ebook img

Resummed QCD Power Corrections to Nuclear Shadowing PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Resummed QCD Power Corrections to Nuclear Shadowing

Resummed QCD Power Corrections to Nuclear Shadowing Jianwei Qiu and Ivan Vitev Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our 2 A 2 resultsfortheBjorkenx-,Q -andA-dependenceofnuclearshadowinginF2 (x,Q )andthenuclear A 2 modifications to FL(x,Q ), obtained in terms of the QCD factorization approach, are consistent with the existing data. We demonstrate that the low-Q2 behavior of these data and the measured largelongitudinalstructurefunctionpointtoacriticalroleforthepowercorrectionswhencompared toother theoretical approaches. 5 PACSnumbers: 12.38.Cy;12.39.St;24.85.+p;25.30.-c 0 0 2 Inordertounderstandtheoverwhelmingdatafromthe in [7]. The transverse and longitudinal structure func- RelativisticHeavyIonCollider(RHIC)andmakepredic- tions arerelatedto the standardDISstructure functions n tionsforthefutureElectronIonCollider(EIC)andLarge F , F as follows: F (x,Q2) = F (x,Q2), F (x,Q2) = a 1 2 T 1 L J HadronCollider(LHC)intermsofthesuccessfulpertur- F2(x,Q2)/(2x)−F1(x,Q2) if 4x2m2N ≪ Q2 [6]. In DIS 0 bative QCD factorization approach [1] we need precise the exchange photon γ∗ of virtuality Q2 and energy 1 information of the nuclear parton distribution functions ν = Q2/(2xmN) probes an effective volume of trans- (nPDFs)φA(x,µ2)offlavorf,atomicweightA,momen- verse area 1/Q2 and longitudinal extent ∆z × x /x, f N N 2 tum fraction x and factorization scale µ. Although the where ∆z is the nucleon size, x = 1/(2r m ) ∼ 0.1 N N 0 N v µ-dependence of leading twist nPDFs can be calculated and r ∼ 1.2 fm [5]. When Bjorken x ≪ x the lepton- 0 N 4 in terms of pQCD evolution equations, the x- and A- nucleusDIScoversseveralnucleonsinlongitudinaldirec- 9 dependent boundary condition at a scale µ must be tionwhileitislocalizedinthetransverseplane. Although 0 0 9 fixed from existing measurements, mostly of the struc- a hard interaction involving more than one nucleon is 0 turefunctionFA(x,µ2)inlepton-nucleusdeeplyinelastic suppressed by powers of 1/Q2 [5], it is amplified by the 2 3 scattering (DIS) [2]. It was pointed out recently [3] that nuclear size if x ≪ x . In the collinear factorization N 0 the available fixed-target data contain significant higher approach we evaluate the nuclear enhanced power cor- / h twist effects hindering the extraction of the nuclear par- rections to the structure functions to any power in the p ton distributions. quantity (ξ2/Q2)(A1/3 −1) and keep ξ2 to the leading - order in α . p On the other hand, it has been argued that for physi- s In terms of collinear QCD factorization, the structure e cal processes where the effective x is very small and the h typicalmomentumexchangeofthecollisionQ∼µisnot functions at the lowest order in αs are given by [6] : v large the number of soft partons in a nucleus may sat- 1 i urate [4]. Qualitatively, the unknown boundary of this F(LT)(x,Q2) = Q2φ (x,Q2)+O(α ), (1) X T 2 f f s novel regime in (x,Q) is where the conventional pertur- Xf r bative QCD factorization approach should fail [5]. a F(LT)(x,Q2) = O(α ), (2) L s In this Letter we present a pQCD calculation of the resummedpowercorrectionstotheDISnuclearstructure where (LT) indicates the leading twist contribution, f functionsanddemonstratetheirimportanceinextracting runs over the (anti)quark flavors, Qf is their fractioPnal nPDFs. From our results we quantitatively identify the charge and φ is the leading twist quark distribution: characteristic scale of these power corrections ξ2 ≪m2 , f N fwoirthQn2u≥clemon2NminacslsusmivNe l=ept0o.9n4-nGucelVeu.sWDeIScoinscalubdoveeththaet φf(x,µ2)=Z d2λπ0 eixλ0hp|ψ¯f(0)2γp++ ψf(λ0)|pi (3) saturationboundaryandcanbetreatedsystematicallyin the frameworkof the pQCD factorizationapproachwith in the lightcone A+ = nµA = 0 gauge for hadron mo- µ resummed high twist contributions. mentum pµ = p+n¯µ, where n¯µ = [1,0,0⊥] and nµ = Under the approximation of one-photon exchange, [0,1,0⊥] specify the “+” and “−” lightcone directions, the lepton-hadron DIS cross section dσ /dxdQ2 ∝ respectively. In Eq. (3) the parameter λ =p+y−. ℓh 0 0 L Wµν(x,Q2), with Bjorken variable x = Q2/(2p·q) Tocomputethenuclearenhancedpowercorrectionswe µν and virtual photon’s invariant mass q2 = −Q2. The choose the A+ = 0 gauge and a frame in which the nu- leptonic tensor L and hadronic tensor Wµν are de- cleusismovinginthe“+”direction,pµ ≡Pµ/A=p+n¯µ, µν A fined in [6]. The hadronic tensor can be expressed in and the exchange virtual photon momentum is qµ = terms of structure functions based on the polarization −xp+n¯µ+Q2/(2xp+)nµ. In this frame the struck quark states of the exchange virtual photon: Wµν(x,Q2) = propagates along the “−” direction and interacts with ǫµνF (x,Q2)+ǫµνF (x,Q2), where ǫµν, ǫµν are given the “remnants” of the nucleus. The leading tree level T T L L L T 2 γν∗ t=oo γµ∗ Since the effective γL∗ coupling is made of short-distance contact terms of quark propagators [9], the integrals of λ˜ and λ˜ in Eq. (5) should be localized. 0 n To derive the gauge invariant and nuclear enhanced y− y− powercorrectionsatthe treelevel,weaddgluoninterac- = y0− i (a) j 0− tions to the struck quark and convertthe gluon field op- γ∗ γ∗ γ∗ eratorsinthehadronicmatrixelementofWµν tothecor- T x0 , L x0 + L x0 rbeespaonnedvinengfineulmdbsterrenogftihnt[e5r,a7c]t.ioWnsebnoettweetehnatththeerγe∗mcouust- ~xxx0 x~0 pling and the final-state cut because the quark propaga- torofmomentumx p+q hasonlytwotypesofterms[9], y0− (b) y0− yy~0− (c) y0− y~0− i(γ+/2p+)/(xi−x±iiǫ)(poleterm−×→)andi(xp+/Q2)γ− xi−1 ~xi xi = xi−1 xi l(acroinzteadc.t tCeormnse−q|→ue)n,talyn,dththeesgulmuomnastaiorne torfanthsveercsoehlyerpenot- multiple scattering can be achieved by sequential inser- tion of a basic unit consisting of a pair of gluon interac- yy~− y− (d) y− tions,left-sideofFig.1(d),connectedbyaquarkcontact i i i term, and a quark pole term to the left (L) or right (R) if the unit is to the left or right of the final-state cut. FIG. 1: (a) Tree level multiple final state scattering of the struck quark in DIS on nuclei; (b) and (c) leading coupling Integrating over the loop momentum fraction x˜i, we can for transversely and longitudinally polarized photons to the replace this unit by an effective scalar interaction, right- activepartons,respectively;(d)effectivescalarvertexforthe side of Fig. 1(d), with a rule, basic two-gluon interactions. contributionsto Wµν inlepton-nucleus DIS aregivenby (cid:18)x43πQ2α2s(cid:19)Z d2λπi xeii−(xix−ix−i−11−)λiiǫ γγ−+2γγ−+−x−ii−FiˆF1ˆ2−2(λ(xλi+i))iǫ RL . the Feynman diagrams in Fig. 1(a). The cut-line rep- 2 xi−x−iǫ (6) resents the final state quark and the blob connected to  γ∗ - the lowest order coupling between the photon and InEq.