SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Deyu Zhang Zhigang Chen Haibo Zhou Xuemin (Sherman) Shen Resource Management for Energy and Spectrum Harvesting Sensor Networks 123 SpringerBriefs in Electrical and Computer Engineering More information about this series at http://www.springer.com/series/10059 Deyu Zhang Zhigang Chen (cid:129) Haibo Zhou Xuemin (Sherman) Shen (cid:129) Resource Management for Energy and Spectrum Harvesting Sensor Networks 123 Deyu Zhang HaiboZhou Schoolof Software Department ofElectrical andComputer Central SouthUniversity Engineering Changsha,Hunan University of Waterloo China Waterloo, ON Canada Zhigang Chen Schoolof Software Xuemin(Sherman) Shen Central SouthUniversity Department ofElectrical andComputer Changsha,Hunan Engineering China University of Waterloo Waterloo, ON Canada ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs inElectrical andComputer Engineering ISBN978-3-319-53770-2 ISBN978-3-319-53771-9 (eBook) DOI 10.1007/978-3-319-53771-9 LibraryofCongressControlNumber:2017931571 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface To alleviate the energy and spectrum constraints in wireless sensor networks (WSNs), WSNs necessitate energy and spectrum harvesting (ESH) capabilities to scavenge energy from renewable energy sources, and opportunistically access the underutilized licensed spectrum; hence, give rise to the energy and spectrum har- vesting sensor networks (ESHSNs). In spite of the energy and spectrum efficiency brought by ESHSNs, their resource management faces new challenges. First, energy harvesting (EH) process is dynamic, which makes balancing energy con- sumption and energy replenishmentchallenging. Depleting thesensorsbattery ata rate slower or faster than the energy replenishment rate leads to either energy underutilization or sensor failure, respectively. Second, the spectrum utilization by sensorsinESHSNshastoadapttothedynamicactivityofprimaryusers(PUs)over licensed spectrum. In this monograph, we investigate the resource management and allocation, to facilitate energy- and spectrum-efficient sensed data collection in ESHSNs. In Chapter1,wediscussthemotivationtointegrateESHcapabilitiesinWSNs,aswell as the network architecture, typical application scenarios, and challenges of ESHSNs. Chapter 2 surveys the related state-of-the-art research literature. In Chapter 3, an EH-powered licensed spectrum sensing scheme is proposed to schedulethespectrumsensorswhicharededicatedlydeployedforspectrumsensing to periodically estimate the licensed spectrum availability. Accordingly, an access time and power management of battery-powered data sensors is presented as well, which has been verified an effective solution to minimize the energy consumption ofdatatransmissionovertheavailablelicensedspectrum.InChapter4,wepropose an online algorithm which jointly manages the available licensed spectrum and harvestedenergy tooptimizethenetwork utility whichcapturesthedatacollection efficiencyofESHSNs.Theproposedalgorithmdynamicallyschedulessensors’data sensingandspectrumaccessbyconsideringthestochasticnatureofEHprocess,PU activities, and channel conditions. Finally, Chapter 5 concludes the monograph by outlining some open issues, pointing out new research directions for resource management in ESHSNs. v vi Preface TheauthorswouldliketothankNingZhangoftheBroadBandCommunications Research (BBCR) group at University of Waterloo, Prof. Mohamad Khattar Awad of Kuwait University, and Prof. Ju Ren of Central South University for their contribution to the presented research works, and Prof. Shibo He of Zhejiang Universityforhisvaluablesuggestionsonthemonographdraft.Wealsowouldlike to thank all the members of BBCR group for their valuable comments and sug- gestions. Special thanks are due to the staff at Springer Science+Business Media: SusanLagerstrom-FifeandJenniferMalat,fortheirhelpthroughoutthepublication preparation process. Changsha, China Deyu Zhang Changsha, China Zhigang Chen Waterloo, ON, Canada Haibo Zhou Waterloo, ON, Canada Xuemin (Sherman) Shen Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Resource Constraints in Wireless Sensor Networks ... ..... .... 1 1.2 Enabling Techniques for Energy and Spectrum Harvesting .. .... 2 1.2.1 Energy Harvesting... .... .... .... .... .... ..... .... 2 1.2.2 Spectrum Harvesting. .... .... .... .... .... ..... .... 2 1.3 Energy and Spectrum Harvesting Sensor Networks ... ..... .... 3 1.3.1 Network Architecture .... .... .... .... .... ..... .... 3 1.3.2 Applications of ESHSNs.. .... .... .... .... ..... .... 5 1.3.3 Challenges for ESHSNs .. .... .... .... .... ..... .... 6 1.4 Aim of the Monograph..... .... .... .... .... .... ..... .... 7 References.. .... .... .... ..... .... .... .... .... .... ..... .... 8 2 Energy and Spectrum Harvesting in Sensor Networks... ..... .... 9 2.1 Energy Harvesting ... ..... .... .... .... .... .... ..... .... 9 2.1.1 EH Process Modeling.... .... .... .... .... ..... .... 9 2.1.2 Energy Allocation... .... .... .... .... .... ..... .... 11 2.2 Spectrum Harvesting.. ..... .... .... .... .... .... ..... .... 14 2.2.1 Spectrum Sensing ... .... .... .... .... .... ..... .... 14 2.2.2 Resource Allocation in Spectrum Harvesting Sensor Networks. .... ..... .... .... .... .... .... ..... .... 17 2.3 Joint Energy and Spectrum Harvesting in Wireless Networks .... 19 2.3.1 Green Energy-Powered SH Networks.... .... ..... .... 19 2.3.2 RF-Powered SH Networks .... .... .... .... ..... .... 20 2.4 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 20 References.. .... .... .... ..... .... .... .... .... .... ..... .... 21 vii viii Contents 3 Spectrum Sensing and Access in Heterogeneous SHSNs . ..... .... 25 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 25 3.2 System Model... .... ..... .... .... .... .... .... ..... .... 26 3.2.1 Network Architecture .... .... .... .... .... ..... .... 26 3.2.2 EH-Powered Spectrum Sensing. .... .... .... ..... .... 28 3.3 Problem Statement and Proposed Solution.. .... .... ..... .... 29 3.3.1 Spectrum-Sensing Scheduling.. .... .... .... ..... .... 30 3.3.2 Data Sensor Resource Allocation ... .... .... ..... .... 34 3.4 Performance Evaluation .... .... .... .... .... .... ..... .... 38 3.4.1 Detected Channel Available Time... .... .... ..... .... 39 3.4.2 Energy Consumption of Data Transmission ... ..... .... 44 3.5 Summary .. .... .... ..... .... .... .... .... .... ..... .... 46 References.. .... .... .... ..... .... .... .... .... .... ..... .... 46 4 Joint Energy and Spectrum Management in ESHSNs ... ..... .... 49 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 49 4.2 System Model and Problem Formulation ... .... .... ..... .... 50 4.2.1 Channel Allocation and Collision Control Model .... .... 51 4.2.2 Energy Supply and Consumption Model.. .... ..... .... 54 4.2.3 Data Sensing and Transmission Model... .... ..... .... 55 4.2.4 Problem Formulation. .... .... .... .... .... ..... .... 56 4.3 Network Utility Optimization Framework... .... .... ..... .... 57 4.3.1 Problem Decomposition .. .... .... .... .... ..... .... 57 4.3.2 Utility-Optimal Resource Management Algorithm.... .... 63 4.4 System Performance Analysis.... .... .... .... .... ..... .... 63 4.4.1 Upper Bounds on Queues. .... .... .... .... ..... .... 64 4.4.2 Required Battery Capacity .... .... .... .... ..... .... 65 4.4.3 Optimality of the Proposed Algorithm ... .... ..... .... 67 4.5 Performance Evaluation .... .... .... .... .... .... ..... .... 68 4.5.1 Network Utility and Queue Dynamics.... .... ..... .... 69 4.5.2 Impact of Parameter Variation.. .... .... .... ..... .... 71 4.6 Summary .. .... .... ..... .... .... .... .... .... ..... .... 73 References.. .... .... .... ..... .... .... .... .... .... ..... .... 74 5 Conclusion and Future Research Directions... .... .... ..... .... 77 5.1 Concluding Remarks . ..... .... .... .... .... .... ..... .... 77 5.2 Future Research Directions.. .... .... .... .... .... ..... .... 78 5.2.1 Real Data-Driven EH Process and PU Activities Modeling. .... ..... .... .... .... .... .... ..... .... 78 5.2.2 Joint Spectrum Detection and Access.... .... ..... .... 79 5.2.3 Resource Allocation in Multi-hop ESHSNs.... ..... .... 79 Acronyms AoI Area of Interest CR Cognitive Radio CSMA/CA Carrier Sense Multiple Access with Collision Avoidance EH Energy Harvesting EMI ElectroMagnetic Interference ESHSN Energy and Spectrum Harvesting Sensor Network ESI Energy State Information HSHSN Heterogeneous Spectrum Harvesting Sensor Network ISM Industrial, Scientific, and Medical MAC Media Access Control MDP Markov Decision Process PU Primary User QoS Quality of Service RF Radio Frequency SH Spectrum Harvesting SHSN Spectrum Harvesting Sensor Network SNR Signal-to-Noise Ratio SoC State of Charge SP Spectrum Provider SU Secondary User TDMA Time Division Multiple Access TPS Third-Party System WSN Wireless Sensor Network ix