ebook img

Ressource allocation and schelduling models for cloud computing PDF

189 Pages·2016·4.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ressource allocation and schelduling models for cloud computing

Ressource allocation and schelduling models for cloud computing Fei Teng To cite this version: Fei Teng. Ressource allocation and schelduling models for cloud computing. Other. Ecole Centrale Paris, 2011. English. ￿NNT: 2011ECAP0043￿. ￿tel-00659303￿ HAL Id: tel-00659303 https://theses.hal.science/tel-00659303 Submitted on 12 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. E´COLECENTRALEPARIS ETMANUFACTURES E´COLECENTRALEPARIS hh ii ` THESE pre´sente´epar FeiTENG pourl’obtentiondu GRADE DE DOCTEUR Spe´cialite´ : Mathe´matiquesapplique´esetinformatique Laboratoired’accueil: Laboratoiremathe´matiquesapplique´esauxsyste`mes SUJET:MANAGEMENTDESDONNE´ESETORDONNANCEMENTDESTAˆCHESSUR ARCHITECTURESDISTRIBUE´ES soutenuele: 21Octobre2011 devantunjurycompose´ de: ChristopheCe´rin Examinateur GillesFedak Examinateur TianruiLi Rapporteur Fre´de´ricMagoule`s Directeurdethe`se SergePetiton Rapporteur 2011-.......1) 1)Nume´rod’ordrea`demanderauBureaudel’E´coleDoctoraleavantletiragede´finitifdelathe`se. ii Abstract Cloudcomputing,thelong-helddreamofcomputingasautility,hasthepotential totransformalargepartoftheITindustry, makingsoftwareevenmoreattractive as a service and shaping the way in which hardware is designed and purchased. We review the new cloud computing technologies, and indicate the main chal- lenges fortheirdevelopment infuture, among whichresourcemanagement prob- lemstandsoutandattractsourattention. Combiningthecurrentschedulingtheo- ries,weproposecloudschedulinghierarchytodealwithdifferentrequirementsof cloudservices. From the theoretical aspect, we mainly accomplish three research issues. Firstly, we solve the resource allocation problem in the user-level of cloud scheduling. We propose game theoretical algorithms for user bidding and auctioneer pricing. With Bayesian learning prediction, resource allocation can reach Nash equilib- rium among non-cooperative users even though common knowledge is insuffi- cient. Secondly, we address the task scheduling problem in the system-level of cloudscheduling. Weproveanewutilizationboundtosettleon-lineschedulabil- itytestconsideringthesequentialfeatureofMapReduce. Wededucetherelation- ship between cluster utilization bound and the ratio of Map to Reduce. This new schedulable bound with segmentation uplifts classical bound which is most used in industry. Thirdly, we settle the evaluation problem for on-line schedulability tests in cloud computing. We propose a concept of test reliability to express the probabilitythatarandomtasksetcouldpassagivenschedulabilitytest. Thelarger the probability is, the more reliable the test is. From the aspect of system, a test withhighreliabilitycanguaranteehighsystemutilization. From the practical aspect, we develop a simulator to model MapReduce frame- work. ThissimulatoroffersasimulatedenvironmentdirectlyusedbyMapReduce theoreticalresearchers. TheusersofSimMapReduceonlyconcentrateonspecific research issues without getting concerned about finer implementation details for diverse service models, so that they can accelerate study progress of new cloud technologies. Keywords: Cloudcomputing,MapReduce,resourceallocation,gametheory,uti- lizationbound,schedulabilitytest,reliabilityevaluation,simulator Acknowledgements Iwouldliketoexpressmygratitudetothosewhohavemadethisthesispossible. First and foremost, I offer my sincerest gratitude to my supervisor, Professor Fre´de´ricMagoule`s,whosupportedmethroughoutmythesiswithhispatienceand guidance whilst allowing me the room to work in my own way. For me, he was notonlyarespectablescientistwholedmeonthewaytodoresearch,butalsoan attentivetutorwhotrainedmetobeagoodprocessorinmyfuturecareer. Ireally appreciateeverythinghehasdoneinthepastthreeyears. Specialthanksshouldbegiventomyco-supervisor,ProfessorLeiYuwhooffered me a great help in my research. His professional abilities and knowledge are al- waysadmired. WhenIencounteredtheobstaclesinresearch, thediscussionwith him often inspired me, theoretically or practically. I greatly thank him for all the kindness,supportandencouragement. Iwouldliketoexpressmysincerethanksmycollegesandfriends,JiePan,Haix- iang Zhao, Lve Zhang, Ce´deric Venet, Florent Pruvost, Thomas Cadeau, Thu Huyen Dao, Somanchi K Murthy, Sana Chaabane and Alain Rueyahana in our team, as well as many other students in Ecole Centrale Paris. They are so con- siderate, generous, and delightful to be got along with. I had so many pleasant memoriesaboutthem,sharingusefulinformationtogether,discoveringtheamaz- ingworldtogether,andlaughingevencryingtogether. Ididenjoythethreeyears withthem. I greatly appreciate Sylvie Dervin, Catherine L’hoˆpital and Ge´raldine Carbonel for helping me settle down and integrate myself into the new environment. They alwaysencouragedmewithwarmsmiles, andwerereadytosavemewhenIwas introubles. Many thanks to my thesis reviewers and the defense jury committee. Professor Serge Petiton, Professor Tianrui Li, Professor Christophe Ce´rin and Professor GillesFedak. Theirvaluablecommentsandsuggestionspushedmetogofaraway ontheroadofscience. Last but not least, I would like to dedicate this thesis to my parents, families and the people I love and who love me. Without their continuous supports, I cannot completethethesisaloneinaforeigncountry. FeiTeng 2011-10-19 vi Contents ListofFigures xiii ListofTables xv Glossary xvii 1 Introduction 1 1.1 Researchbackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challengesandmotivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectivesandcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organizationofdissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Cloudcomputingoverview 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Clouddefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Systemarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Deploymentmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Cloudevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Gettingreadyforcloud . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Abriefhistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Comparisonwithrelatedtechnologies . . . . . . . . . . . . . . . . . . 13 2.3 Cloudservice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 SoftwareasaService . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 PlatformasaService . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 InfrastructureasaService . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Cloudcharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 vii CONTENTS 2.4.1 Technicalaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 Qualitativeaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 Economicaspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Cloudprojects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.1 Commercialproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.2 Researchprojects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.3 Openareas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Schedulingproblemsforcloudcomputing 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Schedulingproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Problems,algorithmsandcomplexity . . . . . . . . . . . . . . . . . . 27 3.2.2 Schematicmethodsforschedulingproblem . . . . . . . . . . . . . . . 29 3.3 Schedulinghierarchyinclouddatacenter . . . . . . . . . . . . . . . . . . . . . 32 3.4 Economicmodelsforresource-provisionscheduling. . . . . . . . . . . . . . . 34 3.4.1 Market-basedstrategies . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.2 Auctionstrategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.3 Economicschedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Heuristicmodelsfortask-executionscheduling . . . . . . . . . . . . . . . . . 41 3.5.1 Staticstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Dynamicstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.3 Heuristicschedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Real-timeschedulingforcloudcomputing . . . . . . . . . . . . . . . . . . . . 49 3.6.1 Fixedprioritystrategies . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6.2 Dynamicprioritystrategies . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.3 Real-timeschedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Resource-provisionschedulinginclouddatacenter 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Gametheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.1 Normalformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.2 Typesofgames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 viii CONTENTS 4.2.3 Payoffchoiceandutilityfunction . . . . . . . . . . . . . . . . . . . . 59 4.2.4 StrategychoiceandNashequilibrium . . . . . . . . . . . . . . . . . . 61 4.3 Motivationfromequilibriumallocation . . . . . . . . . . . . . . . . . . . . . 62 4.4 Game-theoreticalallocationmodel . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Bid-sharedauction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.2 Non-cooperativegame . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.3 Bidfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4.4 Parameterestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.5 Equilibriumprice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Resourcepricingandallocationalgorithms . . . . . . . . . . . . . . . . . . . 74 4.5.1 Cloudsimtoolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.5.2 Communicationamongentities . . . . . . . . . . . . . . . . . . . . . 75 4.5.3 Implementationalgorithm . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6.1 Experimentsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6.2 Nashequilibriumallocation . . . . . . . . . . . . . . . . . . . . . . . 79 4.6.3 Comparisonofforecastingmethods . . . . . . . . . . . . . . . . . . . 81 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Real-timeschedulingwithMapReduceinclouddatacenter 83 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Real-timescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.1 Real-timetask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.2 Processingresource . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.3 Schedulingalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.4 Utilizationbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 MotivationfromMapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4 Real-timeschedulingmodelforMapReducetasks . . . . . . . . . . . . . . . . 91 5.4.1 Systemmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.2 BenefitfromMapReducesegmentation . . . . . . . . . . . . . . . . . 92 5.4.3 Worstpatternforschedulabletaskset . . . . . . . . . . . . . . . . . . 93 5.4.4 Generalizedutilizationbound . . . . . . . . . . . . . . . . . . . . . . 96 5.5 Numericalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ix

Description:
Secondly, we address the task scheduling problem in the system-level of Huyen Dao, Somanchi K Murthy, Sana Chaabane and Alain Rueyahana in .. Predictably, it will spark a revolution in the way organizations provide or . present a short tutorial on game theory, covering the different classes of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.