ebook img

REVEALING THE MOLECULAR SECRETS OF MARINE DIATOMS Angela Falciatore and Chris ... PDF

25 Pages·2002·0.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview REVEALING THE MOLECULAR SECRETS OF MARINE DIATOMS Angela Falciatore and Chris ...

5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 10.1146/annurev.arplant.53.091701.153921 Annu.Rev.PlantBiol.2002.53:109–30 DOI:10.1146/annurev.arplant.53.091701.153921 Copyright(cid:176)c 2002byAnnualReviews.Allrightsreserved R M S EVEALING THE OLECULAR ECRETS OF M D ARINE IATOMS Angela Falciatore and Chris Bowler LaboratoryofMolecularPlantBiology,StazioneZoologica“A.Dohrn,”VillaComunale, I-80121Naples,Italy;e-mail:[email protected] KeyWords iron,marinealgae,photoperception,quorumsensing,silica n Abstract Diatomsareunicellularphotosyntheticeukaryotesthatcontributeclose toonequarterofglobalprimaryproductivity.Inspiteoftheirecologicalsuccessinthe world’soceans,verylittleinformationisavailableatthemolecularlevelabouttheirbio- logy.Theirmostwell-knowncharacteristicistheabilitytogenerateahighlyornamen- tedsilicacellwall,whichmadethemverypopularstudyorganismsformicroscopistsin thelastcentury.Recentadvances,suchasthedevelopmentofarangeofmoleculartools, arenowallowingthedissectionofdiatombiology,e.g.,forunderstandingthemolecular andcellularbasisofbioinorganicpatternformationoftheircellwallsandforeluci- datingkeyaspectsofdiatomecophysiology.Makingdiatomsaccessibletogenomics technologieswillpotentiategreatlytheseeffortsandmayleadtotheuseofdiatomsto constructsubmicrometer-scalesilicastructuresforthenanotechnologyindustry. CONTENTS DIATOMSANDECOSYSTEMEARTH :::::::::::::::::::::::::::::::::::109 DIATOMBIOLOGY :::::::::::::::::::::::::::::::::::::::::::::::::::111 GeneralCharacteristics :::::::::::::::::::::::::::::::::::::::::::::::111 CellDivisionandCellWallBiogenesis ::::::::::::::::::::::::::::::::::112 DiatomSex ::::::::::::::::::::::::::::::::::::::::::::::::::::::::113 DiatomPhotosynthesis :::::::::::::::::::::::::::::::::::::::::::::::114 PERCEPTIONOFENVIRONMENTALSIGNALS ::::::::::::::::::::::::::115 Nutrients :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::116 Light ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::117 NeighborPerception :::::::::::::::::::::::::::::::::::::::::::::::::119 DIATOMPHYLOGENY :::::::::::::::::::::::::::::::::::::::::::::::120 TOWARDADIATOMMODELSPECIES :::::::::::::::::::::::::::::::::121 DIATOMSANDECOSYSTEMEARTH Theoriginoflifeandthesubsequentchangesinoceanicproductivitythatfollowed the evolution of photosynthesis have profoundly influenced the geochemistry oftheEarthforthepastthreebillionyears(29).Inthecontemporaryocean,marine 1040-2519/02/0601-0109$14.00 109 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 110 FALCIATORE ¥ BOWLER phytoplankton, made up of photosynthetic bacteria such as prochlorophytes and cyanobacteria,andeukaryoticmicroalgae,suchaschromophytes(brownalgae), rhodophytes(redalgae),andchlorophytes(greenalgae),representthemajorcon- tributorsofmarinecarbonfixation.Insomeregionsoftheocean,theseorganisms canfixapproximatelythesameamountofcarbon,afewgramspersquaremeter per day, as a terrestrial forest (82). Today, the oceans cover 70% of the Earth’s surface, and on a global scale they are thought to contribute approximately one halfofthetotalprimaryproductivityoftheplanet. Diatomsareagroupofunicellularchromophytealgaethatcolonizetheoceans downtodepthstowhichphotosyntheticallyavailableradiationcanpenetrate.They arethoughttobethemostimportantgroupofeukaryoticphytoplankton,respon- sibleforapproximately40%ofmarineprimaryproductivity(29).Theyalsoplay