicandComputability   ClassicalArithmetization  . FromNaturaltoRationalNumbers  . FromRationalstoReals  . CompletenessPropertiesofR  . FunctionsandSets  . ContinuousFunctions  . ThePeanoAxioms  . TheLanguageofPA  . ArithmeticallyDefinableSets  . LimitsofArithmetization   ClassicalAnalysis  . Limits  . AlgebraicPropertiesofLimits  . ContinuityandIntermediateValues  . TheBolzano-WeierstrassTheorem  . TheHeine-BorelTheorem  . TheExtremeValueTheorem  . UniformContinuity  . TheCantorSet  . TreesinAnalysis   Computability  . ComputabilityandChurch’sThesis  viii ■ CONTENTS . TheHaltingProblem  . ComputablyEnumerableSets  . ComputableSequencesinAnalysis  . ComputableTreewithNoComputablePath  . ComputabilityandIncompleteness  . ComputabilityandAnalysis   ArithmetizationofComputation  . FormalSystems  . Smullyan’sElementaryFormalSystems  . NotationsforPositiveIntegers  . Turing’sAnalysisofComputation  . OperationsonEFS-GeneratedSets  . GeneratingΣSets   . EFSforΣRelations   . ArithmetizingElementaryFormalSystems  . ArithmetizingComputableEnumeration  . ArithmetizingComputableAnalysis   ArithmeticalComprehension  . TheAxiomSystemACA  . ΣandArithmeticalComprehension   . CompletenessPropertiesinACA  . ArithmetizationofTrees  . TheKőnigInfinityLemma  . RamseyTheory  . SomeResultsfromLogic  . PeanoArithmeticinACA   RecursiveComprehension  . TheAxiomSystemRCA  . RealNumbersandContinuousFunctions  . TheIntermediateValueTheorem  . TheCantorSetRevisited  . FromHeine-BoreltoWeakKőnigLemma  . FromWeakKőnigLemmatoHeine-Borel  . UniformContinuity  . FromWeakKőnigtoExtremeValue  . TheoremsofWKL  . WKL,ACA,andBeyond   ABiggerPicture  . ConstructiveMathematics  . PredicateLogic  . VarietiesofIncompleteness  CONTENTS ■ ix . Computability  . SetTheory  . Conceptsof“Depth”  Bibliography  Index 

Description:
This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.