RESEARCHARTICLE Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions PaolaPollegioni1¤*,KeithWoeste2,FrancescaChiocchini1,StefanoDelLungo3, MarcoCiolfi1,IreneOlimpieri1,VirginiaTortolano1,JoClark4,GabrielE.Hemery5, SergioMapelli6,MariaEmiliaMalvolti1 1 InstituteofAgro-environmentalandForestBiology,NationalResearchCouncil,Porano,Terni,Italy,2 U.S. D.A.ForestService,HardwoodTreeImprovementandRegenerationCenter,DepartmentofForestryand a1111111111 NaturalResources,PurdueUniversity,WestLafayette,Indiana,UnitedStatesofAmerica,3 TheInstituteof a1111111111 ArchaeologicalandMonumentalHeritage,NationalResearchCouncil,TitoScalo,Potenza,Italy,4 Earth a1111111111 Trust,LittleWittenham,Abingdon,Oxfordshire,UnitedKingdom,5 SylvaFoundation,LittleWittenham, a1111111111 Oxfordshire,UnitedKingdom,6 InstituteofAgriculturalBiologyandBiotechnology,NationalResearch a1111111111 Council,Milan,Italy ¤ Currentaddress:Genomics,GeneticsandBiologyInnovationPole,Perugia,Italy *[email protected] OPENACCESS Abstract Citation:PollegioniP,WoesteK,ChiocchiniF,Del LungoS,CiolfiM,OlimpieriI,etal.(2017) Commonwalnut(JuglansregiaL)isaneconomicallyimportantspeciescultivatedworldwide Rethinkingthehistoryofcommonwalnut(Juglans foritshigh-qualitywoodandnuts.ItisgenerallyacceptedthatafterthelastglaciationJ. regiaL.)inEurope:Itsoriginsandhuman interactions.PLoSONE12(3):e0172541. regiasurvivedandgrewinalmostcompletelyisolatedstandsinAsia,andthatancient doi:10.1371/journal.pone.0172541 humansdispersedwalnutsacrossAsiaandintonewhabitatsviatradeandculturalexpan- Editor:Tzen-YuhChiang,NationalChengKung sion.ThehistoryofwalnutinEuropeisamatterofdebate,however.Inthisstudy,weesti- University,TAIWAN matedthegeneticdiversityandstructureof91Eurasianwalnutpopulationsusing14neutral Received:September22,2016 microsatellites.Byintegratingfossilpollen,cultural,andhistoricaldatawithpopulation genetics,andapproximateBayesiananalysis,wereconstructedthedemographichistoryof Accepted:February5,2017 walnutanditsroutesofdispersalacrossEurope.Thegeneticdataconfirmedthepresence Published:March3,2017 ofwalnutinglacialrefugiaintheBalkansandwesternEurope.Weconcludethathuman- Copyright:©2017Pollegionietal.Thisisanopen mediatedadmixturebetweenAnatolianandBalkanwalnutgermplasmstartedintheEarly accessarticledistributedunderthetermsofthe BronzeAge,andbetweenwesternEuropeandtheBalkansineasternEuropeduringthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and RomanEmpire.Apopulationsizeexpansionandsubsequentdeclineinnortheasternand reproductioninanymedium,providedtheoriginal westernEuropewasdetectedinthelastfivecenturies.Theactualdistributionofwalnutin authorandsourcearecredited. Europeresultedfromthecombinedeffectsofexpansion/contractionfrommultiplerefugia DataAvailabilityStatement:Thedatasetforthis aftertheLastGlacialMaximumanditshumanexploitationoverthelast5,000years. studyisavailablefromthefigsharerepository (https://doi.org/10.6084/m9.figshare.4665235.v1). ThedatasetincludesgeographicsitesandSSR geneticdatafor91walnutpopulationssampledin Eurasia. Funding:Thisstudywassupportedbythe Introduction EuropeanCommunityintheframeworkofthe Commonwalnut(JuglansregiaL.)isaneconomicallyimportanttreespecies,highlyvaluedfor SeventhFrameworkProgrammeundertheMarie itstimberandediblenuts.Thisspeciesgrowswellinvirtuallyallpartsoftheworldwithatem- CurieActionsCOFUNDproject“I-MOVE”(N. 267232)Grantnumber206405. perateclimate[1].Itsancienthistoryofcultivationandwidespreadusethroughoutmuchof PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 1/24 RethinkingthehistoryofwalnutinEurope Competinginterests:Theauthorshavedeclared