akeyroleinthebiogeochemicalcyclingofsilica(84)owingtotheirrequirement forthismineralforcellwallbiogenesis. There are well over 250 genera of extant diatoms, with perhaps as many as 100,000species(71,88)rangingacrossthreeordersofmagnitudeinsize(about asmanyaslandplants)andexhibitingaremarkablevarietyofshapes.Thewell- studiedsmall-celledspecies(5–50„m)tendtobemostabundantatthebeginning ofspringandautumn,whennutrientsarenotlimitingandwhenlightintensityand daylengthareoptimalfordiatomphotosynthesis.Whennutrientsrunouttheywill oftenaggregateintoflocsthatsinkquicklyoutofthephoticzone.Thegiantdiatoms (whichcanreach2–5mminsize)areubiquitousinalloceans,andtheirabundance showslessseasonalvariability.Theirsilicacellwallspredominateinthesediments of the ocean floor, thus making them serious players in ocean biogeochemistry overgeologicallysignificanttimescales(45).Besidesplanktonicdiatoms,which are found in all open water masses, there are many benthic forms, growing on sedimentsorattachedtorocksormacroalgae,andsomespeciescanalsobefound in soil (59). Diatoms also constitute a large proportion of the algae associated withseaiceintheAntarcticandArctic.Furthermore,inwarmoligotrophicseasit ispossibletofindsymbiosesbetweennitrogen-fixingbacteriaandcyanobacteria anddiatoms(91).Intheseareasthefixationofnitrogenbytheseendosymbionts contributesasignificantamountofnitrogentotheecosystem. In spite of their ecological relevance, very little is known about the basic bi- ologyofdiatoms(78).Whatarethemolecularsecretsbehindtheirsuccess?One possibilityisthattheyhaveanextraordinarycapacityforfindingdifferentadaptive solutions(e.g.,physiological,biochemical,behavioral)todifferentenvironments. Ithasalsobeenproposedthatthemajorfactorbehindecologicalsuccessistheir siliceouscellwall(seeexampleinFigure1).Smetacek(81,82)hasarguedthatthe manydifferentshapesandsizesofdiatomsevolvedtoprovidearobustfirstlineof defenseagainstvarioustypeofgrazers,thereforebeingthefunctionalequivalents of the waxy cuticles, trichomes, and spines of higher plants. Plankton defense systemsarepoorlystudied,butanemergingideaisthatprotectionagainstgraz- ers may be an important factor in determining the composition and succession 10Apr2002 10:7 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH MARINEDIATOMS 111 Figure1 ElectronmicrographofthediatomMastogloiabinotata(Grun.)cl.at5800 timesmagnification.PhotocourtesyofKeigoOsada. ofphytoplankton.Ifthisisthecaseplanktonevolutionmayberuledasmuchby protectionasbyshort-termadaptationsorcompetition(82). DIATOMBIOLOGY GeneralCharacteristics DiatomsareBacillariophyceawithinthedivisionHeterokontophyta(alsoknown as Stramenopiles). Their most characteristic feature is the ability to generate a highly patterned external wall composed of amorphous silica [(SiO )n(H O)], 2 2 knownasthefrustule(Figure1;Figure2).Thisisconstructedoftwoalmostequal halves, with the smaller fitting into the larger like a Petri dish (Figure 2). The larger of the two halves is denoted the epitheca, and the inner one is denoted the hypotheca. Each theca is typically composed of two parts: the valve (which formsthelargeroutersurface)andagirdle(circularbandsofsilicaattachedtothe edgeofthevalve)(Figure2).Thesiliceousmaterialofthefrustuleislaiddown by largely unknown mechanisms in highly regular patterns that leave the wall beautifully ornamented. Pattern design is faithfully reproduced from generation togeneration,implicatingastrictgeneticcontroloftheprocess.Theprecisionof this nanoscale architecture far exceeds the capabilities of present-day materials scienceengineering,indicatingthattheunderstandingoftheprocesswilloneday beexploitableinnanotechnologicalapplications(15a,63,70,73). Diatomsaregenerallyclassifiedintotwomajorgroupsdependingonthesym- metry of their frustules (88). Centric diatoms are radially symmetrical, whereas pennatediatomsareelongatedandbilaterallysymmetrical.Theformergrouptends 10Apr2002 10:9 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 112 FALCIATORE ¥ BOWLER tobeplanktonic,whereasthelatterarebenthic,livingonsedimentsorothersur- faces.Someofthepennatediatomsareabletoglidealongsurfaces,owingtothe presenceofacrevice(knownasraphe)withinoneorbothofthefrustulesthrough whichmucilageissecretedtoaidmovement(Figure2). CellDivisionandCellWallBiogenesis Asfarasisknown,vegetativediatomcellsarediploid.Thenormalasexualmethod ofreproductionisbydivisionofonecellintotwo,witheachvalveoftheparentcell becominganepithecaofthedaughtercell(75).Eachdaughtercellmusttherefore generate a new hypotheca (Figure 3). The process of frustule formation is only partially understood and is largely based on microscopical observations. Prior to cell division, the cell elongates, pushing the epitheca away slightly from the hypotheca,andthenucleusdividesbyan“open”mitosis.Aftertheprotoplasthas dividedintwobyinvaginationoftheplasmamembrane,eachdaughtercellmust generateanewhypotheca.Remarkably,thisstructure,whichmustcoveronehalf ofthecell,iscommonlygeneratedbythepolarizedgenerationofahugevesicle knownasthesilicadepositionvesicle(SDV).Hypothecabiogenesisinvolvesthe layingdownofaprecisesilicalatticeworkfollowedbyitscoatingwithanorganic matrix that prevents its dissolution. Once generated, the entire structure is then exocytosed,afterwhichthetwodaughtercellscanseparate.Thiswholeprocess isnotwellunderstoodbuthasbeenreviewedrecently(96). Analysisoffrustulecompositionhasrevealedthepresenceofspecificorganic components in addition to silica. Modified peptides known as silaffins together withputrescine-derivedpolyaminesbindthesilicascaffoldextremelytightlyand canonlyberemovedfollowingcompletesolubilizationofsilicawithanhydrous hydrogenfluoride.Boththesilaffinsandpolyaminescanpromotesilicaprecipita- tioninvitro,generatinganetworkofnanosphereswithdiametersbetween100nm and1„m,dependingonthemoleculesused(51,52).Itisthereforepossiblethat suchcomponentsgeneratethebasicbuildingblocksforsilicacellwallformation. Cylindrothecafusiformiscontainstwomajortypesofsilaffins,denotedsilaffin-1A (4kDa)andsilaffin-1B(8kDa).Bothareproteolyticallyderivedfromtheproduct ofasinglegene,denotedSil1. Hydrogenfluoride-extractablematerialalsocontainsotherproteinaceousfrac- tionsofhighmolecularmass,denotedpleuralins(pleuralin-1wasformerlyknown asHEP200)(53,54).Immunolocalizationexperimentshaverevealedthatpleuralin- 1isspecificallylocalizedtotheterminalgirdleband(knownaspleuralband)of theepithecabutthatitisalsotargetedtothepleuralbandofthehypothecaofacell thathasmitoticallydividedbutnotyetgeneratedahypotheca(54).Itistherefore a terminal differentiation marker for the epitheca. A small gene family encodes pleuralinproteinsintheC.fusiformisgenome,whicharelocalizedtogether(53). Allencodeproteinswithcharacteristicrepeatdomains. Calcium-binding glycoproteins known as frustulins (49,50) have been local- ized to the outer coating of diatom cell walls (87). To date, five different types 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH MARINEDIATOMS 113 of frustulins have been described, based on their different molecular weights: fi-frustulin (75 kDa), fl-frustulin (105 kDa), (cid:176)-frustulin (140 kDa), –-frustulin (200 kDa), and "-frustulin (35 kDa), all of which contain characteristic acidic cysteine-rich domains (ACR domains). The function of this domain is not yet known. Immunological studies have demonstrated that, unlike pleuralin-1, the frustulins are localized ubiquitously over the external surface of the cell wall (53,87),althoughitispossiblethatindividualfrustulinshavespecificlocalization profiles.Becausetheyarenotanintegralcomponentofthesiliceouscellwall,they arenotthoughttoparticipateinthesilicabiomineralizationprocess. ThechemicalformofSiavailabletomarinediatomsismainlyundissociated silicicacid,Si(OH) (65).Itistransportedintodiatomcellsvianovelmembrane- 4 localizedsilicatransporters.Fivedifferentsilicicacidtransporter(SIT)geneshave beenisolatedfromC.fusiformis(40).Thesegenesencodeanintegralmembrane proteinwith10membrane-spanningdomainsandalonghydrophylliccarboxyl- terminal region containing coiled-coil domains, possibly involved in mediating interactionswithotherproteins.Heterologoushybridizationexperimentshavere- vealedthatsuchgenesarelikelytobepresentinotherdiatomspecies.Thisnew classoftransporter,whichhasnoknownhomologsbeyondthediatoms,hasbeen functionallycharacterizedasasilicicacidtransporterbyoverexpressingthecDNA inXenopuslaevisoocytes(40,40a).AnalysisofSITgeneregulationindicatedthat theyaredifferentiallyexpressedduringcelldivisionandcellwallbiogenesis(65). To explain these variations it has been hypothesized that different SIT proteins couldhavedistincttransportcharacteristicsorsubcellularlocalizations. Thedepositionofnewsiliceousvalvesbetweenmitosisanddaughtercellsep- aration necessitates a precise coupling between silicon metabolism and the cell cycle(65).Inseveralspecies,ithasbeenobservedthatsilicauptakeprecedescell division(88).Aseriesofsilica-dependentstepshavebeenidentifiedduringdiatom cell division. Two arrest points appear universal, one at the G1/S boundary and another during G2/M associated with the construction of new valves (16). The arrestpointatG1/Shasbeenhypothesizedtobeindicativeofasilicadependency forDNAsynthesis,andthedataofVaulotandcoworkers(89,89a)suggestthatthis blockservestodeterminewhethersufficientsilicaisavailabletoallowcompletion offrustulebiogenesis. DiatomSex Forthevastmajorityofdiatomspecies,thePetri-dishnatureofthefrustuleand itsunusualmodeofbiogenesisleadtoareductioninsizeduringsuccessivemi- toticdivisionsinoneofthedaughtercells(Figure3).Mitoticallydividingdiatom populations therefore decrease in size over time. Regeneration of the original size typically occurs via sexual reproduction, followed by auxospore formation. Gametogenesis occurs once cells decrease in size to approximately 30–40% of themaximumdiameter.Thisisknownasthecriticalsizethreshold.Theresulting maleandfemalegametescombinetocreateadiploidauxoporethatislargerthan 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 114 FALCIATORE ¥ BOWLER either parent. This newly created cell then proceeds along the asexual pathway untilanappropriatetriggeronceagainelicitsgametogenesis.Sexualreproduction indiatomsinvolvesarangeofmechanisms(reviewedin62).Incentricdiatoms, sex is almost universally oogamous, with flagellated male gametes. Within the pennatediatoms,thereismuchmorevariety,includinganisogamy,isogamy,and automixis. Only fragmentary information is available because almost all studies arebasedonmicroscopicobservationofwhatisaveryrareevent.Diatomsexuality isinfactlimitedtobriefperiods(minutesorhours)thatmayoccurlessthanonce a year in some species and that involve only a small number of vegetative cells withinapopulation(62). Sexcansometimesbeinducedwhenvegetativecellsareexposedtounfavorable growthconditions.Factorssuchaslight,nutrients,salinity,andtemperatureshifts (5,89,89a)haveallbeenreportedtoinducetheswitchfromasexualtosexualre- productioninsomediatoms.Armbrusthasidentifiedanewgenefamilyexpressed duringtheonsetofsexualreproductioninthecentricdiatomThalassiosiraweiss- flogii,byexploitingthefactthatsexualitywithinthisspeciescanbeinducedby ashiftinthediurnallightregime(3).Threeofthesexuallyinducedgenes,Sig1, Sig2,andSig3,aremembersofanovelgenefamilythatencodeproteinscontain- ingepidermalgrowthfactor(EGF)-likedomainspresentinextracellularproteins that promote cell-cell interactions during different stages of development in an- imals. The strong sequence similarity to components of the extracellular matrix (ECM)ofmammaliancellsisinterestinginthattheECMisnotpresentinhigher plants.IthasbeensuggestedthattheSIGpolypeptidesareinvolvedinsperm-egg recognition(3). DiatomPhotosynthesis Likeinotherphotosyntheticeukaryotes,thephotosyntheticapparatusofdiatomsis housedwithinplastidsinsidethecell.Thethylakoidmembraneswithintheplastid have the typical structure of the Heterokontophyta, grouped into stacks (lamel- lae)ofthree,allenclosedbyagirdlelamella(Figure2)(88).Diatomsarebrown incolorowingtothepresenceoftheaccessorycarotenoidpigmentfucoxanthin, whichislocatedtogetherwithchlorophyllaandcintheirplastids.Forthisreason, diatomandotherbrownalgalplastidshavebeencalledphaeoplasts,todistinguish themfromtherhodoplastsandchloroplastsofredandgreenalgae,respectively. Centricdiatomsgenerallyhavelargenumbersofsmalldiscoidplastids,whereas pennatediatomstendtohavefewerplastids,sometimesonlyone(88).Fucoxan- thinandchlorophyllsareboundwithinthelight-harvestingantennacomplexesby fucoxanthin,chlorophylla/c–bindingproteins(FCP). The FCP proteins are integral membrane proteins localized on the thylakoid membraneswithintheplastid,andtheirprimaryfunctionistotargetlightenergyto chlorophyllawithinthephotosyntheticreactioncenters(72).Inthepennatediatom Phaeodactylumtricornutum,twoFCPgeneclustershavebeenidentifiedcontain- ing, respectively, four and two individual FCP genes (12). They show sequence 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH MARINEDIATOMS 115 similaritytothechlorophylla/b–bindingproteingenes(CAB)ofplantsandgreen algae. Like CAB proteins, diatom FCP proteins are encoded in the nucleus. Al- thoughtheyarefunctionallyandstructurallystronglyrelatedtohigherplantCAB proteins,thetransportmechanismsthattargetthemtothediatomplastidarevery different,owingtothefactthatdiatomplastidsareenclosedwithinfourmembranes ratherthantwomembranesasinlandplants(seeDiatomPhylogenybelow).The N-terminaltranslocationsequencesofimmatureFCPproteinsareinfactbipartite. Oneoftheseislikelytobeutilizedfortranslocationthroughtheoutermembrane, whereastheother(amoreconventionalplastidtransitpeptide)isutilizedfortrans- portthroughtheinnertwomembranes(11).Theformersequenceresemblesanen- doplasmicreticulumsignalpeptideand,indeed,iscapableofcotranslationalimport andprocessingbymicrosomalmembranes.Theprocessofplastidproteintargeting andimporthasbeenmorethoroughlystudiedforarelatedpresequencefromthe(cid:176)- subunitoftheplastidATPsynthasefromthecentricdiatomOdontellasinensis(55). In T. weissflogii, semiquantitative RT-PCR analysis of FCP gene expression revealedthattranscriptlevelsdecreaseduringprolongeddarknessandarehighly inducedfollowingasubsequentshifttowhitelight(58).InDunaliellatertiolecta, amarinegreenalga,ashiftfromhightolowirradianceleadstoarapidinduction of CAB gene expression (57). It has been proposed that this regulation allows increasedproductionoflight-harvestingpigmentcomplexesinconditionsoflow lightintensityandthatredoxsignalingfromthechloroplasttothenucleuscontrols the process (25). It will be interesting to determine whether such mechanisms also exist in diatoms and whether they contribute to the ability of diatoms to photosynthesizeatoptimallevelsoverawiderangeoflightintensities(30). Onepotentiallysignificantobservationthathasrecentlybeenmadeisthatdi- atoms may be capable of C photosynthesis (77). This is a specialized form of 4 photosynthesisthatisrestrictedtoafewlandplants,suchassugarcaneandmaize, andthatallowsamoreefficientutilizationofavailableCO .ThereportbyRein- 2 felder and colleagues is the first description of C photosynthesis in a marine 4 microalga, and the data suggest that C carbon metabolism may be confined to 4 thecytoplasm,awayfromtheRUBISCO-dependentreactionswithintheplastid. If shown to be a universal feature of diatoms, C photosynthesis may provide a 4 furtherexplanationfortheirecologicalsuccessintheworld’soceans,inthatitpro- videsameansofstoringcarbonforuseinlessfavorableconditions.Identification ofthegenesencodingkeyenzymesofC metabolismwillprovidethemolecular 4 toolsforexploringtheuniversalityofthistypeofphotosynthesisindiatoms. PERCEPTIONOFENVIRONMENTALSIGNALS Livingorganismsareconstantlybombardedwithinformationtowhichtheymust react.Inplantcells,bothexternalandinternalsignalsareamplifiedandcommuni- catedbycomplexsignaltransductionpathways,mostofwhichareinitiatedbythe activationofreceptorproteins(85).Themarineenvironmentpotentiallycontains 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 116 FALCIATORE ¥ BOWLER agreatnumberofphysicochemicalsignalsthatcanbeutilizedtocontrolorgan- ismaladaptiveresponsestochanginglocalconditions.Theimportanceofmolec- ularsensingofenvironmentalsignalsindiatomshasrecentlybeenexaminedby studyingcalcium-dependentsignaltransductioninP.tricornutum(28).Transgenic diatomcellscontainingthecalcium-sensitivephotoproteinaequorinweregener- atedtofollowchangesincalciumhomeostasisinresponsetoarangeofrelevant environmentalstimuli.Theresultsrevealedsensingsystemsfordetectingandre- sponding to fluid motion, osmotic stress, and nutrient limitation. In particular, anexquisitelysensitivecalcium-dependentsignalingmechanismwasinducedby iron,akeynutrientcontrollingdiatomabundanceintheocean(seebelow).Based onourknowledgeofcalciumsignalinginotherorganisms,thephysiologicalre- sponsesofdiatomstoenvironmentalchangesarethereforelikelytoberegulated bysense-process-respondchainsinvolvingspecificreceptorsandfeedbackmech- anisms,whoseactivityisdeterminedbytheprevioushistoryofthecell.Thefurther characterizationofsignaltransductionpathwaysthattunecellularmetabolismto ambientlightandnutrientlevelswillbeanimportantstepforunderstandingthe molecularmechanismsthatcontributetotheecologicalsuccessofdiatoms. Nutrients Externalnutrientconcentrationsarekeyregulatorsofphytoplanktongrowth.Inthe marineenvironment,nutrientssuchasnitrate,silicate,andphosphateareextremely important,andstrongevidencealsoimplicatesdissolvedironasbeingalimiting resource for phytoplankton growth in many regions of the oceans (see 29 and referencestherein).The“ironhypothesis”hasbeentestedandsupportedthrough insituironfertilizationexperimentsintheequatorialPacificOceanandelsewhere (15,18,64),whichresultedinaclearandunambiguousphysiologicalresponseto theadditionofiron—amassivephytoplanktonbloomofpredominantlydiatoms. Subsequently,someefforthasbeendedicatedtodevelopingmethodstodetermine irondeficiencyinphytoplanktoninsitu.Flavodoxinisthefirstsuchexampleofa molecularmarkerforstudyingdiatomcellphysiologyintheirnaturalcontext(56). Becausetheappearanceofthisproteincorrelateswithirondeficiency,flavodoxin hasbeenusedasanimmunologicalprobetomapthedegreeofironstressinnatural populations. Tobetterunderstandsomeofthenutrient-sensingmechanismsinmarinealgae, it will be necessary to clone genes encoding nutrient transporters. Besides the previouslydescribedsilicicacidtransporters(SIT),Hildebrand&Dahlinrecently reportedthecloningandinitialcharacterizationofthefirstgenesencodingnitrate transporters (NAT) in a marine organism, from the diatom C. fusiformis (39). The NAT proteins are predicted to have 12 membrane-spanning domains with hydrophyllic amino- and carboxy-termini that are located in the cytoplasm. The proteins show significant homology to the nitrate transporter family NRT2 of Aspergillus nidulans, but no similarity to the NTR1 class of Arabidopsis. NAT gene expression in C. fusiformis was sensitive to both the level and the type of 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH MARINEDIATOMS 117 nitrogensourceadded:Transcriptlevelswerehighinthepresenceofnitrate,were lowerinnitrite-growncultures,andwerehighlyrepressedwhenammoniumwas used as the nitrogen source. Southern hybridization experiments indicated that at least four copies of NAT genes are present in C. fusiformis and that multiple copiesarepresentinotherdiatomspecies,thusraisingtheexcitingpossibilityof developing“universal”probesforestimatingnitratetransportcapacityinmarine samples. Interestingly, we have recently found expressed sequence tags (ESTs) of P. tricornutumencodingproteinswithhighhomologytoseveralotherchanneland transporterproteins(e.g.,coppertransporter,ammoniumtransporter,ABCtrans- porter,glycinebetainetransporter,inorganicphyrophosphatetransporter)(79).The generation of ESTs therefore provides a powerful new approach for elucidating nutrienttransportsystemsindiatoms. Owingtotheimportantroleplayedbyironincontrollingphytoplanktongrowth, it will be important to clone iron transporter genes. Recently a gene encoding a membrane protein directly involved in Fe(III) uptake was cloned from maize (19)bycomplementationofayeastironuptakemutant.Expressionofthemaize gene in the mutant restored growth on Fe(III)-phytosiderophore media. Similar complementationexperimentsinyeastcouldbeusefulforidentifyingsuchproteins indiatoms. Light Light is another essential factor regulating the abundance of photosynthetic or- ganismsintheoceans.Inadditiontoconstitutingtheirprincipalenergysource,it providesmicroalgaewithpositionalinformationfromtheirlocalenvironment.As previouslymentioned,itisknownthatmarinephytoplanktonicorganismsareex- tremelyefficientatphotoacclimationandthattheyarehighlysensitivetochanges in spectral quality and light intensity (30). Although much is known about the mechanismsofphotoperceptionandsignaltransductioninplantslivingonland, themarineenvironmentimposesdifferentconstraints.Thespectraldistributionof solar irradiance is identical only on land and at the surface of water. Light flu- enceandqualitychangedrasticallywithdepth,andinoceanicwaters,bluelight predominates at greater depths (46). Furthermore, land plants are immobile, whereas many algae live suspended along the water column and can experience dramaticchangesinthelightfield.Consequently,phytoplanktonicorganismsare likely to have developed different ecological strategies to adapt to the variabil- ityofthelightconditions.Forexample,complementarychromaticadaptationisa processbywhichcyanobacteriaalterthecompositionoftheirphotosyntheticlight- harvesting apparatus (the phycobilisomes) in response to the spectral quality of theavailablelight(36).Kehoe&Grossmanreportedthatthechromaticadaptation sensorissimilartoplantphytochromephotoreceptors(44). Recently, Be´ja` et al. (7,8) described a new type of bacterial rhodopsin, dis- coveredthroughgenomicanalysesofnaturallyoccuringmarinebacterioplankton, 5Apr2002 10:17 AR AR156-05.tex AR156-05.SGM LaTeX2e(2001/05/10) P1:IKH 118 FALCIATORE ¥ BOWLER that can mediate light-driven proton-pumping activity. These data indicate that anunsuspectedphototrophicpathwayofbacteriallymediatedlight-drivenenergy generationmayoccurintheoceansandinfluencesignificantlythefluxesofcarbon andenergy. Another method that phytoplankton utilize to respond to light fluctuations is movement.Manyphotosyntheticflagellatealgaeactivelysearchforoptimallight conditions by means of phototaxis (80). The green alga Chlamydomonas rein- hardtiihasdevelopedarudimentarylight-sensingsystemthatenablesittomea- surethelightintensityanddirectioninaneyespot,ahighlypigmentedorganellein analmostequatorialpositionofthecell.Thephotoexcitationofarhodopsin-type photoreceptorintheeyespotgeneratesaphotoreceptorcurrentacrosstheeyespot regionofthecellmembranethatcaninduceflagellarmovement. Planktonic diatoms are not able to move actively because they do not have flagella, thus they are subject to passive movements such as sinking and water turbulence. The diatom Ditylum brightwellii can move up and down the water columnbychangingtheioniccompositionofitslargevacuole(32).Otherspecies cancontroltheirbuoyancybymakingcolonies,whichslowssettlinginthewater column because of the increase in surface to volume ratio (59). Some benthic diatoms, on the other hand, move by a mechanism involving the secretion of mucilagethroughtheirrapheslit(59).Indeed,somediatomslivinginsediments havebeenobservedtomigrateuptothesurfacebeforedawnanddownagainduring thefirsthoursofdarknessortomoveupanddownaccordingtothetides(38).In somelocations,thisphenomenonissodramaticthatthesandcanbeobservedto change color. Some, albeit limited, action spectra have been performed to study diatomphototaxis(38). Light-mediated plastid reorientation has been reported in different diatom species.TheactionspectrumforplastidorientationinPleurosiralaevisrevealed thattwodifferentphotoreceptorscouldbeinvolvedinthisresponse:agreenlight- sensitive photoreceptor that controls plastid dispersion and a UV-A/blue light- sensitivesystemthatcontrolsplastidassemblage(33).Itislogicaltoproposethat aphototropin-typephotoreceptor,homologoustoArabidopsisNPL1,isresponsi- bleforthelatterphenomenon(43). Tofurtherunderstandphotoperceptionmechanismsindiatoms,Leblancetal. (58) performed action spectra of FCP gene expression using the Okazaki large spectrograph.TheseexperimentsrevealedresponsestoUV-A,blue,green,red,and far-redlightwavelengths,suggestingthepresenceofcryptochrome-,rhodopsin-, and phytochrome-like receptors in marine diatoms. The apparent presence of phytochrome-mediatedresponsesisofparticularinterestgiventhelowfluencesof redandfar-redlightwavelengthsinmarineenvironments.Infact,becausewater selectivelyabsorbslightoflongerwavelengths,mostofthelightbelow15miscon- finedtotheblue-green(400–550nm)regionofthespectrum(46).However,recent estimatesofirradianceatredwavelengths,producedbythenaturalfluorescence ofchlorophyllinmarinephytoplankton,supporttheideathatthesesignalscould also be perceived and utilized as information even below the depth of maximal penetration of solar-derived red light (M. Ragni & M. Ribera, manuscript in

Description:
Laboratory of Molecular Plant Biology, Stazione Zoologica “A. Dohrn,” Villa construct submicrometer-scale silica structures for the nanotechnology
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.