(6)theboost-invariantoperatorFˆ2(λi)isdifferent the active partons. For transversely polarized photons from Fˆ2 in Eq. (5) and is defined as λ0 Fig. 1(b) gives the leading twist contribution in Eq. (1). ∗ For longitudinally polarizedγ the leading tree coupling dλ˜ F+α(λ )F +(λ˜) Fig. 1(c) results in the first power correction to F : Fˆ2(λ )≡ i i α i θ(λ −λ˜). (7) L i Z 2π (p+)2 i i 1 4π2α FL(x,Q2) = F(LT)(x,Q2)+ 2 Q2f4(cid:18) 3Q2s(cid:19) Its expectation value can be related to the small- Xf x limit of the gluon distribution, hp|Fˆ2(λ )|pi ≈ i × dλ0 eixλ0hp|ψ¯ (0) γ+ ψ (λ )Fˆ2 |pi, (4) limx→0 21xG(x,Q2), and is independent of λi. It is the Z 2π f 2p+ f 0 λ0 dλiinEq.(6)thatgivestheA1/3-typenuclearenhance- Rment[5]. Assumingthattheinteractionleavesthenucle- where the O(α ) F(LT) is given in [8] and the operator ons in a color singlet state, taking all possible final state s L cuts [10] and performing the integrals over the incoming dλ˜ dλ˜ F+α(λ˜ )F +(λ˜ ) partons’momentum fractionswe obtainthe twist 2+2n Fˆλ20=Z 2nπ 0 (pn+)2α 0 θ(λ˜n)θ(λ˜0−λ0). (5) contribution to the structure functions: 1 4π2α n dλ (iλ )n γ+ n δF(n) ≈ Q2 x s 0 eixλ0 0 hP |ψ¯ (0) ψ (λ ) dλ θ(λ )Fˆ2(λ ) |P i, (8) T 2 f(cid:20) 3Q2 (cid:21) Z 2π n! A f 2p+ f 0 (cid:20)Z i i i (cid:21) A Xf iY=1 1 4 4π2α n dλ (iλ )n−1 γ+ n−1 δF(n) ≈ Q2 x s 0 eixλ0 0 hP |ψ¯ (0) ψ (λ )Fˆ2 dλ θ(λ )Fˆ2(λ ) |P i, (9) L 2 f x(cid:20) 3Q2 (cid:21) Z 2π (n−1)! A f 2p+ f 0 λ0 (cid:20)Z i i i (cid:21) A Xf iY=1 with corrections down by powers of the nuclear size. (9) in a model ofa nucleus of constantlabframe density ρ(r) = 3/(4πr3) and approximate the expectation value Weevaluatethemulti-fieldmatrixelementsinEqs.(8), 0 3 oftheproductofoperatorstobeaproductofexpectation 1.1 D) CERN-NA37 CERN-NA37 values of the basic operator units in a nucleon state of F(2 1 momentum p=PA/A: A)/ F(2 0.9 QV n n hPA|Oˆ0 iY=1Oˆi|PAi=Ahp|Oˆ0|piiY=1hNphp|Oˆi|pii , 0.8 ξ2 = 0.09 - 0.12 Ge4VH2e 6Li withthenormalizationNp =3/(8πr03mN). Theintegrals ∆D-T 0.01 QV dλiθ(λi) = (3r0mN/4)(A1/3 −1) are taken such that EKS89 -0.1 tRhe nuclear effect vanishes for A = 1. Resumming the A1/3-enhanced power corrections Eqs. (8), (9) we find: D) FNAL-E665 F(2 1 CERN-NA37 / FA(x,Q2) ≈ N A ξ2(A1/3−1) nxn dnFT(LT)(x,Q2) F(A)2 0.9 T n!(cid:20) Q2 (cid:21) dnx 0.8 nX=0 FNAL-E665 xξ2(A1/3−1) 0.7 CERN-NA37 12C 40Ca ≈ AF(LT) x+ ,Q2 , (10) T (cid:18) Q2 (cid:19) D-T 0.1 ∆ N A 4ξ2 0 FA(x,Q2) ≈ AF(LT)(x,Q2)+ -0.1 L L n!(cid:18)Q2 (cid:19) × (cid:20)ξ2(A1Q/32−1)(cid:21)nnX=x0n dnFT(LdTn)(xx,Q2) F(A)/F(D)22 00..981 FFNNAALL--EE666655 FNAL-E665 ≈ AF(LT)(x,Q2)+ 4ξ2 FA(x,Q2), (11) 0.7 L Q2 T 0.6 131Xe 208Pb where N is the upper limit on the number of quark- 0.2 0.1 nucleon interactions and ξ2 represents the characteristic D-T 0 ∆ -0.1 scale of quark-initiated power corrections to the leading -0.2 order in αs 0.0001 0.001 0.01 0.1 0.001 0.01 0.1 x x 3πα (Q2) B B ξ2 = s hp|Fˆ2(λ )|pi. 8r02 i FIG. 2: All-twist resummed F2(A)/F2(D) calculation from Eqs.(10),(11)versusCERN-NA37[14]andFNAL-E665[13] In deriving Eqs. (10), (11) we have taken hp|Fˆ2 |pi ≈ data on DIS on nuclei. The band corresponds to the choice (3r m /4)hp|Fˆ2(λ )|pi and N ≈ ∞ because thλe0 effec- ξ2 = 0.09−0.12 GeV2. Data-Theory, where ∆D−T is com- 0 N i putedfor theset presented bycircles, also shows comparison tive value of ξ2 is relatively small, as shown below. totheEKS98scale-dependentshadowingparametrization[2]. Eqs. (10), (11) are the main result of this Letter. Im- portant applications to other QCD processes and ob- servables that naturally follow from this new approach overestimatedthe shiftinthe regionxclosetox where are given in [11]. The overall factor A takes into ac- N the N ≈ ∞ should fail [11]. In Fig. 2, we impose count the leading dependence on the atomic weight and Q2 =m2 for virtualities smaller than the nucleon mass, the isospin averageover the protons and neutrons in the N nucleus is implicit. We emphasize the simplicity of the below which high order corrections in αs(Q) need to be included and the conventional factorization approach end result, which amounts to a shift of the Bjorken x by ∆x = xξ2(A1/3 − 1)/Q2 with only one parameter might not be valid. Our result is comparable to the ξ2 ∝limx→0xG(x,Q2). In the following numerical eval- EKS98 scale-dependent parametrization [2] of existing uation we use the lowest order CTEQ6 PDFs [12]. dataonthenuclearmodificationtoF2A(x,Q2),asseenin Fig. 2 shows a point by point in (x,Q2) calculation the∆D−T =Data−TheorypanelsofFig.2. Weempha- of the process dependent modification to F (A)/F (D) size,however,thatthephysicalinterpretationisdifferent: 2 2 in [2] the effect is attributed to the modification of the (per nucleon) in the shadowing x<0.1 region compared to NA37 and E665 data [13, 14]. We find that a value input parton distributions at µ0 =1.5 GeV in a nucleus of ξ2 = 0.09−0.12 GeV2, which is compatible with the and its subsequent leading twist scale dependence. In rangefrompreviousanalysis[15] ofDrell-Yantransverse contrast, our resummed QCD power corrections to the momentum broadening (ξ2 ∼ 0.04 GeV2) and momen- structure functions systematically cover higher twist for tumimbalanceindijetphotoproduction(ξ2 ∼0.2GeV2), all values of Q≥µ0. makes our calculations consistent with the both x- and With ξ2 fixed, Fig. 3 shows the predicted Q2 depen- A-dependence of the data. Our calculations might have dence of F (Sn)/F (C). The Q2 behavior of our result, 2 2 4 C) 1.1 showcomparisontotheEKS98parameterization[2]. The F(2 Ax=rm0.0es1r2o5 et al. Ax=rm0.0es1t7o5 et al. QCDpowercorrectionsatsmallandmoderateQ2 tothe n)/ 1 QV leading twist structure functions can also be tested via S F(2 theratioofthecrosssectionsforlongitudinallyandtrans- versely polarized virtual photons 0.9 CERN-NA37 CERN-NA37 σ FA(x,Q2) D-T 0.1 EKS98 QV ξ2 = 0.09 - 0.12 GeV2 R(x,Q2;A)= σL = FLA(x,Q2) . (12) ∆ T T 0 -0.1 ComparisontoE143datafor12C[18]isgiveninthebot- C) 3 10 30 F(2 x=0.035 Q2 [GeV2] tomrightpanelofFig.3. Thedashedcurveincludesonly F(Sn)/2 1 R0. 8= σL /σT SLAC-E143 tahnedbisreimnssesntsriathivluentgo amnoddigfilcuaotnionspsliotftitnhgeFnuL(LcTle)arfrpomart[o8n] distributions. The gray band represents a calculation of 0.9 0.6 R, FL(LT) R from Eqs. (10), (11). R, F CERN-NA37 L Inconclusion,forξ2 =0.09−0.12GeV2 ourcalculated D-T 0.1 0.4 and resummed power corrections are consistent with the ∆ 0 0.2 x-, Q2- and A-dependence of existing data on the small- -0.1 12C x nuclear structure functions without any leading twist 1 3 10 30 0 0.04 0.08 0.12 shadowing. Ourresults,therefore,giveanupper limitfor Q2 [GeV2] xB the characteristic scale ξ2 of these power corrections in DIS on cold nuclear matter. Furthermore, the enhance- FIG. 3: CERN-NA37 data [17] on F2(Sn)/F2(C) show evi- ment of the longitudinal structure function FLA(x,Q2) dence for a power-law in 1/Q2 behavior consistent with the strongly favors a critical role for the higher twist in the all-twistresummedcalculation. ComparisontoGribov-Regge presentlyaccessible(smallx<0.1,Q2 ∼fewGeV2)kine- model by Armesto et al. [16] and the EKS98 shadowing matic regime. Less leading twist shadowing and corre- parametrization [2](in∆D−T)isalsopresented. Thebottom spondinglylessantishadowingthancurrentlyanticipated right panel illustrates the role of higher twist contributions will have an important impact on the interpretation of to FL on the example of R = σL/σT. Data is from SLAC- the d + A and Au + Au data from RHIC [19]. The E143 [18]. predictions of this systematic approach to the process- dependentlowQ2nuclearmodificationinQCDprocesses will also be soon confronted by copious new data from distinctly different from a Gribov-Regge model calcu- lation by Armesto et al. [16], highlights the important RHIC, EIC and the LHC. role of resummed QCD power corrections, when pre- This work is supported in partby the US Department sentedversusNA37data[17]. Data-Theorypanelsagain of Energy under Grant No. DE-FG02-87ER40371. [1] J.C. Collins, D.E. Soper, G. Sterman, Adv. Ser. Direct. [9] J.W. Qiu, Phys.Rev.D 42, 30 (1990). High Energy Phys. 5, 1 (1988); J.W. Qiu, G. Sterman, [10] J.W. Qiu, I. Vitev, Phys. Lett. B 570, 161 (2003); Nucl.Phys. B 353, 137 (1991). M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 [2] K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. (2001); Phys.Rev.Lett. 85, 5535 (2000). J. C 9, 61 (1999); M. Hirai, S. Kumano, M. Miyama, [11] J. Qiu and I. Vitev, hep-ph/0401062. Phys. Rev. D 64, 034003 (2001); A. Accardi et al., [12] J. Pumplin et al.,JHEP 0207, 012 (2002). hep-ph/0310274; references therein [13] M.R.Adamsetal.,Z.Phys.C67,403(1995);Phys.Rev. [3] L. Frankfurt, V. Guzey and M. Strikman, Lett. 68, 3266 (1992). hep-ph/0303022. [14] M. Arneodo et al., Nucl. Phys. B 441, 12 (1995); [4] A.H. Mueller, Nucl. Phys. B 558, 285 (1999); P. Amaudruzet al.,Nucl. Phys. B 441, 3 (1995). E. Iancu, R. Venugopalan, hep-ph/0303204; L. McLer- [15] X.F. Guo, Phys. Rev. D 58, 114033 (1998); M. Luo, ran, hep-ph/0311028; references therein. J.W. Qiu, G. Sterman, Phys. Rev. D 49, 4493 (1994); [5] J.W. Qiu, G. Sterman, Int. J. Mod. Phys. E 12, 149 Phys. Rev.D 50, 1951 (1994). (2003); J.W. Qiu,Nucl. Phys.A 715, 309 (2003). [16] N. Armesto et al.,hep-ph/0304119; references therein. [6] R.Brock et al., Rev.Mod. Phys. 67, 157 (1995). [17] M. Arneodoet al.,Nucl. Phys.B 481, 23 (1996). [7] X.F. Guo, J.W. Qiu, W. Zhu, Phys. Lett. B 523, 88 [18] K. Abeet al., Phys.Lett. B 452, 194 (1999). (2001). [19] I.Vitev,Phys.Lett.B562,36(2003); I.Vitev,M.Gyu- [8] G. Altarelli, G. Martinelli, Phys. Lett.B 76, 89 (1978); lassy, Phys.Rev. Lett. 89, 252301 (2002). M. Gluck,E. Reya,Nucl. Phys. 145, 24 (1978).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.