Eurasia,fromChinatowesternEurope,andtherelativescarcityofwide-scalemolecularphy- thatnocompetinginterestsexist. logeographicstudies,madeaccuratedeterminationofitsnativegeographicrangedifficult. Newdataandresources,however,includingthedevelopmentofhighlyinformativemolecular markersinJuglansspp.suchasSSRmarkers[2],therecentadventoflandscapegenetics[3], thepersistenceofcenturies-oldwalnuttreesinnaturalreservesisolatedfromplantations, accesstoremoteuncultivatedAsianwalnutpopulations[4]andarichfossilpollenrecordin Europe[5],providetheopportunitytoresolvethecomplexhumanandnaturalinteractions thatshapedtheevolutionaryhistoryofwalnutsincetheHoloceneinEurasia. ThehistoryofwalnutinAsiahasemergedasacomplexinteractionofbiogeographicand humanforces.AftertheLastGlacialMaximum(LGM),J.regiasurvivedandgrewspontane- ouslyinalmostcompletelyisolatedstandsinAsia,fromXinjiangprovinceofwesternChina throughcentralAsiatotheCaucasus.Barrierstogeneflow,suchastheTienShanandHima- layamountains,andtheprogressivedesertificationofcentralAsiaduringtheHolocenepro- motedthefragmentationandisolationofnaturalJ.regiapopulationsintheseregions[4]. Geneticanalysiscombinedwithethno-linguisticandhistoricaldatarevealedthatwhat appearedtobenativewalnutstandswereactuallytheresult,atleastinpart,ofancienthuman effortstomodifytheAsianlandscape[6].Humans,tradingwalnutalong"greencorridors” suchastheSilkRoadsandthePersianRoyalRoad,overcamegeographicbarriersandfacili- tatedwalnutexchangesacrossAsia[6–7].Theoriginandhuman-mediatedexpansionofwal- nutacrossEurope,however,isamatteroflong-standingdebate. FossilpollendepositsclearlyindicatethatJ.regiawasgrowinginsouthernSpain,Italy,France, Switzerland(Alps),Bulgaria(RhodopesMountains),Greece(Epirus),southwesternTurkeyand AlbaniaduringtheUpperPleistocene(126,000–12,000BP)(S1TableandS1Video).Considering thescarceremainsofwalnutpollenintheEuropeanpost-Eemiansequences,severalauthorspro- posedthatJ.regiaessentiallydisappearedinEuropeattheonsetoftheHolocene(~(cid:21)11,700BP), aftertheLastGlacialMaximum[8]anditshuman-mediatedreintroductionintoEuropefrom westernAsia(e.g.easternTurkeyandTransCaucasus)totheAegeanbasinoccurrednotbefore themiddleofthefourthmillenniumBP[9].Asecondwaveofmigrationintosouthwestern EuropefollowedtheGreekcolonizationaroundthe8thto5thcenturiesBCE(2800–2500BP) [10–11].Thisviewisbeingchallengednow.SubsequentpalynologicalfindsdemonstratedthatJ. regiamayhavesurvivedthecold,dryglacialintervalsinrefugialocatedinsouthernEurope[12– 14]andtheBalkans[15–18](S1Video).Carpologicalfossilsofwalnuthavebeenfoundinnorth- easternItaly(Sammardenchia,7,550BP)[19],Switzerland(nearLakeConstance,~6,000–4,350 BP)[20]andSlovenia(Hocevarica,5,600–5,500BP)[21].Assumingwalnutwasharvested/culti- vatedfromtheearlyNeolithictoBronzeAgeinEurope[13],wecan’truleouttheuseoflocal stands,formerlyprotectedfortheirfuelandfoodduringtimesofdramaticlandtransformations duetoglobalclimateoscillationsandgrowingeconomicpressures[22–23].Despiteinformation fromthefossilrecord,thereisnomolecularevidencethatJ.regiasurvivedtheLGMinEuropeas nopolymorphismwasdetectedin29demesofwalnutinEurasiausingchloroplastPCR-RFLP markers[24]. Irrespectiveoftheresolutionoftheconflictbetweenfossilandmolecularevidence,thedis- tributionofJ.regiainEuropewassurelymodifiedbyhumanmanagementoverthelast2,500 years.SuddenincreasesinJ.regiafossilpollencurveswererecordedinthetimewindow between2500and1000yearsBP,presumablyreflectingthewidespreadincreaseofwalnutcul- tivationfromGreekandRomantimesonwards[11](S1Video).AsdetectedinItaly,theselec- tionandfrequentinter-regionaltransferofwalnutseedsalongancientroutesprobably affectedthespatialgeneticstructureofJ.regia,decreasingitsdiversitybyselectionandincreas- ingitsgenetichomogeneitybydispersal[25–26].Nevertheless,despitelong-termscientific interest,acomparativeandfull-scaleoverviewofthegeneticresourcesofwalnutinEuropehas PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 2/24 RethinkingthehistoryofwalnutinEurope neverbeenundertaken,andneithertheputativedispersalroutesofwalnutacrossEuropenor thetime-scalesoverwhichsuchprocessesoccurredsincetheLateHolocenehavebeenstudied usingmolecularphylogeny. Here,wereportonalarge-scalestudyofthespatialgeneticstructureofwalnutpopulations inEuropeusingmicrosatellitemarkers,anditscomparisonwithautochthonouswalnutpopu- lationssampledinAsia.Ourobjectivewastheintegrationoffossilpollen,culturalandhistori- caldatawithpopulationgenetics(thelandscapegeneticoverlayapproach)[27],andthe inferenceofdemographichistoryusingapproximateBayesiancomputation(ABC)[28]to evaluateif(1)ancientreservoirsofwalnutdiversitystillexistinEurope,(2)clinesofgenetic diversityarepresentbetweenEuropeandAsianregionswherewalnutstillgrowsnaturally,(3) geneticclinesinJ.regiacanbeexplainedbytherecolonizationofwesternEuropefromrefugia ofwesternAsiathroughtheBalkans,or(4)whetherwesternAsiaandthesouthernEuropean/ Balkanspeninsulasrepresenttwoseparateregionsofwalnutevolution.Inaddition,weevalu- atedthehypothesisthatcultural/historicalfactorsplayedakeyroleinshapingthegenetic resourcesofwalnutinEuropesincetheLateHolocene. Materialsandmethods Commonwalnutcollection Overthelasttwodecades,theCNR-InstituteofAgro-environmentalandForestBiology (IBAF,Porano,Italy),CNR-InstituteofAgriculturalBiologyandBiotechnology(Milan,Italy) andtheEarthTrust(Oxfordshire,UK)havemonitoredandsampledcommonwalnuttreesin Europeandacrossthespecies’rangeinAsia.Althoughwewereunabletoobtainsamplesfrom allareas,weassembledalargeanduniquecollectionofJ.regia,including40Asianautochtho- nouswalnutpopulationssampledfromChina(6populations),Kyrgyzstan(9),Uzbekistan (17),Tajikistan(1),Pakistan(2),Iran(1),Turkey(2)andGeorgia(2)whichhavealreadybeen genotyped[4,6]and51EuropeanwalnutpopulationssampledfromGreece(4),Romania(1), Moldova(1),Hungary(10),Slovakia(1),Spain(1),France(4)andItaly(29),foratotalof91 populationsand2,008genotypes(S2Table,S1Fig).Thesewalnutpopulationsspanthirteen mountainsystemsinEurasia(TienShan,Gissar,Zaamin,Nurata,Pamir,Himalayas,Alborz, Trans-Caucasus,Balkans,Carpathians,Alps,Pyrenees,andApennines)(S1Fig).Onlycentu- ries-oldtreesinancientforestsornaturereservesweresampledinAsia.InEurope,wecare- fullyavoidedcollectingwalnutsamplesfromplantationsornon-protectedareas(S2Table). Sampledtreesineachpopulationwereseparatedby>100metres.Matureleavesweresampled fromeachwalnuttree,dehydrated,andthenstoredat−80˚CatCNR-IBAF(Porano,Italy). Microsatelliteanalysis Dehydratedleaftissue(60mg)fromeachEuropeanwalnutsamplewashomogenizedina2ml micro-centrifugetubecontaininga5-mmsteelbeadcooledwithliquidnitrogenusinga MixerMill300(Qiagen,Hilden,Germany).GenomicDNAwasextractedandpurifiedusinga DNeasy96PlantKit(Qiagen),andstoredat-20˚C. Inthisstudy,allEuropeansamplesweregenotypedusing14unlinkednuclear,neutral microsatellite(SSR)markers(WGA1,WGA4,WGA9,WGA27,WGA32,WGA69,WGA72, WGA79,WGA89,WGA118,WGA202,WGA276,WGA321,WGA331)alreadyselectedand usedforgeneticcharacterizationofwalnutinitsAsianrange[4,6].PCRamplificationandthe visualizationofamplifiedSSRallelesforeachsamplewerecarriedoutasdescribedbyPolle- gionietal[26].TheallelesizescoringwasperformedusingGeneMapperversion4(Applied Biosystems,FosterCity,CA,USA). PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 3/24 RethinkingthehistoryofwalnutinEurope Dataanalysis Geneticdiversityofwalnutpopulations. Standardmeasuresofgeneticdiversity,total numberofobservedalleles(A),effectivenumberofalleles(A ),observed(H )andexpected e O (H )heterozygosityandpolymorphicinformationcontent(PIC),thethreeunbiasedestima- E torsofWright’sF-statistics,within-populationinbreedingcoefficientf(F ),total-population IS inbreedingcoefficientF(F )andamong-populationgeneticdifferentiationcoefficientθ(F ) IT ST andtheunbiasedestimatorofJost’s(D )[29]werecomputedforeachlocusandoverallloci est asdescribedbyPollegionietal[4].Similarly,alleledropoutandnullallelesweretestedfor eachlocususingFreeNasoftware[30]. Levelsofgeneticdiversitywereestimatedforeachwalnutpopulationacrossalllociintermsof themeannumberofallelesperlocus(A),observed(H )expected(H )andunbiasedexpected o E heterozygosity(UH )usingtheGenAlExsoftware6.3[31].Toaccountfordifferenceinsample E size,allelicrichness(Rs)andprivateallelerichness(PAR)werecomputedbytherarefaction methodwithHP-Raresoftware[32].TheestimatesofRsandPARwerestandardizedonamini- mumsamplesizeofeightindividuals.FollowingtheprocedureofPollegionietal[4],theInverse DistanceWeighted(IDW)interpolationfunctionimplementedintheGeographicInformation System(GIS)softwareArcGIS9.3(ESRI,Redlands,Calif.USA)wasusedtodisplaythegeo- graphicpatternsofallelicrichness(Rs)andunbiasedexpectedheterozygosity(UH )computed E forall91walnutpopulations.Thewithin-populationinbreedingcoefficientF [33]wasestimated IS foreachpopulationusinghierarchicallocus-by-locusAMOVAasimplementedinArlequin3.11 software[34].ThestatisticalsignificanceofF wastestedusinganon-parametricapproachwith IS 1,000permutations.Todeterminewhetherwithin-populationgeneticvariationwascorrelated withgeographicgradients,weperformedasimplelinearregressionanalysisfollowedbythe sequentialBonferronicorrectionofallelicrichness(Rs)andunbiasedexpectedheterozygosity (UH )againstthreegeographicvariables,latitude,longitudeandelevationofsampledsites. E EvidenceofrecentpopulationsizedecreasewasinvestigatedusingtheprogramBOTTLE- NECK1.2.02[35].AsdescribedbyPollegionietal[4],significancewasassessedusingthe‘Wil- coxon’ssigned-rank’test,whichprovidesrelativelyhighpowerandcanbeusedwithasfewas fourpolymorphiclociandanynumberofindividuals.Bottlenecktestswereconductedunder Two-PhaseModel(TPM)ofevolutionwhichmostaccuratelyreflectedthemutationalmecha- nismofthemicrosatellitelociusedinthisstudy[26].AsrecommendedbyPiryetal[35],we usedtheTPMwith70%StepwiseMutationsModel(SMM)and30%multistepmutations.For eachmutationalmodel,10,000replicateswereperformed.Nevertheless,asreportedbyHenry etal[36],theheterozygosityexcesstestissensitivetoveryrecentdisturbances.Twoadditional testswereusedtoidentifybottlenecksignaturesfromlargertimescales:shiftedalleledistribu- tionanalysis[37]andtheM-ratiotest[38]implementedinBOTTLENECKandArlequinsoft- ware,respectively[4]. Geneticstructureanalysisofcommonwalnutpopulations. Twocomplementarystatis- ticalapproacheswereusedtodetectthegeneticstructureofwalnutpopulationsinEurasia. First,aBayesianclusteringapproachimplementedinSTRUCTUREsoftware2.3.3[39]was appliedasdescribedbyPollegionietal[6].Wereconstructedtheunderlyinggeneticstructure ofwalnutpopulationsandcomputedtheproportionofmembership(Q-value)foreachprede- finedpopulationandeachindividualmultilocusgenotypeineachoftheinferredclusters usingMarkovChainMonteCarlo(MCMC)simulations.STRUCTUREwasrunassuminga pre-assignednumberofclusters(K)rangingfrom1to90,theadmixturemodelonthewhole datasetwithoutaprioripopulationinformationandwiththecorrelatedallelefrequencies betweenpopulationsoption.Basedoninitialresults,aseriesofsixindependentrunswasper- formedforKbetween1and12withaburn-inperiodof100,000stepsfollowedby106MCMC PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 4/24 RethinkingthehistoryofwalnutinEurope replicates.ThefinalposteriorprobabilityofK,LnP(K),andΔK,therateofchangeofLnP(K) betweensuccessiveKvalues[40],wascalculatedtodetectthemostlikelynumberofpopula- tions.Therefore,thegroupsinferredbythefirstSTRUCTUREanalysisweresubsequently reprocessedseparatelyinordertoidentifypossiblesub-structure(sub-clusters).Thesixruns fromthemostprobablenumberofclusterswereaveragedapplyingtheFullSearchalgorithm providedbyCLUMPPsoftware1.1.2.[41].ThecorrespondingQ-matricesweregraphically displayedbyDISTRUCTsoftware[42].Afterdeterminingthemostprobablenumberofclus- ters,anarbitrarythresholdofQ(cid:21)0.75wasusedtoassignpopulationsand/orgenotypesto onegroup.Populationswith0.25<Q<0.75wereclassifiedasadmixed.Followingtheproce- dureofPollegionietal[6],wederivedKcontinuousclusteringsurfacesbyinterpolationofthe populationmembershipQ-valuesfortheKclustersestimatedfromSTRUCTUREusingthe IDWfunctionimplementedinArcGIS9.3.Asyntheticmaprepresentingthegeneticstructure ofwalnutinEurasiawasobtainedbyoverlayingthecomputedKclusteringsurfacemaps.We combinedmultipleKinterpolatedrasterbandsinasinglemultibandrasterdatasetbythe CompositeBandsfunctionimplementedinArcGIS9.3.TheintegrateduseoftheComposite Bands-toolandRGBcolorcodeallowedustodisplaytheinferredgeneticclustersofJ.regia populations. Finally,toconfirmthegeneticrepartitionofwalnutpopulationsinferredbySTRUCTURE, aNeighbor-Joiningphylogenetictreewasconstructedbasedon[43]geneticdistanceusing POPTREE2software[44]anddrawnusingFigTreesoftware(http://tree.bio.ed.ac.uk/software/ figtree/). ReconstructionofpostglacialdispersalroutesofwalnutinEurope. Thedemographic historyofwalnutanditshuman-mediatedpostglacialdispersalroutesinEuropewerefurther exploredusingtheapproximateBayesiancomputation(ABC)procedureoriginallyintroduced byBeaumontetal[28]andrecentlyimplementedinDIYABCv.2.0.4software[45]. Duetocomputationallimitationsandthecomplexityofpossiblescenarios,wesplit DIYABCanalysisintotwostagesandwepooledasubsetofEurasianwalnutsamplesintofour groupsasinferredbySTRUCTUREandNeighbor-Joiningtreeanalysis(S3Table).Genepool 1consistedof41individualsfromAnatolia(Turkey,Sub-cluster1–1);genepool2comprised 131individualsfromtheBalkans(admixedgenotypesbetweenCluster1andCluster4);gene pool3comprised279individualsfromnortheasternEurope(Sub-cluster4–2);andgenepool 4included650individualsfromwesternEurope(Sub-cluster4–1). InthefirststageoftheDIYABCanalysis,wetestedfivecompetingbroad-scalescenarios (Scenarios1a-5a)basedonhistoricalandfossilpollendata(S4Table).Scenarios1aand2a assumedafirstintroductionofwalnutfromAnatoliatotheBalkansfollowedbyaexpansion fromtheBalkansthroughnortheasternEuropetowesternEurope(Scenario1a,LandRoute) orfromtheBalkansthroughwesternEuropetonortheasternEurope(Scenario2a,Maritime Route).Then,wetestedthepresenceoftworefugia(AnatoliaandtheBalkans)withsubse- quentexpansionofwalnutfromtheBalkansthroughnortheasternEuropetowesternEurope (Scenario3a)orfromtheBalkansthroughwesternEuropetonortheasternEurope(Scenario 4a).Thefinalmodelofstage1(Scenario5a)testedacomplexscenarioofindependenthuman- induceddispersalofwalnutfromAnatoliaandwesternEuropetotheBalkanswhereadmix- tureoccurred,asubsequentexpansionfromwesterntonortheasternEuropeandafinalpopu- lationdeclineofwesternEurope.Alternativescenarios(e.g.westernEuropeasauniquecentre ofwalnutorigin)wereconsideredunrealisticandthereforewereexcluded(S4Table). ThesecondstageoftheDIYABCanalysiswasatafinerscale,assumingtworefugia(Anatolia andwesternEurope;Scenarios1b-3b)orthreerefugia(Anatolia,theBalkansandwesternEurope; Scenarios4b-6b),withadmixtureintheBalkans,apopulationsizeexpansioninnortheastern Europe,anddeclineinwesternEurope.Wealsoevaluatedthedispersalofwalnutintonorthern PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 5/24 RethinkingthehistoryofwalnutinEurope EuropefromwesternEurope(Scenario1b,4b),fromtheBalkans(Scenario2b,5b)orasaresult ofadmixturebetweenwesternEuropeandtheBalkangermplasm(Scenario3b,6b)(S4Table). Thepriorvaluesusedforallthedemographicparametersselectedfortenscenariosare listedinS3Table.FollowingtheprocedureofBaietal[46]forshorter-livedAsianbutternuts, weassumed80–110yearsasareasonablegenerationtimeforwalnut(productionofnuts10– 20yearsaftergermination;meanlifespanof~100–200years;[47]).Basedontheseassump- tions,wechosepriordistributionsforthetimingofevents(ingenerations)ofstage2including LastGlacialPeriod(100–10,000),postLGMperiod(10–200),BronzeandIronAge(20–60), Hellenistic-Romanperiod(10–25)andMiddleAges(1–15or1–10).Weassumedageneralized stepwisemutationmodelforSSRloci,withauniformmutationrateprior(μ)between10−4and 10−3.Theobservedandsimulatedgeneticdatasetsweresummarizedusingthemeannumberof alleles,meangeneticdiversity,meanallelesizevarianceforeachpopulation,Wright’sF ,mean ST individualassignmentlikelihoodsandmeanindexofclassification(DAS)amongpopulations. Wegeneratedareferencetablecontaining105simulateddatasetsforeachscenario,andsubse- quently1%ofthesimulateddatasetsclosesttotheobservedgeneticdatasetwereusedtoestimate posteriorprobabilities(with95%confidenceintervals)foreachscenariousingdirectandlogistic regressionapproaches[45].Theposteriordistributionofhistoricaldemographicparameterswas estimatedusingalogisticregressionof1%oftheclosestdatasetssimulatedaccordingtothemost likelyscenario.Tovalidatetheconfidenceinascenariochoice,wecalculated(1)TypeIError (Falsenegativerate)astheproportionoftimesthattheselectedscenariodidnotexhibitthehigh- estposteriorprobabilitycomparedwiththecompetingscenariosfor500pseudo-observeddata- setsgeneratedunderthebest-supportedmodel,and(2)TypeIIError(Falsepositiverate)asthe proportionoftimesthattheselectedscenariowasincorrectlyselectedasthemostlikelyscenario for500pseudo-observeddatasetsgeneratedundereachofthecompetingscenarios.Finally,we performedamodelcheckinganalysistoevaluateifamodel-posteriorcombinationfittedthe observeddatacorrectly.Theobservedsummarystatisticswerecomparedwiththosecomputed for1,000datasetssimulatedfromtheposteriordistributionofparametersobtainedunderthe selectedscenario[45]. Results GeneticdiversityofEurasianwalnutpopulations All14SSRlociusedinthepresentstudywerehighlypolymorphicinthesampledwalnutpopu- lations.Atotalof199allelesweredetectedinthe2,008walnuttreesgenotyped,withanaverage of14.21allelesperlocus.NoneoftheSSRlocishowedevidenceofnullalleles(foracomplete descriptionoftheSSRloci,seeS5Table).Geneticdiversityparametersvariedgreatlyamong Eurasianwalnutpopulations(S6Table).Threegeographicareasshowedhighvaluesofallelic richness(Rs)andunbiasedexpectedheterozygosity(UH ):1)south–centralAsiaincludingsites E inTibet(32-DASH),Kashmir–westernHimalaya(34-HUNZAand33-GILGIT,Pakistan), northernPamirridges(35-SHOULI,Tajikistan),GissarMountain(18-BAKHMAL,Uzbeki- stan),westernTienShan(19-KARANKULand17-BONSTANLYK,Uzbekistan);2)fourTrans- Caucasussites(37-LAGOand38-SKRA,Georgia;39-ANATOLIAand40-TRABZONTurkey) and3)fourBalkanpopulations(41-PAIKO_A,42_PAIKO_B,Greece;45-BRASOV,Romania; and46-CHISINAU,Moldova)(Fig1). Asignificantdeclineinallelicrichnesswasfoundwithdecreasinglongitude(r=0.522, P=0.00015)andincreasinglatitude(r=0.425,P=0.00135).Of199allelesdetected,33were uniquetoasinglegeographicsite,with23uniquetoAsianandtentoEuropeanwalnutpopu- lations(S6Table).Overall,F rangedfrom-0.066(74-SANNIO)to0.280(28-GUILI-2),and IS wassignificantlygreaterthanzeroin31of91sampledsites,indicatingasurplusof PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 6/24 RethinkingthehistoryofwalnutinEurope PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 7/24 RethinkingthehistoryofwalnutinEurope Fig1.Geneticdiversityof91walnutpopulationsinEurasia.InverseDistanceWeighted(IDW)interpolationoftheallelicrichnessvalues(Rs)(a) andunbiasedheterozygosityUH (b)calculatedfor91walnutpopulations(blackdots)inEurasiausing14SSRmarkers(abbreviationsCN=China, E UZ=Uzbekistan,KG=Kyrgyzstan,TJ=Tajikistan,PK=Pakistan,IR=Iran,GE=Georgia,TR=Turkey,MD=Moldova,RO=Romania, HU=Hungary,SK=Slovakia,GR=Greece,IT=Italy,FR=France,ES=Spain). doi:10.1371/journal.pone.0172541.g001 homozygotesin18(45%)and13(26%)ofAsianandEuropeanwalnutpopulations,respectively (S6Table).BasedontheTMPmodel,significant(P<0.05)signalsofrecentreductionineffec- tivepopulationsizeweredetectedinalargeproportionofEuropeansites(73%),butonlyin four(10%)Asianpopulations(4-SHAIDAN,5-KYZYL,17-BOSTANLYKand36-KARAJ).By contrast,usingtheMratiotest,weobservedageneticsignatureconsistentwithabottleneckin allpopulations.TheG–Wvaluesrangedfrom0.28117(36-KARAJ)to0.37939(72-VALCO), whichissubstantiallylowerthanthecriticalthresholdof0.68(S7Table). SpatialgeneticstructureofwalnutpopulationsinEurasia Thegeneticstructureofthe91sampledwalnutpopulationswasevaluatedusingSTRUCTURE andNeighbor-Joiningtreeclusteringanalysis.STRUCTUREindicatedfourasthemostappro- priatenumberofpopulationgroups.Thead-hocstatisticΔKofEvannoetal[40]combined withtheanalysisofLog-likelihooddistributionofdataL(K)asafunctionofK,recognized K=4asthebestrepresentationoftheunderlyinghierarchicalstructureofthe91walnutpopula- tionsinEurasia(S2Fig).Cluster1,centeredinwesternandsouth-centralAsia,includedallwal- nutssampledfromfourTrans-Caucasussites(37-LAGOand38-SKRA,Georgia;39-ANATOLIA and40-TRABZONTurkey),Alborzridges,Iran(36-KARAJ),Kashmir-westernHimalayas,Paki- stan(33-GILGITand34-HUNZA)andTibetan-easternHimalaya,China(32-DASH)(Q (cid:21) 1 0.8227)(S8Table).Inaddition,21walnuttrees(58.3%)collectedin19-KARANKUL(eastern Uzbekistan)andtenof67walnuttrees(14.9%)from28-GONGLIU-2(Xinjiangprovince,China) wereunambiguouslyassignedtocluster1(Q1(cid:21)0.800)(Fig2). Cluster2assembledsevenpopulationsfromtheNurataridgelocatedineast-centralUzbek- istanandfivepopulationsofnorthernandeasternChina,i.e.,foursitesintheeasternTien Shanmountains,Xinjiangprovince,andonesitefromShandongprovince(Q (cid:21)0.7639). 2 Cluster3comprisedallnineKyrgyzandfourUzbekpopulations(10-Kamchik,11-Yakkatut, 12-Sidjakand13-Charvak)sampledinthewalnutforestsofthewesternTienShanmountains (Q (cid:21)0.7856).TheremainingthreewalnutpopulationsinthewesternTienShanmountains 3 (14-Nanai,16-Bogustan,17-Bostanlyk)andtwopopulationsfromtheGissarmountains (15-Djarkurgan)andtheZaaminmountains(18-Bakhmal)ineasternUzbekistanweremainly admixturesbetweencluster2(0.2013(cid:20)Q (cid:21)0.3740)andcluster3(0.4987(cid:20)Q (cid:21)0.7118). 2 3 Cluster4includedallEuropeanwalnutpopulationssampledinSpain,Italy,France,Slovakia, Crete(Greece)andHungary(Q (cid:21)0.7648),exceptforfiveeasternmostBalkanpopulations 4 locatedinGreece(Macedonia,41-PAIKO_A,42_PAIKO_B;Peloponnese,43-ARCADIA), Romania(45-BRASOV),andMoldova(46-CHISINAU)andtheremainingpopulationfrom Tajikistan(35-SHOULI),whichshowedadmixedprofilesbetweencluster1(0.3101(cid:20)Q (cid:21) 1 0.7420)andcluster4(0.2230(cid:20)Q (cid:21)0.6663)(Fig2,S8Table). 4 SubsequentSTRUCTUREanalysiswithineachofthepreviouslyinferredclustersrevealed geneticsubstructure,exceptforcluster3(S2FigandS8Table).Theinferredcluster1wascom- posedoffoursub-clusters(K’=4).Thesefoursub-clusterssplitwalnuttreesof39-ANATOLIA, 40-TRABZON(Turkey),36-KARAJ(Iran)and19-KARANKUL(21samples,easternUzbeki- stan)(sub-cluster1–1),from38-LAGO,39-SKRA(Georgia)(sub-cluster1–2),28-GONGLIU-2 (tensamples,Xinjiangprovince,China),32-DASH(Tibet,China)(sub-cluster1–3)and33-GIL- GIT,34-HUNZA(Kashmir,Pakistan)(sub-cluster1–4)(Fig3A). PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 8/24 RethinkingthehistoryofwalnutinEurope Fig2.Spatialgeneticstructureof91walnutpopulationsinEurasia.Populationstructureinferencefor91walnutpopulationsbyBayesianassignment usingSTRUCTUREforK=4.SyntheticmapofInverseDistanceWeighted(IDW)interpolationsoftheestimatedmeanpopulationmembershipvalues(Q) i (a)andbarplotshowingassignmentprobabilitiesofindividualstoKclusters(b).Abbreviations:CN=China,UZ=Uzbekistan,KG=Kyrgyzstan, TJ=Tajikistan,PK=Pakistan,IR=Iran,GE=Georgia,TR=Turkey,MD=Moldova,RO=Romania,HU=Hungary,SK=Slovakia,GR=Greece,IT=Italy, FR=France,ES=Spain. doi:10.1371/journal.pone.0172541.g002 Twosub-clustersoftheinferredcluster2(K”=2)correspondedtotwodistinctgroupsof walnutpopulationssampledineast-centralUzbekistan(sub-cluster2–1)andChina(sub-clus- ter2–2,Fig3B).Finally,twosub-clustersoftheinferredcluster4(K”‘=2)extendedfrom SpaintonorthwesternHungary(Gyo¨r-Moson-SopronProvince,55-BONY,56-MOSONM) (sub-cluster4–1)andfromeasternHungaryandSlovakia(CarpathiansMountains)towestern Crete(44-CHANIA)(sub-cluster4–2)(Fig3C).ANeighbor-JoiningtreebasedonNei’s[39] geneticdistanceconfirmedthepreviousresultsandshowedthatfiveeasternmostBalkansites inGreece(MacedoniaandPeloponnese),RomaniaandMoldovamightrepresentthecontact zonesbetweenEuropean(Cluster4)andsouthwestAsian(Cluster1)germplasmpassing throughtheAnatolianplateau(sub-cluster1–1)(Fig4). InferringdemographichistoryofwalnutinEuropeusingABCanalysis TheABCmethodenabledustotesttendemographicscenarios(S4Table)andtodelineate postglacialdispersalroutesofwalnutacrossEurope.InthefirststageoftheDIYABCanalysis, bothdirect(P )andlogisticregression(P )approachesidentifiedscenario5aasthemostlikely 1 2 model(Table1,S3Fig,P =0.3620,95%CIs:0.0000–0.7832,P =0.9474,95%CIs:0.8396– 1 2 1.0000). FourexcludedscenariosassumedthatpopulationsfromAnatolia(Scenario1a-2a)orthe Balkans(Scenario3a-4a)servedasauniquesourceforthehuman-mediatedwalnutcoloniza- tionoftherestofEurope.Scenario5aproposedtwoindependentdispersaleventsofwalnut fromAnatolia(Pool1)andwesternEurope(Pool4)totheBalkanswithsubsequentgenetic admixture(Pool2).InthesecondstageoftheDIYABCanalysis,wetestedsixfine-scale PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 9/24 RethinkingthehistoryofwalnutinEurope Fig3.Spatialgeneticsub-structureoftheinferredclusters1,2and4ofwalnutpopulations.SyntheticmapsofInverseDistanceWeighted(IDW) interpolationsoftheestimatedmeanpopulationmembershipvalues(Q)andbarplotfor(a)K’,themostprobablenumberofsub-clusters,basedon i microsatelliteanalysisof217walnutsamplesofcluster1,(b)forK”,themostprobablenumberofsub-clusters,basedonmicrosatelliteanalysisof280 walnutsamplesofcluster2and(c)forK”‘themostprobablenumberofsub-clusters,basedonmicrosatelliteanalysisof929walnutsamplesofcluster 4. doi:10.1371/journal.pone.0172541.g003 scenariosalwaysincludingtwo(AnatoliaandwesternEurope,scenario1b-3b)orthreeglacial refugia(Anatolia,theBalkansandwesternEurope,scenario4b-6b)withadmixtureeventsin theBalkans(S4Table).Acomparisonofposteriorprobabilitiesofthesixscenariosunambigu- ouslyindicatedthatscenario6bwasthemostlikelymodel(Table1,S3Fig,P =0.3840,95% 1 PLOSONE|DOI:10.1371/journal.pone.0172541 March3,2017 10/24
Description: