water Article Response of Hydrological Processes to Input Data in High Alpine Catchment: An Assessment of the Yarkant River basin in China JiaoLiu1,2,3,TieLiu1,AnmingBao1,*,PhilippeDeMaeyer3,AlishirKurban1andXiChen1 1 StateKeyLaboratoryofDesertandOasisEcology,XinjiangInstituteofEcologyandGeography, ChineseAcademyofSciences,Urumqi830011,China;[email protected](J.L.); [email protected](T.L.);[email protected](A.K.);[email protected](X.C.) 2 UniversityofChineseAcademyofSciences,Beijing100049,China 3 DepartmentofGeography,GhentUniversity,Gent9000,Belgium;[email protected] * Correspondence:[email protected];Tel.:+86-991-788-5378 AcademicEditor:AthanasiosLoukas Received:22February2016;Accepted:25April2016;Published:5May2016 Abstract: Moststudiesofinputdatausedinhydrologicalmodelshavefocusedonflow;however, point discharge data negligibly reflect deviations in spatial input data. To study the effects of different input data sources on hydrological processes at the catchment scale, eight MIKE SHE models driven by station-based data (SBD) and remote sensing data (RSD) were implemented. Thesignificantinfluencesofinputvariablesonwatercomponentswereexaminedusingananalysisof thevariancemodel(ANOVA)withthehydrologiccatchmentresponsequantifiedbasedondifferent water components. The results suggest that compared with SBD, RSD precipitation resulted in greaterdifferencesinsnowstorageinthedifferentelevationbandsandRSDtemperaturesledto moresnowpackareaswiththinnerdepths. Thesechangesinsnowpackprovidedanappropriate interpretationofprecipitationandtemperaturedistinctionsbetweenRSDandSBD.Forpotential evapotranspiration(PET),thelargerRSDvaluecausedlessplanttranspirationbecauseparameters were adjusted to satisfy the outflow. At the catchment scale, the spatiotemporal distributions of sensitivewatercomponents,whichcanbedefinedbytheANOVAmodel,indicatethatthisapproach isrationalforassessingtheimpactsofinputdataonhydrologicalprocesses. Keywords: inputdata;hydrologicalprocesses;statistichypothesistest;spatiotemporaldistribution; YarkantRiver;MIKESHE 1. Introduction Modelsimulationisaprincipalapproachforstudyinghydrologicalprocessesatthecatchment scale; however, the accuracy of modelling results is dwarfed owing to the uncertainties of model parameterizations, model structures and input data [1]. Most studies [2–5] have analysed the uncertaintiesofparametersusingdifferentmethodsandcalibrationfocusedonmodel’sparameters hasdeterminedthecontributionsfromothersourcesofuncertainties[6]. Ajamietal.[7]confirmed the importance of input data and model structure to model output using the Integrated Bayesian Uncertainty Estimator (IBUNE). Kavetski et al. [8] demonstrated a multitude of distinctions in the predicted hydrographs and calibrated parameters, with or without consideration of the input uncertaintyofprecipitationdatawithsimilarconclusionsdrawnbyXuetal.[9]. Inadditiontothe precipitationdata,Thompson’s[10]researchrevealedthatPETrelateduncertaintyexistedinhighand lowdischarges. Furthermore,anumberofstudieshaveillustratedthatinputdatamayprofoundly influencepredictedriverrunoff[11–14].However,littleattentionhasbeenpaidtotheeffectofdifferent inputdataontheentirehydrologicalcycleatthecatchmentscale. Water2016,8,181;doi:10.3390/w8050181 www.mdpi.com/journal/water Water 2016, 8, 181 2 of 16 Water2016,8, 181 2of15 In mountainous catchments with scarce gauges, input data uncertainties are amplified due to the lack of observed data [15]. With the development of satellite technology, RSD provides a lot of Inmountainouscatchmentswithscarcegauges,inputdatauncertaintiesareamplifieddueto information to drive, calibrate and validate hydrological models [16]. Some applications of RSD in thelackofobserveddata[15]. Withthedevelopmentofsatellitetechnology,RSDprovidesalotof hydrological models, even in semi‐arid/arid watersheds, have attained promising performance [17– informationtodrive,calibrateandvalidatehydrologicalmodels[16]. SomeapplicationsofRSDin 19]. RSD also supply a wealth of new observation types that can be applied to assess model hydrologicalmodels,eveninsemi-arid/aridwatersheds,haveattainedpromisingperformance[17–19]. uncertainty [20]. According to McMichael et al. [21], the prediction uncertainties of discharge among RSDalsosupplyawealthofnewobservationtypesthatcanbeappliedtoassessmodeluncertainty[20]. seven leaf area index (LAI) scenarios were less than 10% using the MIKE SHE simulation. Sun et al. AccordingtoMcMichaeletal.[21],thepredictionuncertaintiesofdischargeamongsevenleafarea [18] demonstrated that the uncertainties derived from RSD are smaller than those of model index(LAI)scenarioswerelessthan10%usingtheMIKESHEsimulation. Sunetal.[18]demonstrated parameters. However, Knoche et al. [22] argued that high‐resolution land surface temperature (LST) thattheuncertaintiesderivedfromRSDaresmallerthanthoseofmodelparameters. However,Knoche data did not yield a better result and that the simulated hydrographs could not explain the differences etal.[22]arguedthathigh-resolutionlandsurfacetemperature(LST)datadidnotyieldabetterresult in input data. Due to satellite data limitations associated with the physical sensors, space‐time andthatthesimulatedhydrographscouldnotexplainthedifferencesininputdata. Duetosatellite coverage and spatial resolution [23], the application of raw RSD has been disputed and has resulted datalimitationsassociatedwiththephysicalsensors,space-timecoverageandspatialresolution[23], in some controversial results. theapplicationofrawRSDhasbeendisputedandhasresultedinsomecontroversialresults. This paper characterizes the influence of different input data sources based on variations in This paper characterizes the influence of different input data sources based on variations in distributed simulation outputs. Eight MIKE SHE models forced by SBD and RSD were calibrated distributedsimulationoutputs. EightMIKESHEmodelsforcedbySBDandRSDwerecalibrated separately to obtain optimal performance. The significant impact of input data on different water separatelytoobtainoptimalperformance. The significantimpactofinputdataondifferentwater components was determined via the ANOVA model. Then the effects of the different input data on componentswasdeterminedviatheANOVAmodel. Thentheeffectsofthedifferentinputdataon hydrological processes was studied based on the water components. hydrologicalprocesseswasstudiedbasedonthewatercomponents. 22.. SSttuuddyy AArreeaa YYaarrkkaanntt RRiivveerr bbaassiinn ((FFiigguurree 11)) iiss llooccaatteedd iinn tthhee XXiinnjijiaanngg UUyygghhuurr aauuttoonnoommoouuss rreeggiioonn,, aann aarriidd ddiissttrriicctt ininN NorothrtwhewsetsCt hCinhai.nIat.i sItt hies lothneg elsotnsgoeusrtc estoruibruceta rtyribouftthareyT aorfi mthRei vTear,ritmhe lRoinvgeers, ttchoen tlionnengteaslt rciovnetrininenthtael wriovrelrd i.nT thheet owpoorgldra. pThhye otofpthoigsrsatpuhdyy ocfa ttchhism setnutdiys cvaetrcyhcmoemnpt liesx v.eGryen ceormalplyl,etxh. eGseonuetrhaelrlyn, htheea dsowuattheerrnre hgeioandwhaatsera rmeguiocnh hhaigs hae mrueclehv haitgiohnert ehlaenvatthioant othfatnh ethnaot rotfh tehren nmorotuhenrtna imnoouuntlteatinr eoguitolnet. Mreoguionnt.a Minos,ugnotarginess, agnodrgbeass ainnsd abraessintasg agreer setdagtgheroreudg hthoruotutghheowuta ttheres wheadte.rTshheede.l eTvhaet ieolenvraatniogne srafnrogmes 1f4ro5m0m 14t5o08 m61 t1om 86,1a1v emra, gaivnegra4g4i5n0gm 4.45T0h ema. vTehrea gaeveslroapgee issloappep irso xaipmparotexliym3a0t.e8l%y .30.8%. FFiigguurree 11.. TThhee llooccaattiioonn,, ttooppooggrraapphhyy,, ggaauuggiinngg ssttaattiioonnss aanndd rriivveerr nneettwwoorrkk ooff YYaarrkkaannttR Riivveerrb baassinin.. This catchment is situated on the northern slope of Karakoram, the largest area of mountain This catchment is situated on the northern slope of Karakoram, the largest area of mountain glaciers in the world. Based on the Landsat8 TM, land use data were generated and shows that the glaciersintheworld. BasedontheLandsat8TM,landusedataweregeneratedandshowsthatthe snowpack and glaciers cover 26.14% of this watershed (Figure 2a), situated mainly above 5000 m snowpack and glaciers cover 26.14% of this watershed (Figure 2a), situated mainly above 5000 m (Figure 2b). The total number of glaciers is 2698, including Insukati Valley, the largest glacier in China Water2016,8, 181 3of15 Water 2016, 8, 181 3 of 16 (Figure2b). Thetotalnumberofglaciersis2698,includingInsukatiValley,thelargestglacierinChina wwiitthh aa lleennggtthh ooff 4400 kkmm [[2244]].. TThhee ootthheerr mmaajjoorr llaanndd ccoovveerr ttyyppeess aarree cclloosseedd‐-ooppeenn hheerrbbaacceeoouuss,, bbaarree llaanndd aanndd ssppaarrssee hheerrbbaacceeoouuss aarreeaass ((FFiigguurree 22aa)) llooccaatteedd bbeellooww 55000000 mm ((FFiigguurree 22bb)),, ccoonnttrriibbuuttiinngg ttoo 2299%%,, 2200%% aanndd 1199..11%% ooff tthhee ttoottaall aarreeaa,, rreessppeeccttiivveellyy.. TThhee aabbuunnddaanntt ssnnoowwppaacckk aanndd ggllaacciieerrss pprroovviiddee aammppllee wwaatteerr rreessoouurrcceess ttoo tthheeY YarakraknatnRt iRvievreirr riirgraigtiavteivoea soiassdiso wdonwstnresatrmeabmel obweloKwaq Kuanq,uwnit, hwaintha raena aorfe2a. 5oˆf 21.054 ×k m1024. kItmis2.t Ihte ilsa rtghees tlairrgriegsatt iiorrnigreagtiioonn rinegXioinnj iainn gXainnjdiaangm aajnodr par omdaujocerr porfogdruacinera nodf gcorattionn a[n2d5 ].coBtetcoanu s[2e5o]f. Btheecasueasseo onfa tlhsen osewasaonndailc senmowel ta,nthde ivceo lmumelet, othfrei vveorlurumneo offf irnivtheer rfluonoodffs einas tohne (fflrooomd Mseaaysotno S(ferpotmem Mbaery) taoc cSoeupntetsmfboerr8)0 a%ccoofutnhtes afonrn 8u0a%lr oufn tohfef. annual runoff. FFiigguurree 22.. TThhee llaanndd uussee ttyyppeess.. ((aa)) IInn 22000055 aanndd eelleevvaattiioonn bbaannddss;; ((bb)) iinn YYaarrkkaanntt RRiivveerr bbaassiinn.. The study area is a rarely studied catchment with only one internal meteorological station The study area is a rarely studied catchment with only one internal meteorological station (Tashkurgan) and two adjacent stations (Shache and Pishan) (Figure 1). Based on the records from (Tashkurgan)andtwoadjacentstations(ShacheandPishan)(Figure1). Basedontherecordsfrom Tashkurgan station in 2000–2009, pan evaporation was much higher than precipitation, averaging Tashkurganstationin2000–2009, panevaporationwasmuchhigherthanprecipitation, averaging 1500 mm compared to annual mean precipitation of 98 mm. Furthermore, because of the extreme 1500mmcomparedtoannualmeanprecipitationof98mm. Furthermore, becauseoftheextreme topography variations, there are strong heterogeneities of precipitation and temperature in spatial topographyvariations,therearestrongheterogeneitiesofprecipitationandtemperatureinspatial distributions [26]. Annual precipitation is approximately 450 mm in high elevation areas (higher than distributions[26]. Annualprecipitationisapproximately450mminhighelevationareas(higherthan 5000 m) and only 100 mm in lower regions (approximately 3000 m). The mean temperature around 5000m)andonly100mminlowerregions(approximately3000m). Themeantemperaturearound the snowline (approximately 5500 m) is approximately –10.5 °C. Therefore, the elevation lapse rate thesnowline(approximately5500m)isapproximately–10.5˝C.Therefore,theelevationlapserateof of precipitation (PCG) and air temperature (TCG) at different elevations can be determined, as shown precipitation(PCG)andairtemperature(TCG)atdifferentelevationscanbedetermined,asshown in Table 1. inTable1. TTaabbllee 11.. PPCCGG aanndd TTCCGG aatt ddiiffffeerreenntt eelleevvaattiioonnss iinn YYaarrkkaanntt RRiivveerr bbaassiinn.. Altitude Group (m) PCG (mm/km/year) TCG (°/km) AltitudeGroup(m) PCG(mm/km/year) TCG(˝/km) <3000 0.0 −6.5 <3000 0.0 ´6.5 3000–5000 −70.0 −6.8 3000–5000 ´70.0 ´6.8 5000–7000 100.0 −7.0 5000–7000 100.0 ´7.0 >>77000000 7700.0.0 −´66.8.8 3. Forcing Data 3. ForcingData 33..11.. SSttaattiioonn DDaattaa TThhee ssttaattiioonnm meteetoeroorloolgoigciacladl adtaatwa awsoabs taoibnteadinferdom frtohme Cthhien aCMhientae oMroelotegoicraolloDgaitcaalS hDaartina gSShearrvinicge SSeyrsvteicme (Shyttspt:e/m/ d(ahtatt.pcm://ad.acnta/.c)manad.cnd/a)i lyanpdre cdipaiiltya tiponreacnipditmateioann aairndte mmpeearna tuarier stwemerpeecroaltluecrteesd wfroerme c2o0l0l0ecttoed20 f0r9o.mE le2v0a0t0i otno i2s0a0c9e. nEtlreavlafaticotnor itsh aa tcseignntriafilc afancttloyra ftfheactt ssdigisntirfiibcauntitolyn saofffemctest edoisrotrliobguictiaolndsa toaf, meteorological data, therefore the whole catchment was divided into 10 elevation bands at 700 m intervals (Figure 2b) to spatially distribute the SBD. The interpolated SBD are calculated as follows: Water2016,8, 181 4of15 thereforethewholecatchmentwasdividedinto10elevationbandsat700mintervals(Figure2b)to spatiallydistributetheSBD.TheinterpolatedSBDarecalculatedasfollows: ` ˘ PCG R “ R ` EL ´EL ˆ ˆR ą0.01 (1) band day band gage daysˆ1000 day ` ˘ TCG T “ T ` EL ´EL ˆ (2) band day band gage 1000 where R (T ) and R (T ) are the precipitation in mm (average temperature in ˝C) for band band day day the calculated elevation band and at the gauged station, the precipitation (mm H O) and average 2 temperature(˝C)recordedatagaugingstation,respectively;EL andEL arethemeanelevations band gage (m)ofthecalculatedelevationbandandgaugingstationanddaysistheaveragenumberofrainydays inayearatthestation. Basedonapreviousstudy[27],thesameinterpolationsofprecipitationand temperaturewereusedinSWATandMIKESHE.SWATcalculatesPETatasub-basinscaleusingthe Penman-Monteithequationbasedonstation-interpolateddata. Thissemi-distributedPEToutputfrom SWATischosenasinputSBDPETinMIKESHE. 3.2. TRMM Remotely sensed precipitation data was obtained from the daily productions of the Tropical RainfallMeasuringMission(TRMM)3B42V6(http://trmm.gsfc.nasa.gov)ataspatialresolutionof 0.25˝, althoughtheTRMMV6datawascalibratedonaglobalscaleusingraingaugestations[28]. In mountainous regions such as the Yarkant River basin with arid climate conditions, extreme topographyandfewraingauges,theaccuracyisstillunfavourable,especiallyatthedailytemporal scale[29]. Thus,ananalysiswasconductedtodeterminewhethertheTRMMsatellitedetectedthe correctprecipitationevents(Equations(3)and(4)). Inthisanalysis,TRMM isdefinedasthetotal dec daysinwhichprecipitationeventsweredetectedbyTRMMbutnotrecordedbySBD.SBD isdefined dec asthetotalnumberofdaysinwhichprecipitationeventswererecordedbySBDbutnotrecorded by TRMM and TRSB is defined as the total number of days in which precipitation events were dec detectedbybothTRMMandSBD.Inaddition,D andD arethepercentagesofcorrectandincorrect r w precipitationeventsdetectedbyTRMMforthesatellitegridsthatthestationsoccupy. TRSB D “ dec (3) r TRSB `SBD dec dec TRMM D “ dec (4) w TRMM `TRSB dec dec The evaluation results are listed in Table 2. For the three stations, the D values are much w larger than D , indicating that many precipitation events detected by TRMM are redundant. r Anin-depthanalysisestimatedthedifferentintensityclassesofprecipitationusingthesameapproach (Equations(3)and(4)). TheresultssuggestthathighvaluesofD mainlycorrespondtolow-intensity w precipitation events (<0.3 mm) with a high probability of incorrect precipitation events (D ) w_0.3 (Table2). Table2.ComparisonbetweenrawandcorrectedTRMMprecipitation. Station Dr Dw Dw_0.3 rraw rcor Tashkurgan 0.54 0.75 0.95 0.11 0.45 Shache 0.21 0.87 0.96 0.67 0.77 Pishan 0.15 0.88 0.99 0.36 0.67 AscanbeconcludedfromTable2,directapplicationofraw3B42V6dataintheYarkantRiver basinisinappropriateformodelsimulation. Therefore,acorrectionwasperformedbasedonthelocal Water2016,8, 181 5of15 intensityscaling(LOCI)approach[30],whichcancorrectthewet-dayfrequenciesandintensitiesand effectivelyimprovetheoverestimateofrainydaysintherawdata. First,awet-daythresholdP thres wasdeterminedfromtherawTRMMdatatoensurethatthefrequencymatchedtheSBD.Thisvalue Water 2016, 8, 181 5 of 16 wassetas0.3becauseTRMMdetectedtoomanyredundantrainydayswithprecipitationamounts swmaasll esertt haas n0.03. 3bmecmau(sTea TbRleM2)M. A dsecteaclitnegd ftaocot omrasnyw raesdtuhnednacnatl crualiantye ddaaynsd wuistehd ptroedciepteitramtiionne athmaotuthnets m msmeaanlloerf tthheanc o0r.r3e mctemd (pTraebcliep i2t)a. tAio nscwalainsge qfaucatlotro smth weaosb tsheervne cdalpcruelcaitpeidta atniodn u,assedfo tlolo dweste:rmine that the mean of the corrected precipitation was equ`al to thˇe observed ˘precipitation, as follows: ˇ µ P P ą0 SBD,m SBD,m sm “ (cid:2020)(cid:3435)(cid:1842) (cid:3627)(cid:1842) (cid:3408) 0(cid:3439) (5) µpP (cid:3020)(cid:3003)(cid:3005)|,P(cid:3040) (cid:3020)(cid:3003)(cid:3005),(cid:3040) ą P q (cid:1871) (cid:3404) TRMM.raw,m TRMM.raw,m thres (5) (cid:3040) (cid:2020)(cid:3435)(cid:1842) # (cid:3627)(cid:1842) (cid:3408) (cid:1842) (cid:3439) (cid:3021)(cid:3019)(cid:3014)(cid:3014).(cid:3045)(cid:3028)(cid:3050),(cid:3040) (cid:3021)(cid:3019)(cid:3014)(cid:3014).(cid:3045)(cid:3028)(cid:3050),(cid:3040) (cid:3047)(cid:3035)(cid:3045)(cid:3032)(cid:3046) 0, if P ă P P “ 0,(cid:1861)(cid:1858) (cid:1842)TRMM.raw,m (cid:3407)th(cid:1842)res (6) (cid:1842)TRMM.cor,m (cid:3404) (cid:3420) PTRMM.r(cid:3021)aw(cid:3019),(cid:3014)m(cid:3014)ˆ.(cid:3045)s(cid:3028)m(cid:3050),,(cid:3040)otherwi(cid:3047)s(cid:3035)e(cid:3045)(cid:3032)(cid:3046) (6) (cid:3021)(cid:3019)(cid:3014)(cid:3014).(cid:3030)(cid:3042)(cid:3045),(cid:3040) (cid:1842) (cid:3400)(cid:1871) ,(cid:1867)(cid:1872)(cid:1860)(cid:1857)(cid:1870)(cid:1875)(cid:1861)(cid:1871)(cid:1857) (cid:3021)(cid:3019)(cid:3014)(cid:3014).(cid:3045)(cid:3028)(cid:3050),(cid:3040) (cid:3040) whereP andP aretheSBDandrawTRMMprecipitationrespectivelyinthemthmonth, SBD,m TRMM.raw,m awndhePre PSBD,m anids tPhTeRMcMo.rrarwe,mc taerde TthReM SMBDp raencdip ritaawti oTnRiMntMhe pmrethcimpiotanttiho.nµ r(e.)spreepctrievseelnyt sint htehee xmpteh cmtaotniotnh, TRMM.cor,m oapnedra PtoTRrM(Me..cgor.,m, µis(P the correcte)da TnRdMisMth eprmeceiapnitvaatiloune ionf trhaew mTtRh MmoMntphr.e c(cid:2020)i(p.)i traetpiornesienngtsiv tehne mexopnetchtamti)o.n TRMM,.raw,m operAatfoterr (ceo.gr.r,e c(cid:2020)t(iPonTR,MtMh,e.rarwa,mw) aTnRdM isM thdea mtaeqauna vliatlyuwe aosf rmawuc hTRimMpMro pveredc.iCpiotmatipoanr eidn gtoivtehne mraownTthR mM)M. , After correction, the raw TRMM data quality was much improved. Compared to the raw TRMM, the corrected TRMM was much closer to the SBD in the terms of the mean annual precipitation. the corrected TRMM was much closer to the SBD in the terms of the mean annual precipitation. In Inaddition,themonthlycorrelationcoefficientalsodisplayedaremarkableimprovementrefertor raw aandddritionin, tThaeb mleo2n.tEhvlye nctourarelllya,ttiohnis ccooerfrfeicctieionnt aalpspo rdoiascphlacyaendb ae raepmpalirekdabtolet himepwrhoovleembeansti nrebfaesre tdo orrnaw cor thanedo rrdcoir ninar TyaKbrleig 2in. gEvmenetthuoaldly,w, tihtihs cciorcrruelcatriomno adpeplrionatecrhp coalnat ebde asppulsieindg toA rthcGe IwS,hporleo vbiadsiinng braesveidse odn m TtRhMe oMrddinaatar.y Kriging method, with circular model interpolated sm using ArcGIS, providing revised TRMM data. 3.3. LST 3.3. LST As for temperature, Moderate Resolution Imaging Spectroradiometer (MODIS http:/A/st rmmfor.g sfcte.nmaspae.rgaotuv/re), MOMDod11eCra1ted aiRlyesLoSluTtiodna ta Iwmaasgiunsge d wSpitehctraorsapdaitoimalerteers olu(tMioOnDoIfS 0h.0tt5p˝:.//Vtremrsmio.ngs4f.c1.nwasaas.gcohvo/s)e nMbOeDca1u1sCe1o dfaitilsye LffSeTct idvaetnae swsaisn usesemdi -wariitdh aan sdpaartiiadl rreegsioolnustio[3n1 ]o.f D0a.0il5y°. mVeearnsioanir 4t.e1m wpaesr achtuorseend abteacawuasse noef eitdse edffaescttihveenMesIsK iEn SseHmEi‐ianrpidu ta.nPdr eavriido uresgrieosnesa r[3ch1].c oDnafiilrym medeatnh aaitr thteemrepiesraatguoroed dlaintae awrarse lnateieodnesdh ipasb tehtew MeeInKLES TSHanEd inapirutte. mPpreevraiotuurse r[e3s2e,a3r3c]h. BceocnafuirsmeeSdh atchhaet stthaetrioen isi sa mgiososdin lginLeSaTr rdealatati,oonnslhyipT absehtwkueregna LnSaTn adnPdi sahira ntesmtapteiorantudraet a[3w2,e3r3e].p Bloecttaeudseto Svhearcihfye sthtaitsiorenl aist imonissshiinpg (FLiSgTu rdea3ta)., only Tashkurgan and Pishan station data were plotted to verify this relationship (Figure 3). Figure 3. Regression relationship between daily air temperature and LST at the Tashkurgan and Figure3.RegressionrelationshipbetweendailyairtemperatureandLSTattheTashkurganandPishan Pishan stations in 2000–2009. stationsin2000–2009. The mean values of the regression coefficients at Tashkurgan station and Pishan station were ThemeanvaluesoftheregressioncoefficientsatTashkurganstationandPishanstationwereused used in a simple transform Equation (7) to calculate air temperature for the Yarkant River basin. Daily inasimpletransformEquation(7)tocalculateairtemperaturefortheYarkantRiverbasin. Dailymean mean air temperatures were acquired as input data for the MIKE SHE model. airtemperatureswereacquiredasinputdatafortheMIKESHEmodel. (cid:1846)(cid:3031)T(cid:3028)(cid:3052) (cid:3404)“00..77559922ˆ(cid:3400)LS(cid:1838)T(cid:1845)´(cid:1846)5(cid:3398).5655.565 ((77)) day 3.4. PET Daily global PET (GPET) data derived from the FEWS NET Data Portal (http://earlywarning.usgs.gov/fews/) was used in this study at a spatial resolution of 1°. This daily Water2016,8, 181 6of15 3.4. PET Daily global PET (GPET) data derived from the FEWS NET Data Portal (http://earlywarning.usgs.gov/fews/) was used in this study at a spatial resolution of 1˝. This daily PET was calculated on a spatial basis using the Penman-Monteith equation and the formulationforreferencecropevaporation[34]. GPETwasdirectlyappliedinthisresearch. 4. Methodology 4.1. Models Becauseofthestrongspatialheterogeneityassociatedwithextremetopographicalconditions, the fully distributed hydrological MIKE SHE model (European Hydrological System) [35] was employedinthisstudytorevealthespatialheterogeneityoftheYarkantRiverbasin. MIKESHEisa deterministic,dynamic,physicallybasedhydrologicalmodel. IntheMIKESHEmodel,catchmentsare splitintoanumberofsquaregridstorevealthespatialheterogeneityofthecatchment. Theinputdata andparametersineachgridareindependent. Basedonbilinearinterpolationmethod,allinputand outputdatapossessesthesamespatialresolution,assetinthemodel. Inthisstudy,aspatialresolutionof2kmwassetintheMIKESHEmodel. SBDwasappliedasa benchmarkandthreetypesofRSDandtheircombinationswereappliedindividuallytoreplacethe SBD.Finally,eightmodelswereutilizedbasedondifferentinputdata(Table3). Theentiresimulated periodwasuniformfrom2000to2009,includingawarm-upperiodfrom2000–2002,calibrationperiod from2003–2007andverificationperiodfrom2008–2009. Table3.Theeightmodelsinthisstudybasedondifferentinputdata. DataSource ModelAbbreviation Rainfall Temperature Evapotranspiration station station station STA TRMM station station TRMM station LST station LST station station GPET GPET TRMM LST station TRLS TRMM station GPET TRGP station LST GPET LSGP TRMM LST GPET RSD 4.2. Calibration To obtain the optimal performance of each model, the same calibration procedures were executedseparately. TheautocalibrationtoolbasedontheShuffledComplexEvolution(SCE)global optimizationalgorithm[36],whichisapartoftheMIKESHEpackage,waschosenforcalibration. Themainsignificantparametersofsnowmeltchosenforcalibrationincludedegree-dayfactor(DDF) andthresholdmeltingtemperature(TMT).ThoseoflandsurfaceflowincludeManningvalues(MAN). Thoseofinterflowincludehorizontalhydraulicconductivity(HHC)andverticalhydraulicconductivity (VHC).ThoseofevapotranspirationincludeLAIandrootdepth(RD).Duringthecalibration,standard deviation(STD)waschosenasastatisticaloutputmeasureandtheweightedsumofSTDwastaken as the objective function. Additionally, three statistical coefficients were used as the performance judgementcriteria: Nash-Sutcliffe[37]efficiencycoefficientNSC,Pearsoncorrelationcoefficientrand rootmeansquareerrorRMSE.Theirexpressionsarewrittenasfollows: ř ` ˘ n Q ´Q 2 NSC“1´ ři“1` obs,i sim,i˘ (8) n Q ´Q 2 i“1 obs,i obs,i Water2016,8, 181 7of15 ř ` ˘` ˘ n Q ´Q Q ´Q r“ bř `i“1 obs,i ˘obsb,i ř sim`,i sim,i ˘ (9) n Q ´Q 2 n Q ´Q 2 i“1 obs,i obs,i i“1 sim,i sim,i d ř n pQ ´Q q2 RMSE“ i“1 sim obs (10) n where Q and Q are the measured and simulated discharges respectively, on day i (m3/s); obs,i sim,i Q andQ aretheaveragemeasuredandsimulateddischargesrespectively,duringthesimulated obs sim period(m3/s);andnisthetimestep. 4.3. HypothesisTest Thenaturalprocessesofhydrologicalcyclesconstitutecomplexsystemswithhighlynonlinear relationshipsbetweenthe“affected”andthe“caused”. Toevaluatetheeffectofinputdatauncertainty onthehydrologicalprocess,itisnecessarytodefinethesensitivitiesofthewatercomponentstothe differentinputdata. Inthisstudy,astatisticalhypothesistestbasedontheANOVAmodel,whichis usefulincomparingthestatisticalsignificanceofthreeormoregroups,waschosentotestdifferent significanteffectoftheinputdataonwatercomponents. Threetypesofinputdata(precipitation,temperatureandPET)wereusedaseffectfactorsA,B andC.Theywereinvestigatedattwolevels(SBDandRSD).WhenAisatleveli(I=1,2),Bisatlevelj (j=1,2)andCisatlevelk(k=1,2),theresultingwatercomponentcanbedenotedbyu . TheANOVA i,j,k model[38]forthreefactorswithfixedeffectsisasfollows: y “u...`α `β `γ `pαβq `pαγq `pβγq `pαβγq `ε (11) ijkn i j k ij ik jk ijk ijkn wherey istheobservationforthenthcaseortrialforthescenariobasedontheithlevelofA,jthlevel ijkn ofBandthekth levelofC;u...isthegrandmeanofalldependentvariablesu ; α, β andγ are i,j,k i j k themaineffectsoffactorsA,BandC,respectively; pαβq , pαγq andpβγq arethemaineffectsof ij ik jk thetwo-factorinteraction;pαβγq isthemaineffectofthethree-factorinteraction; and ε isthe ijk ` ˘ ijkm independentrandomerrorwhichfollowsanormaldistributionN 0,δ2 . WhenfactorAistested,weassumethatthenullhypothesisH ,meaningthattheinfluenceofthe 0 factorontheresultisnotsignificant,isacceptable. Thus,α “ α “ 0. Inthiscase,theprobability 1 2 p=P(F >F )canbecalculated. Whenthecalculatedp-valueislargerthanthesignificance [(a-1),abc(n-1)] A level(α),setas0.05inthisstudy,suggestingthattheassumptioniscorrect,thenullhypothesisH will 0 beaccepted. Otherwise,thealternativehypothesisH shouldbeaccepted. Otherhypothesescouldbe a testedinthesameway. 5. ResultsandDiscussion 5.1. SimulatedDischarges Afterseparatecalibrations,thefinalvaluesofchosenparameterswereobtained. Amongtheeight models, MAN rangedfrom25to60basedondifferentlanduse. Forthedifferentsoiltypes, HHC andVHCrangedfrom0.0003to0.001and0.0035to0.01,respectively. MAN,HHCandVHCshowed insignificantchangesbetweendifferentmodelsforthesamelanduseorsoiltype.Thecalibratedvalues ofotherparametersarelistedinTable4. Whentemperaturewasreplaced,theparametersofsnow (DDFandTMT)wereadjusteddrastically. WhenPETwasreplaced,parametersofevapotranspiration (LAIandRD)changedremarkably. Intheothercases,thevariationswereinsignificant. Thesewere revealedbycomparingparametervaluesunderSTAtothethreemodelssettingwithonlyoneremote sensinginput(i.e.,theTRMM,LSTandGPET)intable. Becauseoftheperiodicgrowth,LAIandRDin herbaceousareasexhibitdistincttemporalvariations[39]andnotlistedinTable4. Water2016,8, 181 8of15 Table4.Thefinalvaluesofcalibrationparametersindifferentmodels. Water 2016, 8, 181 8 of 16 Models STA TRMM LST GPET TRLS TRGP LSGP RSD TMT (°C) −0.98 −1.00 −0.56 −1.01 −0.57 −1.02 −0.56 −0.55 DDF(mm/day/˝C) 2.01 2.03 1.25 1.98 1.25 2.00 1.23 1.25 LAI_NLT * 3.81 3.82 3.78 2.65 3.82 2.64 2.63 2.66 TMT(˝C) ´0.98 ´1.00 ´0.56 ´1.01 ´0.57 ´1.02 ´0.56 ´0.55 RD_NLT (mm) * 4500 4500 4500 4000 4500 4000 4000 4000 LAI_NLT* 3.81 3.82 3.78 2.65 3.82 2.64 2.63 2.66 RD_N*L TLA(mI_mN)L*T and R45D0_0NLT a4r5e0 t0he LA4I 5a0n0d RD 4v0a0lu0es of e4v5e0r0green n4e0e0d0le‐leav4e0d0 t0rees. 4000 *LAI_NLTandRD_NLTaretheLAIandRDvaluesofevergreenneedle-leavedtrees. Based on the multiple evaluation coefficients (Table 5) in the verification period, the performances of most models were acceptable, except for the TRGP and RSD models. The Basedonthemultipleevaluationcoefficients(Table5)intheverificationperiod,theperformances NSC values of the other six models were higher than 0.5 and all r values exceeded 0.7. The ofmostmodelswereacceptable,exceptfortheTRGPandRSDmodels. TheNSCvaluesoftheother STA model exhibited the best result, with the highest NSC and r value and the smallest six models were higher than 0.5 and all r values exceeded 0.7. The STA model exhibited the best RMSE, suggesting that the interpolation of meteorological data based on elevation intervals result,withthehighestNSCandrvalueandthesmallestRMSE,suggestingthattheinterpolationof was feasible. The LOCI approach can correct only the magnitude and frequency of TRMM meteorologicaldatabasedonelevationintervalswasfeasible. TheLOCIapproachcancorrectonly and not the probability distribution, possibly causing the relatively poor performance of themagnitudeandfrequencyofTRMMandnottheprobabilitydistribution, possiblycausingthe the TRMM application. In general, the application of the corrected RSD in the Yarkant River relativelypoorperformanceoftheTRMMapplication. Ingeneral,theapplicationofthecorrectedRSD basin was acceptable, although it could be improved. intheYarkantRiverbasinwasacceptable,althoughitcouldbeimproved. Table 5. Statistical coefficients of the performances of different models. Table5.Statisticalcoefficientsoftheperformancesofdifferentmodels. Model STA TRMM LST GPET TRLS TRGP LSGP RSD Model STA TRMM LST GPET TRLS TRGP LSGP RSD NSC 0.65 0.50 0.52 0.61 0.55 0.42 0.52 0.46 NSC 0.65 0.50 0.52 0.61 0.55 0.42 0.52 0.46 R R 0.804.84 0.703.73 0.705.75 00.8.811 00..7744 00.6.688 0.07.47 4 0.700.7 0 RMSE 172.10 207.15 204.49 183.52 197.35 222.81 204.11 214.66 RMSE 172.10 207.15 204.49 183.52 197.35 222.81 204.11 214.66 TThhee bbooxxpplloottss ooff mmoonntthhllyy mmeeaann ssiimmuullaatteedd ddiisscchhaarrggee ((FFiigguurree 44)) aatt tthhee oouuttlleett ssttaattiioonn ddeerriivveedd ffrroomm tthhee eeigighhttm mododeleslsin idnidcaicteatsei gsniigfinciafinctavnat rivaatiroiantsiofnrosm frAompr ilAtporSile ptote mSebpetre.mThbeerla. rTgheed ilfafergreen cdeisffseuregngceesst tshuagtgeevste nthfaotr esvimenu lfaotre dsimdiusclahtaerdg edaistcthhaergoeu talet tthstea toiountl,ewt shtiacthioanr,e wadhijuchst eadreb aydtjhuestaedu tob-yc atlhibe raatuitoon‐ sccahliebmraet,iothne secihgehmtme, othdee lesiegxhht imbiotddeelvsi aetxihonibsi,ta dsecvleiaatriloynisll, uasst rcaleteadrlyb yilltuhsetpraetaekdfl boyw t,hwe hpiecahki sflionwfl,u wenhciecdh bisy inmfliuxeendcpedre bciyp mitaitxieodn parnedcispnitoawtiomne altn.dI fsnthoewimnpeultt. Idfa tthaei isnepvuatl udaattead isb eavsaelduaotnedo nblaysetdh eosni monullya ttehde rsuimnouflfa,ttehdi sruevnaolfuf,a tthioisn ewviallluaaftfieocnt twheillu anfdfeecrts ttahned uinngdeorfsotatnhderinwg aotef robthaelar nwceatceorm bpaloannecne tcsonmegpaotniveenltys. Aneltgeartniavteilvye.l yA,lvtearrniaabtiilviteileys, ivnatrhieabdiilsittireibs uinte tdhoe udtipsutrtibaruetemdo oreutapvuatil aarbele m[4o0r]e. aAvcaciolardbilne g[4ly0,]t.h Aecdciosrtrdibinugtleyd, wthaet edrisctormibpuotende nwtsarteerp rceosmenptoanbenetttse rrewpareysteonte vaa lbueattteert hweaeyff etcot seovfaliunaptue ttdhaet aefufnecctesr toafi nitniepsuot ndtahtea suinmcuerlatatiionntieosf ohny dthroel soigmicuallaptiroonc eosfs hesy.drological processes. FFiigguurree 44.. BBooxxpplloottss ooff mmoonntthhllyy mmeeaann ddiisscchhaarrggeess aatt tthhee oouuttlleett ssttaattiioonn ddeerriivveedd ffrroomm eeiigghhtt mmooddeellss ffrroomm 22000033 ttoo 22000099.. Water2016,8, 181 9of15 5.2. SensitivitiesofWaterComponents Water 2016, 8, 181 9 of 16 Inthisstudy,thehypothesistestswereaimedatdifferentiatingwatercomponentsbasedontheir annualmeanvaluesandeachgrouptestdatasetwasfirstadoptedbythenormaldistributionand 5.2. Sensitivities of Water Components variance homogeneity test. In the MIKE SHE model, ET was divided into different categories: a In this study, the hypothesis tests were aimed at differentiating water components based on their snow sublimation (SNOWS), canopy interception (CI), river and pond water evaporation (WE), annual mean values and each group test dataset was first adopted by the normal distribution and soilevaporation(SOILE)andplanttranspiration(PT).ThesefiveET sources,overlandflow(OLF), variance homogeneity test. In the MIKE SHE model, ETa was divided inato different categories: snow baseflow(BF)andsnowstorage(SS)wereemployedforthehypothesistest. Theprobabilitypvalue sublimation (SNOWS), canopy interception (CI), river and pond water evaporation (WE), soil resultsareprovidedinTable6. evaporation (SOILE) and plant transpiration (PT). These five ETa sources, overland flow (OLF), base flow (BF) and snow storage (SS) were employed for the hypothesis test. The probability p value Table6.TheprobabilitypvaluesofthehypothesisH test. results are provided in Table 6. 0 Groups A B C A*B A*C B*C A*B*C Table 6. The probability p values of the hypothesis H0 test. OLF 0.000 0.221 0.691 0.040 0.714 0.399 0.336 Groups A B C A*B A*C B*C A*B*C BF 0.003 0.436 0.008 0.087 0.619 0.450 0.553 OLF 0.000 0.221 0.691 0.040 0.714 0.399 0.336 SS 0.003 0.000 0.945 0.001 0.828 0.415 0.430 BF 0.003 0.436 0.008 0.087 0.619 0.450 0.553 SNOWS 0.271 0.000 0.224 0.789 0.546 0.120 0.282 CI 0.00S0S 00.0.00030 0.0000.000.9045 0.000.10070.828 00..048195 0.4300. 028 0.431 WE 0S.0N0O0WS 00.2.07010 0.0000.000.2024 0.708.99 370.546 00..018250 0.2802. 072 0.573 SOILE 0.13C8I 00.0.20308 0.0000.000.0000 0.000.77470.089 00..204218 0.4301. 739 0.932 PT 0.54W1E 00.0.50305 0.0000.000.0000 0.903.77 510.085 00..603772 0.5703. 809 0.905 SOILE 0.138 0.238 0.000 0.747 0.241 0.739 0.932 PT 0.541 0.535 0.000 0.751 0.637 0.809 0.905 Table 6 indicates that factor A, precipitation, had a significant effect on most hydrological componeTnatbsl,ee x6c einpdticSaNteOs WthaSt, SfaOctIoLrE Aa,n pdrePcTip.iFtaatciotonr, Bh,adte ma psiegrnaitfuicraen,t pelfafyecst aocnr umcoiaslt rhoylderionlotghiecasln ow, PIancdomWpEopneronctse,s esxecse.pAt lSlNevOaWpoSt, rSaOnIsLpEir aantido nPTs.o Fuarccteosr eBx,c teepmtpSeNraOtuWreS, pwlaeyres ast crrouncgialyl rsoelne siint itvhee tsonfoawct, orC, PET.PTI harnodu WghE tphreocsetsasteiss.t Aiclal lehvayppoottrhanesspisirtaetsiotsn, stohuersceesn esxitcievpitt iSeNsOofWwSa wteerrec sotmropnoglnye snetnssittoivdei tfofe fraecntotrd ata typesCw, PeEreT.i lTluhsrotruagthed thine tsutaittiiostnicaalll yh.yBpaostehdesoisn ttehsets,r ethsue lstse,ntshiteivditiisetsr iobfu wteadteor uctopmuptoSnSencatsn tbo edsifpfeerceifinte dto analydsaetap tryepceips itwaetiroe nilalunsdtratetemdp ienrtautituiorenadlleyv. iBataisoends ofnro tmheR rSeDsulatns,d thSeB Ddi.sPtrTibuwteads eomutppluoty SeSd cinant hbee PET specified to analyse precipitation and temperature deviations from RSD and SBD. PT was employed deviationanalysis. in the PET deviation analysis. 5.3. ResponsesofHydrologicalProcesses 5.3. Responses of Hydrological Processes 5.3.1. SnowStorage 5.3.1. Snow Storage Figure5illustratesthespatialdistributionofthesimulatedannualmeansnowstoragedepths Figure 5 illustrates the spatial distribution of the simulated annual mean snow storage depths fromtheSTA,TRMM,LSTandGPETmodels. Whenthesignificantimpactfactors,precipitationand from the STA, TRMM, LST and GPET models. When the significant impact factors, precipitation and temperature associated with snow storage (Table 5) were replaced by RSD in the TRMM and LST temperature associated with snow storage (Table 5) were replaced by RSD in the TRMM and LST modemlso,dtehles, sthpea tsipaaltdiails dtriisbtruibtiuotnioonf otfh tehes nsnoowwppaacckk uunnddeerrwweenntt aa hhuugge echcahnagneg. eIn. Ianddaidtidointi, othne, ttehmepteomrapl oral distridbiusttriiobnustiSonSsi nSSd iifnf edriefnfetreenletv ealteivoantibonan bdasn(dFsi g(Fuirgeu6re) a6l)s aolseox hexibhiitbeidtedsi gsniginfiicfaicnatnvt avrairaitaitoionnssa ammoonngg STA, TRMSMTAa,n TdRLMSMT. and LST. FiguFreig5u.reS 5p. aStpiaatliadli dstirstirbiubutitoionnss ooff ssiimmuulalatetedd anannunaul amlemane sannowsn sotowrasgteo braagseedb oans tehde SoTnAt,h TeRSMTMA,, LTSRTM M, and GPET models in the Yarkant River basin from 2003 to 2009. LSTandGPETmodelsintheYarkantRiverbasinfrom2003to2009. Water2016,8, 181 10of15 Water 2016, 8, 181 10 of 16 FigFuirgeu6re. T6.h Tehtee mtempoproarlald disistrtribibuuttiioonnss ooff ssnnooww ssttoorraagge eini ndidffieffreernetn etleevleavtiaotni obnanbdasn. ds. Compared to the STA model, the TRMM model resulted in significant variations in annual mean snow storage depth, with change proportions of ´9.4% and 12.3% in the 5000 m–5700 m
Description: