©2018.PublishedbyTheCompanyofBiologistsLtd|JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 RESEARCHARTICLE Restricted cell functions on micropillars are alleviated by surface- nanocoating with amino groups CarolineMoerke1,SusanneStaehlke1,HenrikeRebl1,BirgitFinke2andJ.BarbaraNebe1,* ABSTRACT implantintothenativebone,whichisachievedbyacceleratingthe onsetandtherateofimmediateosteoblasticcellattachmentaswell Thetopographicalandchemicalsurfacefeaturesofbiomaterialsare asproliferation(Bacakovaetal.,2011).Therefore,implantsurface sensedbythecells,affectingtheirphysiologyattheinterface.When designwithitstopographicalaswellaschemicalproperties,hasa placed on titanium, we recently discovered osteoblasts attempted huge impact on osseointegration. Implant materials have to fulfill caveolae-mediatedphagocytosisofthesharp-edgedmicrostructures. certain requirements concerning corrosion resistance and This active, energy-consuming process resulted in decreased biocompatibility. Titanium (Ti) is an inert and biocompatible osteoblastic cell functions (e.g. secretion of extracellular matrix material and therefore commonly used as an orthopedic implant proteins). However, chemical modification with plasma polymerized material (Bacakova et al., 2011). Osseointegration is enhanced on allylamine (PPAAm) was able to amplify osteoblast adhesion and roughertitaniumsurfacesratherthanonsmoothones,butitisalso spreading,resultinginbetterimplant osseointegrationinvivo.Inthe accompaniedbychangesinthecellphysiology,suchastheintegrin present in vitro study, we analyzed whether this plasma polymer expression, if the titanium surface features sharp edges (Lüthen nanocoating is able to attenuate the microtopography-induced etal.,2005;Bacakovaetal.,2011).Newimplantdesignstrategies changes of osteoblast physiology. On PPAAm, we found cells pursuethedevelopmentofnewbioactivesurfacestoevokecellular showeda highercellinteraction withthe geometrical micropillarsby responses that promote osseointegration (Wennerberg and 30min, and a less distinct reduction in the mRNA expression of Albrektsson, 2009); these include the coating of the surface to collagentypeI,osteocalcinandfibronectin after24hofcellgrowth. change its chemistry. In this case, coating with polymerized Interestingly, the cells were more active and sensitive on PPAAm- allylamine (PPAAm), which can be deposited by a physical low- coatedmicropillars,andreactwithasubstantialCa2+ionmobilization pressureplasma process,leadsto an improvedosseointegration of afterstimulationwithATP.Theseresultshighlightthatitisimportantfor titaniumimplantsinvivo(Gableretal.,2014),whichmaybecaused osteoblaststoestablishcellsurfacecontactforthemtoperformtheir bytheenhancedcelladhesionandspreadinginvestigatedindetailin functions. vitro (Rebl et al., 2012; Finke et al., 2007; Kunz et al., 2015). KEYWORDS:Cell–substrateinteraction,Osteoblast,Ca2+ PPAAm is a nanometer-thin, positively charged amino- mobilization,mRNAexpression,Microtopography,Plasmapolymer functionalized polymer layer that renders the surface more nanocoating hydrophilic (Finke et al., 2007). Regular geometric micropillar topographies with the dimension of 5μm in pillar length, width, INTRODUCTION height and spacing (P-5×5) have been used as artificial surfaces, Cellsaresensitivetotheirunderlyingmicro-andnano-topography; extendingtheworkofstochasticsurfacemodelswiththeadvantage in particular topographical features on microscale level offer cues ofconstantandrecurringtopographyvariables(Lüthenetal.,2005). that cause diverse cell responses. These responses range from Previous studies have shown that osteoblastic cells mimic the alteredadhesionbehavior,resultinginchangedintegrinexpression underlying geometrical micropillar structure within their actin aswellassignaling,toadisturbedcellfunction(Lüthenetal.,2005; cytoskeleton, and we recently discovered an attempted caveolae- Staehlke et al., 2015; Moerke et al., 2016). Because of steadily mediated phagocytosis of each micropillar beneath the cells increasing human lifespans andtheassociatedrisingrequirements (Moerke et al., 2016). Characteristic for this process was the dot- placedonbodyparts,temporaryandpermanentorthopedicimplants likecaveolin-1(Cav-1)proteinandcholesterolaccumulationonthe aregainingmoreandmorerelevance.Anorthopedicimplantshould micropillarplateausafter24h.Cav-1andcholesterolarethemajor establishamechanicallysolidinterfacewithcompletefusionofthe components of caveolae and are essential for the formation and material within the native bone tissue. This process is called stabilization of the caveolar vesicles (Parton and del Pozo, 2013). osseointegrationandcandetermine thesuccessfulingrowthofthe Caveolae are a specialized form of cholesterol and sphingolipid- enriched plasma membrane subdomains, called lipid rafts, e distinguish themselves via the containment of the caveolin-1 c 1UniversityMedicalCenterRostock,Dept.ofCellBiology,Schillingallee69,18057 n Rostock,Germany.2Leibniz-InstituteforPlasmaScienceandTechnologye.V. protein. These specialized plasma membrane domains are e (INP),Felix-Hausdorff-Str.2,17489Greifswald,Germany. involved in various cellular processes, including phagocytosis ci S (Parton and del Pozo, 2013; Pelkmans and Helenius, 2002). The *Authorforcorrespondence([email protected]) ll attemptedcaveolae-mediatedmicropillarphagocytosisweobserved e C C.M.,0000-0001-9461-2128;H.R.,0000-0001-6000-1724;B.F.,0000-0002- wasaccompaniedbyincreasedintracellularreactiveoxygenspecies f 5941-0376;J.B.N.,0000-0003-2662-0905 (ROS) production, reduced intracellular ATP levels and a higher o ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribution mitochondrialactivity(Moerkeetal.,2016).Aconsequenceofthis al License(http://creativecommons.org/licenses/by/3.0),whichpermitsunrestricteduse, energy-consuming process was the reduction of the osteoblast n distributionandreproductioninanymediumprovidedthattheoriginalworkisproperlyattributed. r marker production, namely extracellular matrix (ECM) proteins u o Received2June2017;Accepted5November2017 involvedinthegenerationofnewbonetissue,forexample,collagen J 1 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Fig.1.Preparationofgeometricmicro- pillarmodelsurface.(A)Schematic illustrationofthedeepreactiveion etchingprocessforthegenerationof micropillartopographyof5×5×5µm (width×length×height).(B)SEMimagesof theplanarreference(Ref)andthe micropillars(P-5×5)ofwithaschematic sideview. type I (Col1) and fibronectin (FN). As a result, the cells on the Thecaveolin-1andactinfilamentsofcells micropillarsshoweddiminishedosteoblastcellfunction,whichwas Acharacteristicoftheattemptedcaveolae-mediatedphagocytosison alsofoundonstochasticallystructured,corundum-blastedtitanium microstructures isacleardot-like clusteringofCav-1 accompanied withspikyelevations(Moerkeetal.,2016).Thisindicatesthatthe withaccumulated,shortfilamentsofactinonthemicropillarplateaus. given surface microtopography also strongly affects the cell The question arose, whether the osteoblasts still express the Cav-1 physiology in a negative sense if surface characteristics are sharp clusters and the clustered actin filaments on the pillar tops after edged. In this study, we wanted to shed light on the question of coating with PPAAm. Immunofluorescence labeling reveals that whether a chemical surface modification such as PPAAm, which there was less Cav-1 cluster formation on the P-5×5+PPAAm has a positive impact on cell spreading, adipose-derived stem cell (Fig.4).Cav-1wasfoundtobemoreconcentratedaroundthepillar differentiation(Liuetal.,2014)andosseointegration,canalleviate wallsandinregionsofthepillaredgesafterthe24hgrowthperiod. thismicrotopography-inducednegativecellularoutcome. The actin cytoskeleton was accumulated in a ring-like fashion around the PPAAm-coated micropillars after 24h (Fig. 5A). The RESULTS correlative light and electron microscopy (CLEM) is a method to Nanocoatingandsurfacecharacteristics demonstrate the cell components (e.g. the actin filaments) as Inthisstudy,weusedsubstratesconsistingofsiliconwithafinal observed in our experiments, in precise positions relative to the coatingof100nmtitanium.Themicrotopographywasfabricated sampletopography(i.e.themicropillars).Thus,itisimpressivethat by deep reactive ion etching (Fig. 1). We wanted to find out it can be visually seen that the pillars are enveloped by the actin whether cell functions that are restricted on the periodically filaments(Fig.5B). microtextured samples can be alleviated by surface nanocoating with amino groups. To chemically functionalize a biomaterial Geneexpression surface the deposited nanolayer should have a homogenous ThequestionwaswhetherthePPAAmcoating,withitsadvantage distribution. Therefore, a surface characterization using X-ray ofenhancedcell–substratecontact,isabletopositivelyinfluencethe photoelectronspectroscopy(XPS)todetecttheelementalsurface composition is mandatory for the detection of a pinhole-free, chemicallycoatedlayer.Thedensityoftheaminogroups(ratioof NH to carbon atoms) of the plasma polymerized allylamine 2 (PPAAm)nanolayerwas∼3%andthefilmthickness∼25nmdue totheplasmadepositiontimeof480s.AfterthePPAAmcoating, no titanium (Ti) or silicon (Si) components were found on the surface(Fig.2). Nanocoatingandcellmorphology The micropillars were coated with PPAAm to enhance the cell– substratecontactbyincreasingthesurface-occupyingcellarea.As e showninFig.3,theenhancedcellspreadingafterPPAAm-coating c n is impressive enough to be seen visually. The scanning electron e i microscopy (SEM) images show widely spread-out cells that are c S alreadyreachingthebottomofthemicrotopographyafter30minon l l the PPAAm-coated pillar surfaces. On the uncoated micropillars, e C thecellsexhibitedamoresphericalformandsitonamaximumof f fourpillars,whereasonPPAAm,thecellscoveredmorethanfour o pillars. After 24h of cultivation, the changes were no longer as Fig.2.SurfacecharacterizationofthematerialsubstratesviaX-ray al photoelectronspectroscopy.Uncoatedsamples(P-5×5,left)andplasma n drasticasthoseseenafter30min.TheosteoblastsonthePPAAm- polymer-coatedpillars(P-5×5+PPAAm,right)wereanalyzed.Notethatafter r coatedmicropillarswerestillmorespreadout,withthemicropillars u PPAAmfunctionalization,titanium(Ti)andsilicon(Si)arenotvisible,indicating o moreimprintedintothecells. ahomogenousnitrogen(N)-containinglayer.(XPS,AxisUltra,Kratos). J 2 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Fig.3.SpreadingofMG-63osteoblastson micropillars.Notethatafter30minonuncoated samples(P-5×5)thecellisrestrictedtofourpillars, whereasonplasmapolymer-coatedpillars(P-5×5 +PPAAm)thecellareaisincreaseddramatically. Thisadvantageintheinitialphaseofoccupyinga surfaceisnearlyrecoveredafter24h.Toprow, 3000×magnification,scalebars4µm;bottomrow, 1000×magnification,scalebars10µm. osteoblast marker expression. The uncoated micropillars led to hyaluronan plays a key role in initial interface interactions and is significantly reduced gene expression of collagen-I (Col1), essentialforthefirstencounterofcellswiththesubstrate(Fig.7).We fibronectin (FN) and osteocalcin (OCN) (Fig. 6A), whereas, after found that the initial attachment, as well as the contact-mediated PPAAmcoating,thesegenesshowedonlyatrendtowarddecrease spreading on titanium, is hampered if hyaluronan is cleaved by the or no difference to the planar reference. However, the gene enzymehyaluronidase(600U). expression of alkaline phosphatase (ALP) was significantly diminished on uncoated as well as PPAAm-coated micropillars Ca2+signaling relative to on the planar reference (Fig. 6A). In our previous InlivingosteoblastsonPPAAm,wecouldidentifyhighlyactivecells experiments we observed a significantly increased Cav-1 gene by analysis of the Ca2+ mobilization capacity. The basal level of expressiononthemicropillars(Moerkeetal.,2016).ThePPAAm intracellularCa2+ions(0–180s)wasalreadysignificantlyhigherin coatinginfluencedthisprocesssuchthattheCav-1geneexpression osteoblastsestablishedfor24honP-5×5+PPAAmthanonuncoated showedonlyatrendtowardelevation(Fig.6B). P-5×5withmeanfluorescenceintensityvalues(MFI)of42.03±0.05 versus 26.18±0.14 (mean±s.e.m.), respectively (Fig. 8A). It is Celladhesion notable that these 24h-adherent cells on PPAAm react intensively An important question remains: how doesthe PPAAm nanocoating afterATPstimulationwithahighincreaseofintracellularCa2+ions. enhance the initial cell spreading? The pericellular matrix substance ThedifferenceintheCa2+dynamicsoffluo-3-stainedcellsonP-5×5 Fig.4.Localizationofthemembrane componentCav-1inosteoblastson micropillars.Notethelowerlevelsofcluster formationforCav-1onplasmapolymer-coated pillars(P-5×5+PPAAm)incontrasttoonthecontrol samples(P-5×5)after24h.Imagesareofz-stacks, magnifiedviewsarea5×zoomoftheareamarked withdashedlines,ora10×zoomofthearea markedwithcontinuouslines.Scalebars:left, 20µm;5×zoom,5µm;10×zoom,2µm. e c n e i c S l l e C f o l a n r u o J 3 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Fig.5.Actincytoskeletonofosteoblastson micropillars.(A)Onplasmapolymer-coated pillars(P-5×5+PPAAm)theactincytoskeletonis organizedinatypicalring-likestructure(arrows) comparedtothemoreclusteredphenotypeon controls(P-5×5)after24h.Imagesareofz-stacks. Scalebars:left,20µm;middle,5µm;right,2µm. (B)Correlativelightandelectronmicroscopy (CLEM)asamethodtodemonstratethecell components–theactinfilaments–inprecise positionstothesamplestructures–the micropillars.Thearrowspointtotheactin cytoskeletonsurroundingthemicropillars.Inset: thereflectionmodeofthemicroscopeallows visualizationofthepillars(green,falsecolor), whichareenvelopedbytheactinfilaments(red). Scalebars:10µm;5µm(inset). +PPAAm (MFI peak at 188–246s, 96.45±5.36; maximum MFI functional surface groups (PPAAm) was fabricated. The deposited value, 130.35±13.11) is significant compared to cells grown on P- PPAAm coating of titanium renders the surface more hydrophilic 5×5 (MFI peak at 188–246s, 44.43±1.84; maximum MFI value with water contact angles for PPAAm-coated titanium versus 53.36±10.78)(mean±s.e.m.)(Fig.8A).Thesamecellularreactivity untreated titanium (planar) of 48° and 78°, respectively (Finke was found in human primary osteoblasts (HOB) after 24h etal.,2007;Liuetal.,2014),andcreatespositivelychargedsurfaces cultivation: the Ca2+ mobilization capacity on P-5×5+PPAAm (theζpotentialofPPAAm-coatedtitaniumversusuntreatedtitanium (MFI peak at 188–246s, 91.81±1.13; maximum MFI value, is+7.7mVand−3.4mV,respectively)(Finkeetal.,2007).Owingto 100.46±6.47) was significantly higher compared to HOB cells on thesesurfacecharacteristics,enhancedcellspreadingafterPPAAm- P-5×5 (MFI peak at 188–246s: 66.62±2.52, maximum MFI value coating was to be seen. We observed previously that the PPAAm 82.49±7.89). coatingpromotestheinitialcellspreadingafterseedingofthecells After 30min of cell cultivation on P-5×5+PPAAm, MG-63 andincreasedthecellmobility(Finkeetal.,2007;Rebletal.,2016). osteoblastsshowednotonlyamorespreadmorphologycomparedto The PPAAm coating has proven to be a cell adhesive layer and thatseenonuncoatedpillarsasshowninFig.3(30min)butalsoa osteoblasts can overcome topographical restrictions (e.g. contact significantly higher Ca2+ mobilization after stimulation with ATP guidance due to machined grooves) (Rebl et al., 2012, 2016). We (Fig. 8B) (P-5×5+PPAAm, MFI peak at 188–246s, 81.40±2.89, observed that the osteoblastic cells try to internalize surface-fixed e with maximum MFI value 107.30±40.90; P-5×5, 49.3±0.99, with micropillars (Moerke et al., 2016) and hypothesized that cells c n maximum MFI value 53.88±19.1). The basal Ca2+ signal had possiblyincreasetheircell-surfacecontact,becausethiscellsurface e i already increased after 30min of adherence on P-5×5+PPAAm contactisessentialforthemaintenanceoftheosteoblast-specificcell c S (MFImean±s.e.m.:55.34±0.14)butthiswasnotsignificantversus function(SaldañaandVilaboa,2010).Enhancedspreadingaswellas l l P-5×5 (MFI mean±s.e.m.: 37.78±0.13) as determined by a direct moldingintothetopographyisalsoobservedonstochasticsurfaces e C statisticalcomparisonusingamultiplet-test (Fig.8B). afterPPAAmcoating(e.g.onmachinedtitanium;Rebletal.,2012; f Finkeetal.,2007). o l DISCUSSION a n Cellmorphology Caveolin-1andactinfilaments r The elemental distribution, as measured by XPS, indicated that a Theattemptbythecelltophagocytizemicrostructuresresultsina u o homogeneous,pinhole-freelayeroftheplasmapolymerwithamino dot-like clustering of Cav-1 that is accompanied by short actin J 4 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Fig.6.RelativemRNAexpressionofosteoblastsafter 24honmicropillars.(A)Expressionlevelstheosteoblast markerproteinsalkalinephosphatase(ALP),collagentypeI (Col1),fibronectin(FN)andosteocalcin(OCN).Notethatall showrestrictedexpressiononuncoatedcontrols(P-5×5), whichisalleviatedbytheplasmapolymernanolayer(P-5×5 +PPAAm),exceptforALP.(B)Cav-1,asamembrane componentthatisinvolvedinphagocyticprocessesis adaptedtotheplanarreferencesampleifthepillarsare coatedwiththeplasmapolymer.Inallexperiments,Ref valuesarenormalizedon1andn=4.*P<0.05(Mann– WhitneyUtest). filamentsonthepillarplateaus(Moerkeetal.,2016).Tobesurethat uncoatedmicropillarsseenby72h(butnotearlier)andatupto96h this is a common phenomenon of cells on micropillars, we also cultivation time (Moerke et al., 2016). Comparing our MG-63 observedtheCav-1distributioninhumanprimaryosteoblastsand osteoblastic cells with human primary osteoblasts, we previously humanprimaryfetalosteoblasts,aswellastheosteoblasticcelllines recognized that the same accumulation of the actin filaments that Saos-2andU-2Osandfoundthesameaccumulatedpattern(Moerke wasseeninMG-63osteoblasticcellswasalsoseenintheprimary et al., 2016). The Cav-1 cluster formation on the P-5×5+PPAAm osteoblasts on pillared microstructures except that primary cells after24hwascomparablewithCav-1onuncoatedmicropillarsafter additionallyhavesomelongeractinfibers(Moerkeetal.,2016). thelongercellcultivationperiodofupto96h(Moerkeetal.,2016). Plasma membrane reorganization works in concert with the The accumulated actin cytoskeleton around the PPAAm-coated underlying actin cytoskeleton to mediate morphological changes micropillars after 24h was similar to that of the cells on the and modify cell surface contacts (Head et al., 2014). Actin Fig.7.Schemashowingtheimportanceofthehyaluronancoat ofthecellsoninitialcellspreading.Left:cellareasofnormal e osteoblasts.Right:cellareasofhyaluronidase(HAdase)-treated c osteoblasts.Normalcellscanspreadwellafter30minonpure n e titanium,whereasHAdase-treatedcellsarehamperedintheir i surfaceoccupationprocessat30min.Note:theschemaare Sc presentedfromanoriginalSEMimageofMG-63osteoblastson l l glass-blastedtitanium,HAdase600Utreatment(formethodsee e C Finkeetal.,2007). f o l a n r u o J 5 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Fig.8.IntracellularCa2+-mobilizationafterATP stimulation(180s)inlivingMG-63osteoblastson micropillars.(A)Influenceoftheplasmapolymer nanolayer(P-5×5+PPAAm)onthetime-dependentCa2+ signalafterATPstimulationofcellsallowedtoadherefor 24h.Notethesubstantial(significantatP<0.05,multiple t-test)increaseinintracellularCa2+onP-5×5+PPAAm.In addition,thebasalCa2+levelisalreadysignificantlyhigher comparedtothatseenforcellsontheuncoatedcontrol (P-5×5).(B)Influenceoftheplasmapolymernanolayer (P-5×5+PPAAm)onthetime-dependentCa2+signalafter ATPstimulationofcellsallowedtoadherefor30min. TheincreaseinintracellularCa2+onP-5×5+PPAAmisclear andsignificant(P<0.05,multiplet-test)intherangeof 244–316s.Cellswerestainedwithfluo-3,three independentexperimentsfor10cellspertimepoint(240 analyses).Resultsaremean±s.e.m. remodelingisespeciallysensitivetosignalsthataregeneratedatthe favorable;thegeneexpressionofALPwassignificantlydiminished membrane–cytoplasm interphase (Janmey and Lindberg, 2004). also on PPAAm-coated micropillars. ALP is involved in the Theactinreorganizationatthemicropillartopographywasshownto mineralizationoftheboneECM.Thisleadstotheassumptionthat becharacteristicforanattemptatphagocytosis.Ourpreviousstudy the ALP gene expression is not induced by lessened cell surface revealedahigh-energyrequirement(ATPlossof1.45-fold)thatwas interaction, but more by the phagocytic process itself. If a process causedbythecellattemptingphagocytosisofeverysinglepillarina requires high energy demands, such as phagocytosis, other energy fixedposition(Moerkeetal.,2016).Thisleadstothequestion:why expendituresmustbeabated,forexample,theexpressionofproteins, dothecellsundergothenuisanceofpillarphagocytosiswhenthisis suchasALP,whichareredundantinthecasethatcellsproduceless accompanied by high energy requirements and negative cellular ECMorareoccupiedwiththeestablishmentofsufficientcell–ECM outcome?Apossibleexplanationforthiscellbehaviorwouldbethe contact(AtaullakhanovandVitvitsky,2002).Inparticular,itistobe factthatosteoblasts areattachment-dependentcellswhichwantto taken into account that high energy demands are placed on ensure the highest cell surface contact. The maintenance of the osteoblasts not only during phagocytosis, but also during the osteoblastic function relies on this contact; therefore acertain cell productionoftheECM,byexpressingandsecretingECMproteins surface contact is needed for adequate osteoblastic cell function (Komarova et al., 2000). However, in experiments with polished (Saldaña and Vilaboa, 2010). Surfaces, such as the geometrical titanium (roughness average Ra=0.19μm) the PPAAm coating micropillarsaswellasroughcorundum-blastedtitanium,whichisa promoted the ECM expression of MG-63 cells, as is seen by the commerciallyusedorthopedicimplantdesign,offertheosteoblasts middle-to-late-stage differentiation-related ALP and bone sialo insufficient surface interaction area and induce internalization protein(BSP)mRNAproduction(Nebeetal.,2007). processesforthesurfacefeatures(Moerkeetal.,2016).Theselead toimpairedosteoblastcellfunction(Lüthenetal.,2005)aswellas Celladhesionmechanism biomaterial–tissueinteractionsinthefirstphaseofosseointegration. Thepericellularmatrixsubstancehyaluronanplaysakeyroleininitial AcoatingsuchasPPAAm,whichenhancesthecellattachmentand interfaceinteractions(Zimmermanetal.,2002).Hyaluronanisahigh spreadingandtheinteractionwiththetopography,hasbeenshown molecular mass (nearly 7000kDa) linear polysaccharide originally e toreversethesetopography-inducednegativeeffects(Moerkeetal., foundinsofttissuethatconsistsofN-acetyl-D-glucosamineandD- c n 2017) and may also be beneficial for the improvement of glucuronicacids,responsibleforthenegativechargeofthemolecule e i commerciallyusedroughsurfaces. (Chopraetal.,2014).Theglycosaminoglycanhyaluronanisproduced c S bythecellsitself,whichcausesanegativelychargedsphericalshell l l Geneexpression [e.g.completelyenvelopingchondrocyteswith4.4μminthicknessas e C Inourpreviousexperimentsonuncoatedmicropillars,theexpression measuredbyCohenetal.usingSEM(Cohenetal.,2004;Zimmerman f ofosteoblastmarkergeneswasdrasticallyreducedafter24hdueto et al., 2002)]. Nebe and Luethen (2008) showed that a positively o the attempt to phagocytize these fixed structures (Moerke et al., chargedPPAAm-coatingonatitaniumsurfacecouldboosttheinitial al n 2016).Inour newexperiments,we revealedthatthisrestrictedcell cell adhesion, including fast formation of adaptor proteins in focal r function on micropillars is alleviated by surface-nanocoating with adhesions. They hypothesized that a positively charged surface u o PPAAm.However,forALPexpressionthePPAAmcoatingwasnot providesthebasisforhyaluronan-mediatedattachmentandspreading. J 6 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Hyaluronan mediates the immediate adhesion of osteoblasts to the controls,planewafers(Ref)wereemployed.Thesampleswerefabricatedby materialsurfacewithinseconds,andthefirstcontactishamperedon deep reactive-ion etching (DRIE) (Center for Microtechnologies ZFM, different surfaces, for example, titanium or even collagen-I, if UniversityofTechnologyChemnitz,Germany)onsilicon(Si)wafersand hyaluronan is cleaved by the enzyme hyaluronidase. For instance, coatedwithanadditional100nmtitanium(Ti)layer,asreportedpreviously thecelladhesion(at5min)issignificantlyreducedby∼5-foldifcells (Staehlkeetal.,2015;Moerkeetal.,2016). have to adhere to pure, polished titanium without their hyaluronan Plasmapolymernanocoatingandsurfacecharacterization coat,andstillreducedby1.7-foldonacollagen-I-coatedsurface(Nebe Plasma polymerized allylamine (PPAAm) functionalization was andLuethen,2008;Finkeetal.,2007). performed in a low-pressure plasma process reactor V55G (plasma Inourstudy,theenergyconsumptionofcellscould,unfortunately, finish, Germany, V=60l) in a two-step procedure with the precursor notbemeasuredduetothecharacteristicsofthePPAAmnanolayer. allylamine(Rebletal.,2012).Theplasmadepositiontimeforthepulsed PPAAm exhibits a slight autofluorescence, especially in the green plasma process was 480s gross. The elemental chemical surface channel.Thiswouldinterferewithquantitativeimmunofluorescence composition was determined by high-resolution scanning X-ray analysisofthesestructures.Additionally,thePPAAmcoatingdoes photoelectron spectroscopy (XPS). The Axis Ultra (Kratos, UK) ran notallowfor thetrypsinizationofthecellsinavitalstatefromthe withthemonochromaticAlKαlineat1486eV(150W).Thespotsizefor high-resolution measurements was limited to 250μm. Spectra were micropillaredsurfacesduetoitshighcell-attractivecharacteristicsas recordedatapassenergyof80eV(Finkeetal.,2007). measuredpreviouslybyaspinningdiscdevice(Fritscheetal.,2010). MG-63cellsonPPAAmwere1.5timesmoreresistanttoshearstress Osteoblastcellculture compared to cells on uncoated titanium alloys (Ti6Al4V) (Gabler The human osteoblast-like cell line MG-63 (American Type Culture et al., 2014). For this reason, further experiments, such as Collection ATCC®, CRL1427™) was used throughout the experiments. determination of the cellular cholesterol amount, intracellular ATP MG-63 cells have an integrin subunit profile similar to that of primary as well as reactive oxygen species (ROS) generation could not be humanosteoblastsandwereconsideredapplicableforstudyinginitialcell investigatedinrelationtouncoatedmicropillars.Instead,weobserved attachment processes to surfaces (Czekanska et al., 2012). In our own theCa2+dynamicsinlivingcells. experiments, we have found similarities in the formation of β1- and β3- integrinreceptorsinMG-63osteoblastsgrownonstructuredtitanium(e.g. Ca2+signaling glass-blasted,corundum-blasted)thatwerecomparablewithhuman-derived primary osteoblasts (Lüthen et al., 2005). The cells were grown in Staehlkeetal.(2015)demonstratedpreviouslythenegativeinfluence Dulbecco’s modified Eagle’s medium (DMEM, Life Technologies of the cubic pillar topographies on Ca2+ signaling and dynamics GmbH, Darmstadt, Germany) with 10% fetal calf serum (FCS) comparedtothatseenwithaplanartitaniumsurface.Here,wecould (Biochrom FCS Superior, Merck KGaA, Darmstadt, Germany) and 1% show that cells on these pillars coated with an additional plasma- gentamicin(RatiopharmGmbH,Ulm,Germany)at37°Cinahumidified nanolayer (PPAAm) with positively charged amino groups can atmosphere with 5% CO . Human primary osteoblasts (HOB, C-12720, 2 overcome the negative influence of the pillared topography and PromoCell GmbH, Heidelberg, Germany) were cultured in osteoblasts increasetheiractivitydespitethesharpedgedsurfacestructure.This growth medium with SupplementMix (PromoCell) and 1% antibiotic- may also contribute to the positive outcome in cell function antimycotic (Anti-Anti 100×, Life Technologies). In the experiments, parameters typical for osteoblasts, for example, collagen-I and 15,000cells/cm² were seeded onto the samples placed in NUNC 4-well osteocalcin expression (see Fig. 6). The local physical dishes(ThermoFisherScientific,NUNCGmbH&Co.KG,Langenselbold, Germany).Beforeuse,theuncoatedtitaniumarrayswerewashedin70% microenvironmentcannotonlymodulatecellshapeandmechanics ethanol for 10min and rinsed three times in phosphate-buffered saline (BellasandChen,2014),butalsotheactivityofcells,asshownhere (PBS)(SigmaAldrich,Munich,Germany). forintracellularCa2+levels.Althoughcellsonpillars‘feel’thesame microtopography(range5μm)theadditionalnanolayer(PPAAm)is Real-timequantitativePCRformRNAexpression decisivetotriggerthecellsintoamoreactivestate. Total RNA was isolated after 24h cell growth on the samples using a We could shed light on how plasma polymer nanocoatings can NucleoSpin® RNA II kit (Macherey-Nagel GmbH & Co KG, Dueren, stronglyalleviatetherestrictionsofamicrotopographyconcerning Germany),whichincludesastepfortheeliminationofanygenomicDNAby cell functions and cell signaling. This could have importance for DNase(Macherey-Nagel)treatment.Thepurityandquantityoftheresulting implant surface design and production in cases where mechanical RNAsweredeterminedviameasurementoftheabsorbanceat280nmand aspectsofanimplanthavetobeconsidered. 260nmwiththeNanoDrop1000(ThermoScientific).50ngoftotalRNA wasusedforfirst-strandcDNAsynthesisbyusingSuperscript®IIreverse transcriptaseandrandomprimers(InvitrogenAG,Carlsbad,CA,USA).The Conclusion real-timequantitativepolymerasechainreaction(RT-qPCR)wasperformed Thepresentstudyconfirmsthehypothesisthatosteoblastswantto withTaqMan®UniversalPCRMasterMixandTaqMan®geneexpression create the highest possible cell surface contact to maintain their assaysforalkalinephosphatase(ALP)(Hs00758162_m1),caveolin-1(Cav- osteoblast-specific function, as displayed by the production and 1)(Hs00971716_m1),collagentype1(Col1)(Hs0016404_m1),fibronectin secretion of ECM proteins. Moreover, this analysis demonstrates (FN) (Hs00900054_m1), glyceraldehyde-3-phosphate dehydrogenase e thatchemicalsurfacemodificationwithaplasmapolymernanolayer (GAPDH) (Hs99999905_m1) and osteocalcin (OCN) (Hs01587813_g1) c n is able to attenuate the microtopography-mediated cell alterations. (allAppliedBiosystemsbyLifeTechnologiesGmbH,Darmstadt,Germany) e This PPAAm-coating process could contribute to improved cell followingthemanufacturer’sinstructions.TheTaqMan®PCRassayforeach ci S acceptance of rough surfaces with extraordinary topographies, for targetgenewasperformedintriplicateforfourindependentexperiments.The l examplecorundum-blastedtitanium. PCRwasperformedwithaRT-PCRAppliedBiosystem7500machineand el the data were collected and analyzed by the 7500 System SDS Software C (AppliedBiosystems).EachexpressionwascalculatedrelativetoGAPDH f o MATERIALSANDMETHODS (ΔCt)andthenrelativetothereferences(ΔΔCt). l Titaniumsurfaces a n Periodicallymicrotexturedsamples(size1cm²)witharegularcubicpillar Immunofluorescencestaining r u geometry on the surface having a dimension of 5×5×5μm in MG-63 osteoblastic cells were cultured on the titanium arrays for 24h, o width×length×heightand5μminspacing(P-5×5)wereused(Fig.1).As washed three times with PBS and then fixed with 4% paraformaldehyde J 7 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 (PFA) (10min; room temperature) (Sigma-Aldrich). After washing three Living cell observations were performed as follows. The analysis of times with PBS, the cells were permeabilized with 0.1% Triton X-100 intracellularCa2+mobilizationwasperformed ontheconfocalmicroscope (10min,roomtemperature,Merck),washedagainthreetimeswithPBSand LSM780(CarlZeiss)equippedwithanargon-ionlaser(excitationat488nm) blocked with 2% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS usingaZeiss40×waterimmersionobjective(CApochromat,1.2WKorr (30min,roomtemperature). M27). The measurement of the mean fluorescence intensity (MFI) of the Foractinfilamentstaining,cellswereincubatedwithphalloidincoupled globalCa2+signalwascarriedoutbyZen2011(SP4,black)software(Carl totetramethylrhodamine(TRITC)(5μg/mlinPBS,Sigma-Aldrich).Nuclei Zeiss)withthemode‘timeseries’. Images(512×512pixels)fromatleast werestainedfor10minwithHoechst33342dye(1mg/ml;SigmaAldrich, threeorfour(30minand24h,respectively)independentexperimentsfor10 1:2000inPBS). cellspertimepoint(for240cycles)weremeasuredatfullpinhole(13.5μm Caveolinwasstainedwiththepolyclonalrabbitanti-caveolin-1(cat.no. section)andthesamesettings.Duringrecordingofthetimeseriesover240 3238,NewEnglandBiolabsGmbH,1:400)asprimaryantibodyfor1hat cycles (2s each) adenosine 50-triphosphate (ATP, 10μl, SERVA room temperature followed by the secondary antibody anti-rabbit-IgG Electrophoresis GmbH, Heidelberg, Germany) was added after the 90th conjugatedtoAlexaFluor488(LifeTechnologies,diluted1:200inPBS) cycleforstimulatingtheintracellularCa2+mobilization.Theevaluationof appliedatroomtemperaturefor30min.Thesampleswereembeddedwith fluorescencesignalsindefinedareasofindividualsinglecellsovertimewas FluoroshieldTMmountingmedium(Sigma-Aldrich). carriedoutbyusingZEN2(blueedition,CarlZeiss)usingthefunction‘mean ROI’. Confocallaserscanningmicroscopy Fluorescentcellswereobservedusinganinvertedconfocallaserscanning Statisticalanalysis microscope (LSM 780; Carl Zeiss AG, Oberkochen, Germany) with a Statistical analyses were carried out with GraphPad Prism5 software ZEISSoilimmersionobjective(C-Apochromat63).Forimageacquisition, (GraphPadSoftwareInc.,LaJolla,CA).Resultsarepresentedinboxplots theZEISSEfficientNavigation(ZEN)2011SP4(blackedition)software with medians, quartiles and an interquartile range (IQR) with whiskers wasused. Allimages were displayedasthree dimensional z-stacksof13 representing1.5×IQR.DataanalyseswereperformedwithaMann–Whitney slices with an interval of 1μm. High-resolution images of the actin Utest.ForCa2+analyses,themultiplet-testwasusedaswell,andthetime- cytoskeletoninFig.5B(inset)wererecordedwiththeLSM410(CarlZeiss dependent data are presented as mean±s.e.m. P<0.05 was considered to AG), equipped with a 63× oil immersion objective (1.25 oil/0.17). For indicatesignificantdifferences. visualizationofthecorrespondingsubstrateregion,thereflectionmodewas usedandthepillarswerefalsecoloredingreen. Acknowledgements WethankDrMarcusFrank(ElectronMicroscopyCenter,UniversityMedicalCenter Rostock,Germany)forhisassistancewithscanningelectronmicroscopy(FE-SEM Correlativelightandelectronmicroscopy MerlinVP)andNorbertZichner(CenterforMicrotechnologiesZFM,Chemnitz Forcorrelativemicroscopy,thefluorescenceimagesoftheactinstained,non- UniversityofTechnology,Germany)forproductionofthetitanium-coatedwafers. embedded samples were acquired with the upright microscope AxioScopeA1 (Carl Zeiss) equipped with a 63× water objective. The Competinginterests calibration of the samples and image overlay was performed with the Theauthorsdeclarenocompetingorfinancialinterests. software AxioVision v. 4.8.2 (tool: shuttle and find). Calibration of the samples was accomplished by using the edges of the sample as point of Authorcontributions reference. Afterwards, the samples were prepared for scanning electron Conceptualization:C.M.,H.R.,J.B.N.;Methodology:C.M.,S.S.,H.R.,B.F.,J.B.N.; microscopyasdescribedbelow. Validation:C.M.,S.S.,H.R.,B.F.;Investigation:C.M.,S.S.,H.R.,B.F.;Datacuration: C.M.,H.R.;Writing-originaldraft:C.M.,S.S.,H.R.,B.F.;Writing-review&editing: J.B.N.;Visualization:C.M.,S.S.,H.R.,B.F.,J.B.N.;Supervision:J.B.N.;Project Scanningelectronmicroscopy administration:J.B.N.;Fundingacquisition:J.B.N. Cellsweregrownfor30min,or24honthesamples,washedwithPBSthree times and thenfixed with2.5%glutardialdehyde(cat.no. 814393, Merck Funding KGaA, Darmstadt, Germany) for 1h at room temperature, dehydrated WeappreciatethefinancialsupportoftheGermanResearchFoundation(Deutsche throughagradedseriesofethanol(30,50,75,90and100%for5,5,15, Forschungsgemeinschaft;DFG)graduateschoolwelisa(no.1505/2)forC.M.and 10minandtwicefor10min,respectively)driedinacriticalpointdryer(K S.S.aswellbytheUniversityMedicalCenterRostock.DepositedinPubMedCentral 850,EMITECH, Taunusstein, Germany) and thensamples were sputtered (PMC)forimmediaterelease. with gold for 100s (layer of ∼20nm) (SCD 004, BAL-TEC, Wetzlar, Germany). Scanning electron microscopy (SEM) observations were References performed with a field emission (FE)-SEM (ZEISS Merlin VP compact, Ataullakhanov,F.I.andVitvitsky,V.M.(2002).Whatdeterminestheintracellular ATPconcentration.Biosci.Rep.22,501-511. CarlZeissAG).Therecoveringofthedesiredareasforcorrelativemicroscopy Bacakova,L.,Filova,E.,Parizek,M.,Ruml,T.andSvorcik,V.(2011).Modulation wasperformedwiththesoftwareAxioVisionv.4.8.2(tool:shuttleandfind) ofcelladhesion,proliferationanddifferentiationonmaterialsdesignedforbody aftersamplecalibration. implants.Biotechnol.Adv.29,739-767. Bellas,E.andChen,C.S.(2014).Forces,andstemcellfate.Curr.Opin.CellBiol. Ca2+ionimaginginlivingosteoblasts 31,92-97. Chopra,A.,Murray,M.E.,Byfield,F.J.,Mendez,M.G.,Halleluyan,R.,Restle,D.J., Fluo-3staining ofsuspendedcells wasperformed ontrypsinized MG-63 Aroush,D.R.-B.,Galie,P.A.,Pogoda,K.,Bucki,R.etal.(2014).Augmentationof cellsthatwerewashedinPBS(containingCa2+andMg2+)andafterwards integrin-mediatedmechanotransductionbyhyaluronicacid.Biomaterials35,71-82. e stainedwiththeCa2+ionindicatorfluo-3/acetoxymethylester(fluo-3/AM, Cohen,M.,Joester,D.,Geiger,B.andAddadi,L.(2004).Spatialandtemporal nc 5μM,LifeTechnologiesCorporation,Eugene,OR)inhypotonicHEPES sequenceofeventsincelladhesion:frommolecularrecognitiontofocaladhesion e buffer(Staehlkeetal.,2015).Subsequently,theosteoblastswerecollected assembly.Chem.BioChem.5,1393-1399. ci S inisotonicHEPESbufferandseededontothemicropillars(withorwithout Czekanska,E.M.,Stoddart,M.J.,Richards,R.G.andHayes,J.S.(2012).In l PPAAm).After30mincultivation,thesampleswereturnedupsidedownin searchofanosteoblastcellmodelforinvitroresearch.Eur.CellsMater.24,1-17. el aibidiμ-dish(ibiTreat,Ø35mm;ibidiGmbH,Martinsried,Germany)and Finke,B.,Luethen,F.,Schroeder,K.,Mueller,P.D.,Bergemann,C.,Frant,M., C analyzedintheconfocalmicroscope. Ohl, A. and Nebe, B. J. (2007). The effect of positively charged plasma f polymerization on initial osteoblastic focal adhesion on titanium surfaces. o Fluo-3stainingofadherentcellswasperformedaftera24hcultivationof MG-63 cells on micropillars (with or without PPAAm). The cells were Biomaterials28,4521-4534. al Fritsche, A., Luethen, F., Lembke, U., Finke, B., Zietz, C., Rychly, J., n markedwithfluo-3/AMasdescribedabove.Fortheanalysis,theosteoblasts Mittelmeier, W. and Bader, R. (2010). Measuring bone cell adhesion on ur wereculturedinisotonicHEPESbuffer(Staehlkeetal.,2015)asdescribed implantsurfacesusingaspinningdiscdevice.Mat.-wiss.u.Werkstofftech.41, o forsuspendedcells. 83-88. J 8 RESEARCHARTICLE JournalofCellScience(2018)131,jcs207001.doi:10.1242/jcs.207001 Gabler,C.,Zietz,C.,Göhler,R.,Fritsche,A.,Lindner,T.,Haenle,M.,Finke,B., Nebe, B. J. and Luethen, F. (2008). Integrin- and hyaluronan-mediated cell Meichsner,J.,Lenz,S.,Frerich,B.etal.(2014).Evaluationofosseointegration adhesion on titanium. In Metallic Biomaterial Interfaces (ed. J. Breme, C.J. oftitaniumalloyedimplantsmodifiedbyplasmapolymerization.Int.J.Mol.Sci.15, KirkpatrickandR.Thull),pp.179-182.Weinheim:Wiley-VCH;ISBN:978-3-527- 2454-2464. 31860-5. Head,B.P.,Patel,H.H.andInsel,P.A.(2014).Interactionofmembrane/lipidrafts Nebe,J.G.B.,Luethen,F.,Lange,R.andBeck,U.(2007).Interfaceinteractionsof with thecytoskeleton:Impactonsignalingandfunction:membrane/lipidrafts, osteoblastswithstructuredtitaniumandthecorrelationbetweenphysicochemical mediatorsofcytoskeletalarrangementandcellsignaling.Biochim.Biophys.Acta- characteristicsandcellbiologicalparameters.Macromol.Biosc.7,567-578. Biomembr.1838,532-545. Parton,R.G.anddelPozo,M.A.(2013).Caveolaeasplasmamembranesensors, Janmey,P.A.andLindberg,U.(2004).Cytoskeletalregulation:richinlipids.Nat. protectorsandorganizers.Nat.Rev.Mol.CellBiol.14,98-112. Rev.Mol.CellBiol.5,658-666. Pelkmans, L. and Helenius, A. (2002). Endocytosis via caveolae. Traffic 3, Komarova,S.V.,Ataullakhanov,F.I.andGlobus,R.K.(2000).Bioenergeticsand 311-320. mitochondrial transmembrane potential during differentiation of cultured Rebl,H.,Finke,B.,Lange,R.,Weltmann,K.-D.andNebe,J.B.(2012).Impactof osteoblasts.Am.J.Physiol.CellPhysiol.279,C1220-C1229. plasmachemistryversustitaniumsurfacetopographyonosteoblastorientation. Kunz,F.,Rebl,H.,Quade,A.,Matschegewski,C.,Finke,B.andNebe,J.B. ActaBiomater.8,3840-3851. (2015).Osteoblastswithimpairedspreadingcapacitybenefitfromthepositive Rebl,H.,Finke,B.,Schmidt,J.,Mohamad,H.S.,Ihrke,R.,Helm,C.A.andNebe, chargesofplasmapolymerisedallylamine.Eur.CellsMater.29,177-189. J.B.(2016).Acceleratedcell-surfaceinterlockingonplasmapolymer-modified Liu,X.,Feng,Q.,Bachhuka,A.andVasilev,K.(2014).Surfacemodificationby porousceramics.Mater.Sci.Eng.C69,1116-1124. allylamineplasmapolymerizationpromotesosteogenicdifferentiationofhuman Saldaña,L.andVilaboa,N.(2010).Effectsofmicrometrictitaniumparticleson adipose-derivedstemcells.ACSAppl.Mater.Interfaces6,9733-9741. osteoblast attachment and cytoskeleton architecture. Acta Biomater. 6, Lüthen,F.,Lange,R.,Becker,P.,Rychly,J.,Beck,U.andNebe,J.B.(2005).The 1649-1660. influenceofsurfaceroughnessoftitaniumonβ1-andβ3-integrinadhesionandthe Staehlke,S., Koertge,A. andNebe, B. (2015). Intracellularcalciumdynamics organization of fibronectin in human osteoblastic cells. Biomaterials 26, dependentondefinedmicrotopographicalfeaturesoftitanium.Biomaterials46, 2423-2440. 48-57. Moerke, C., Mueller, P. and Nebe, B. (2016). Attempted caveolae-mediated Wennerberg, A. and Albrektsson, T. (2009). Effects of titanium surface phagocytosisofsurface-fixedmicro-pillars.Biomaterials76,102-114. topographyonboneintegration:asystematicreview.Clin.OralImplantsRes. Moerke,C.,Rebl,H.,Finke,B.,Dubs,M.,Nestler,P.,Airoudj,A.,Roucoules,V., 20,172-184. Schnabelrauch, M., Koertge, A., Anselme, K., Helm, C.A. and Nebe, J.B. Zimmerman,E.,Geiger,B.andAddadi,L.(2002).Initialstagesofcell-matrix (2017).Abrogatedcellcontactguidanceonamino-functionalizedmicro-grooves. adhesioncanbemediatedandmodulatedbycell-surfacehyaluronan.Biophys.J. ACSAppl.Mater.Interfaces9,10461-10471. 82,1848-1857. e c n e i c S l l e C f o l a n r u o J 9
Description: