ebook img

Resonances and Spectral Shift Function for a Magnetic SCHRÖdinger Operator PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Resonances and Spectral Shift Function for a Magnetic SCHRÖdinger Operator

RESONANCES AND SPECTRAL SHIFT FUNCTION FOR A MAGNETIC SCHRÖDINGER OPERATOR 9 ABDALLAHKHOCHMAN 0 0 2 n H 0 a Abstra t. We onsider the3vD S hrödinger operator with onstantmagneti (cid:28)eldaxnd 0 3 J subje ttoanele tri potential dependingonlyonthevariablealongthemagneti (cid:28)eld . H 0 4 Theoperator hasin(cid:28)nitelyHm0anyeigenvaluesofin(cid:28)nitemuVltip=li Oit(yh(exm1,bxe2d)di−edδ⊥inhxi3tis− δokn)- 1 tinuousspe trum. Weperturb bysmooths alarpotentials , δ⊥ >2, δk >1. We assume also that V and v0 have an analyti ontinuation, in the mag- ] neti (cid:28)elddire tion,in a omplexse toroutside a ompa tset. We de(cid:28)netheresonan es of P H =H0+V H .S distqor∈tioNns ofaRsxt3h.eWeiegesntuvadlyuetsh2eobifrqt+dhiesλtnriobnu-tsieolnfadnjeoairnta(rno,yp2er(cid:28)r)xaetodrroeabltaeiingeednvfarloumeofHby0,a2nbaqly+tiλ h for . Inaring enteredat withradiuses ,weestablishanupperbound,as r 0 V t tendsto , of the numberof resonan es. This upper bounddepends on thede ay of at a (x1,x2) m in(cid:28)nityonly in the dire tions . Finally, we dedu Hea,Hrepresentation of the derivative 0 ofthespe tralshiftfun tion(SSF)fortheoperatorpair( )intermsofresonan es. This [ representation justi(cid:28)es theBreit-Wigner approximationand implies a lo al tra e formula. 1 Mathemati s lassi(cid:28) ation: 35P25, 35J10, 47F05, 81Q10. v 0 Keywords: Ele tromagneti S hrödinger operator, Resonan es, Embedded eigenvalue, 8 Spe tral shift fun tion, Breit-Wigner approximation, Tra e formula. 9 1 . 1. Introdu tion 1 0 The resonan e theory for non-relativisti parti les satisfying the S hrödinger equation has 9 been developed following several approa hes. Among them we an mention the analyti dila- 0 : tion (see Aguilar-Combes [1℄) or the analyti distortion (see Hunziker [10℄) and meromorphi v ontinuation of the resolvent or of the s attering matrix (see Lax-Philips [14℄ and Vainberg i X [20℄). For S hrödinger operators with onstant magneti (cid:28)eld, the resonan es an be de- r (cid:28)ned by analyti dilation (only) with respe t to the variable along the magneti (cid:28)eld (see a Avron-Herbst-Simon [3℄, Wang [21℄, Astaburuaga-Briet-Bruneau-Fernández-Raikov [2℄) and by meromorphi ontinuation of the resolvent (see J.F.Bony-Bruneau-Raikov [4℄). The link between the resonan es and the spe tral shift fun tion (SSF) by the so- alled Breit-Wigner approximation has been developed in di(cid:27)erent situations. Su h a representa- tion of the derivative of the spe tral shift fun tion related to the resonan es, implies tra e formulas. In the semi- lassi al regime we an mention Sjöstrand [18℄, [19℄, Petkov-Zworski [15℄, J.F.Bony-Sjöstrand [5℄, Bruneau-Petkov [6℄ and Dimassi-Zerzeri [8℄ for the S hrödinger operator and [12℄ for the Dira operator. In [4℄, J.-F.Bony, Bruneau and Raikov obtain a 3 Breit-Wigner approximation of the spe tral shift fun tion near a Landau level for the D S hrödinger operator with onstant magneti (cid:28)eld. For the last operator, under more general assumptions, Fernández-Raikov [9℄ studied the singularities of the spe tral shift fun tion at a Date: January 14, 2009. 1 2 ABDALLAHKHOCHMAN Landau level. These singularities has been analysed at eigenvalues of in(cid:28)nite multipli ity by Astaburuaga, Briet, Bruneau, Fernández and Raikov [2℄ for a magneti S hrödinger operator having ele tri potential depending (only) on the variable along the magneti (cid:28)eld. H 0 In this paper we onsider the magneti S hrödinger operator with an ele tromagneti (cid:28)eld introdu ed in [2℄. We suppose that the magneti (cid:28)eld is onstant and that the ele tri v x 0 3 potential depends only on the variable and is analyti outside a ompa t set. This operator isremarkablebe auseofthegeneri presen eofin(cid:28)nitely many eigenvaluesofin(cid:28)nite H H 0 0 multipli ity, embedded in the ontinuous spe trum of . We perturb the operator by a V x 3 smooth s alar potential analyti outside a ompa t set with respe t to the variable . The purpose of this work is to de(cid:28)ne the resonan es of the ele tromagneti S hrödinger H = H +V 0 operator for analyti perturbation outside a ompa t set in the third dire tion x H 3 . We de(cid:28)ne the resonan es for as the dis rete eigenvalues of the non-selfadjoint operator H θ Robtained from the magneti S hrödinger operator by agenHeral lass of omplex distortions of x3. In Se tion 3, we prove that the dis rete eigenvalues of θ are thezeros of aregularized det (·) 2 determinant whi h is independent of the distortion. This justi(cid:28)es the de(cid:28)nition of the resonan es. We al ulate the essential spe trum of the distorted operator to determine the se tor where we an de(cid:28)ne the resonan es. In Se tion 4, we establish an upper bound for the H r → 0 H 0 number of resonan es of in a domain of size near an embedded eigenvalue of . The se ond goal of this work is to obtain a Breit-Wigner approximation for the derivative of ξ(λ) H the spe tral shift fun tion related to the resonan es of the operator , as well as a lo al tra e formula (see Se tion 5). 2. Assumptions and results H 0 In this se tion, we summariBze=so(m0,e0s,pb)e tbra>l p0roperties of the 3D S hrödinger operator with onstant magneti (cid:28)eld , and subje t to a non- onstant ele tri (cid:28)eld E = −(0,0,v (x )) x 0′ 3 depending onlyonthevariable 3 (see[2℄). Wealsostatethemainresults. Let H = H ⊗I +I ⊗H , 0 0, 0, (2.1) ⊥ k ⊥ k I I L2(R ) L2(R2 ) where k and ⊥ are the identity operators in x3 and x1,x2 respe tively, 2 2 ∂ bx ∂ bx H := i − 2 + i + 1 −b, (x ,x ) ∈R2, 0, 1 2 (2.2) ⊥ (cid:18) ∂x1 2 (cid:19) (cid:18) ∂x2 2 (cid:19) b L2(R2) is the Landau Hamiltonian shifted by the onstant , self-adjoint in , and d2 H := − +v , x ∈ R. (2.3) 0,k dx23 0 3 v v (x ) 0 0 3 The operator isvth∈eLmu(ltRip)li ation operator by an one dimensional s alar potential . 0 ∞ We suppose that and satis(cid:28)es |v | = O(hx i δ0), 0 3 − (2.4) hxi = (1+|x|2)21 δ0 > 1 with and . Then using Weyl theorem, we have d2 σ (H )= σ (− ) =[0,+∞[. (2.5) ess 0,k ess dx2 3 MAGNETIC SCHRÖDINGER RESONANCES AND SSF 3 H 2bq q ∈ 0, INt:i=s w{e0l,l1k,n2o.w..n}that the spe trum of the operator ⊥ 2oqnbsists of the Landau levels , , aHndthemultipli ity2obfqe+a hλeigenvaqlu∈e N isinλ(cid:28)nite(see[3℄). Consequently, 0 the eigenvalues of have the forHm = − d2w+hvere(x ) and is an eigenvalue of the one dimensional S hrödinger operator 0,k dx23 0 3 . For simpli ity, throughout thearti le we suppose also that σ(H ) > −2b. 0, (2.6) inf k v > −2b H 2bq+λ, q ∈ N 0 0 ∗ Note that, (2.6) holds true if . The eigenvalues of , , are embedded [0,+∞[= ∪ [2bq,∞[ ∞q=0 in its ontinuous spe trum and are of in(cid:28)nite multipli ity. H = H + V V 0 Now, we introdu e theVp(exr)turbed operatorV ∈L (R3) where is the multipli ation ∞ operator by the potential . Assume that and satis(cid:28)es |V(x)| = O(hX i−δ⊥hx3i−δk), X = (x1,x2), (2.7) ⊥ ⊥ δ > 2 δ > 1 V v 0 with ⊥ and k .xWe suppose also that and have holomorphi extensions in the 3 magneti (cid:28)eld dire tion in the se tor C := {z ∈ C;| (z)| ≤ ǫ| (z)|, | (z)| ≥ R > 0}, 0 < ǫ < 1, ǫ,0 0 (2.8) Im Re Re for x ∈ C 3 ǫ,0 and satisfy respe tively (2.7) and (2.4) for . θ ∈ D ∩R D := {θ ∈ C; |θ|≤ r := ǫ } For ǫ with ǫ ǫ √1+ǫ2 , we denote H := (I ⊗U )H(I ⊗U 1)= H +V , θ θ θ− 0,θ θ ⊥ ⊥ where H := (I ⊗U )H (I ⊗U 1) = H ⊗I +I ⊗H (θ) (2.9) 0,θ ⊥ θ 0 ⊥ θ− 0,⊥ k ⊥ 0,k H (θ) = U H U 1 U and 0,k θ 0,k θ−H(see (3.2) for the de(cid:28)nition ofθ ∈θ).DWe will prouve in the next θ ǫ se tion that the operator has an analyti extension for . θ D+ := D ∩{θ ∈ C; (θ)≥ 0} q ∈ N r ∈ R 0 ǫ ǫ For (cid:28)xed in Im , and , we de(cid:28)ne Γ := 2br+(1+θ ) 2[0,+∞[ (2.10) r,θ0 0 − and S := Γ . (2.11) q,θ0 r,θ0 q<r[<q+1 H The spe trum of 0,θ0 is purely essential and we have σ(H ) = σ (H ) = 2bq+σ(H (θ )) (2.12) 0,θ0 ess 0,θ0 q[N(cid:0) 0,k 0 (cid:1) ∈ = Γ ∪ 2bq+σ (H (θ )) , q,θ0 disc 0, 0 q[N(cid:0) (cid:0) k (cid:1)(cid:1) ∈ σ (H (θ )) = σ (H )∪{z ,z ,...} σ (H ) disc 0, 0 disc 0, 1 2 disc 0, where k k , k denotes the dis rete spe trum of H z ,z ,... H (θ ) 0, 1 2 0, 0 k and are the omplex eigenvalues of k . In the following, we assume that σ (H )= {λ} λ disc 0, k . Note that is ne essarily simple. H H θ 0,θ The essential spe trum of oin ides with that of . We prove also that the dis rete H S = S θ D+ θ , θ spe trum of θ in θH Sq∈NHq,θ is independSent∩ofS in ǫ (i.e. for two values 1 2, the dis rete spe trum of θ1 and θ2 oin ide on θ1 θ2), (see Proposition 3.2). This justi(cid:28)es the following de(cid:28)nition. 4 ABDALLAHKHOCHMAN H S H De(cid:28)nition 2.1. The resonan es of in θ0 are the dis rete eigenvalues of θ0. The multi- z 0 pli ity of a resonan e is de(cid:28)ned by 1 (z ) := (z−H ) 1dz, (2.13) mult 0 rank2iπ Z θ0 − Γ0 Γ z (H) 0 0 where is a small positively oriented ir le entered at . We will denote Res the set of resonan es. H {z ∈ C; (z) < 0} Remark 2.1. The resonan es of in Re are the real dis rete eigenvalues H of . PSfrag repla ements (z) Im Ω q H Resonan es of H e.v. of θ0 λ 0 2b+λ 2b 2bq+λ 2bq (z) ◦ ◦ ◦ ◦ Re ⋆ ⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆⋆ ⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆⋆⋆ ⋆⋆Γ⋆⋆⋆⋆◦⋆⋆⋆ ⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆◦⋆⋆⋆⋆⋆⋆⋆ ⋆ Γ q,θ0 1,θ0 Γ 0,θ0 S θ0 S Fig.1. The set θ0 r → 0 H Ω q Now, we state(ra,n2ru)pper bound as 2bq+oλn tqh∈e nNumber of resonan es of in a ring in ∗ with radiuses and entered at , (cid:28)xed. V v 0 Theorem 2.1. [Upper bound℄ Suppose that and satisfy the above hypotheses. Then r > 0 ν > 0 0< r < r 0 0 there exist and , su h that, for any , #{z ∈ (H)∩Ω ;r < |z−2bq−λ|< 2r} = O(n (r,νp Wp )|lnr|), q + q q (2.14) Res whereW = supx3∈Cǫ,0|hx3iδkV|, pq istheorthogonalproje tionontoHq := ker(H0,⊥−2bq)and n (r,p Wp ) r + q q is the ounting fun tion of the eigenvalues larger than of the Toeplitz operator pqWpq n+(r,pqWpq) = O(r−2/δ⊥) . In parti ular, under our assumption we have always . n (r,p Wp ):= 1 (p Wp ) + q q (r,+ ) q q The ounting fun tion W rank ∞ satis(cid:28)es asymptoti relations depending on the de ay of at in(cid:28)nity. The following three lemmas give an upper bound n (r,p Wp ) W + q q of in the ase power-like de ay, exponential de ay, or ompa t support of , respe tively. For more pre ise results on erning the asymptoti properties, we refer to the ited theorem. MAGNETIC SCHRÖDINGER RESONANCES AND SSF 5 U ∈ L (R2) ∞ Lemma 2.1. (Theorem 2.6 of [16℄) Let the fun tion satisfy the estimate U(X )≤ ChX i α, X ∈ R2, − ⊥ ⊥ ⊥ α> 0 q ∈ N for some . Then for ea h , we have n (r,p Up )= O(r 2/α). + q q − U ∈L (R2) ∞ Lemma 2.2. (Theorem 2.1 of [17℄) Let . Assume that lnU(X ) limsup ⊥ < 0, X ∈ R2, |X⊥|→∞ |X⊥|2β ⊥ β > 0 ln(u) = −∞ u≤ 0 q ∈N for some (with the onvention if ). Then for ea h , we have n (r,p Up ) = O(ϕ (r)) + q q β 0 < r < e 1 − where, for , 1 |lnr|β 0< β < 1, if ϕβ(r):=  |lnr| β = 1, (2.15)  (ln|lnr|) 1|lnr| if β > 1. − if  U ∈ L (R2) U ∞ Lemma 2.3. (Theoremq2∈.4Nof [17℄) Let . Assume that the support of is ompa t. Then for ea h , we have n (r,p Up )= O(ϕ (r)), + q q ∞ 0 < r < e 1 − where, for , ϕ (r):= (ln|lnr|) 1|lnr|. − ∞ (H,H ) ξ(λ) 0 Now, we study the spe tralHsh,iHft fun tion (SSF) for thDe p(aRi)r . The SSF for a 0 ′ pair of self-adjoint operators ( ) is a distribution in whose derivative is ξ :f ∈ C (R) 7−→ − (f(H)−f(H )). ′ 0∞ 0 (2.16) tr |V|21(H0+i)−1 Iξn(λo)ur ase, L1 (R)is in the Hilbert-S hmidt lass, (2.16) is well de(cid:28)ned and the SSF is a fun tion in loc . H S Wewillseefurtherthattheresonan esof in θ0 arethezerosoftheholomorphi extension of z ∈ {z ∈ C, z > 0} 7−→ D(z) = ((H −z)(H −z) 1) 2 0 − Im det S det into θ0 (see (3.1) for the de(cid:28)nition of 2). Thus in order to obtain a link between the SSF and the resonan es, it will be onvenient to introdu e the regularized spe tral shift fun tion 1 ξ (ν)= lim arg (H −ν −iε)(H −ν −iε) 1 , 2 2 0 − (2.17) π ε 0+ det → (cid:0) (cid:1) whose derivative is the following distribution (see [4℄) d ξ : f ∈ C (R)7−→ − f(H)−f(H )− f(H +εV)| . (2.18) 2′ 0∞ tr(cid:18) 0 dε 0 ε=0(cid:19) We will dedu e the properties of the SSF from those of the regularized SSF using the relation 1 ξ = ξ + V (H −z) 2 . (2.19) ′ 2′ πIm tr θ 0,θ − (cid:0) (cid:1) 2bq +λ We represent now, the derivative of the spe tral shift fun tion near as a sum of a harmoni measurerelatedtotheresonan esandtheimaginary partofaholomorphi fun tion. 6 ABDALLAHKHOCHMAN Ω ⊂⊂Ω C\{0} Let be open relatively ompa t subsets of . We assume that these sets are r Ω indepenedent of and that is simply onne ted. Also assume that the interse tions between Ω R I and is a non-empty inteerval . e V v 0 Theorem 2.2. [Breit-Wigner approximation℄ We suppose and satisfy the above Ω ⊂⊂Ω I g Ω hypothesis. For and as above, there exists a fun tion holomorphi in , su h that µ ∈ 2bq+λ+rI for e , we have 1 µ−2bq−λ − w ξ′(µ) = g′( ,r)− Im − δ(µ−w) πrIm r π|µ−w|2 X X w∈Res(H)∩2bq+λ+rΩ w∈Res(H)∩2bq+λ+rI w=0 Im 6 g(z,r) where satis(cid:28)es the estimate 2 g(z,r) = O(n+(r,νpqWpq)|lnr|+n1(r/ν)+n2(r/ν)) = O(|lnr|r−δ⊥), ν > 0, (2.20) 0< r < r z ∈eΩ ne, p = 1, 2, 0 p uniformly with respe t to and , with de(cid:28)ned by n (r) := pqWpq1 e(p Wpe) p, r > 0. (2.21) p (cid:13) r [0,r] q q (cid:13) (cid:13) (cid:13)p e (cid:13) (cid:13) (cid:13) (cid:13) k·k (p = 1) (p = 2) p Here, stands for the tra e- lass norms and Hilbert-S hmidt norms . W Using [4, Corollary1℄, for de(cid:28)ned above satisfying the assumption of Lemma 2.1 with α ≥ 2 , we have 2 np(r) = O(r−α), p = 1,2. (2.22) e W = U Finally, if the assumption of Lemma 2.2 or 2.3 hold for , we have n (r) = o(ϕ (r)) r ց 0, p β (2.23) ϕβ(r) e the fun tion being de(cid:28)ned in Lemma 2.2 or 2.3. As in [15℄, [6℄ or [4℄ and repeating the arguments used in the proof of [4, Corollary 3℄, we dedu e from Theorem 2.1-2.2 the following theorem Ω ⊂⊂ Ω f Theorem 2.3. [Tra e formula℄ Let be as in Theorem 2.2. Suppose that is Ω φ ∈ C (Ω ∩ R) φ = 1 Ω ∩ R holomorphi on a neighborhood of aned that 0∞ satis(cid:28)es near . Then, under the assumptions of Theorem 2.2, we have the following tra e formula e H −2bq−λ H −2bq−λ w−2bq−λ 0 (φf)( )−(φf)( ) = f( )+E (r) f,φ tr(cid:18) r r (cid:19) r X e w (H) 2bq+λ+rΩ ∈Res ∩ with |E (r)|≤ M sup{|f(z)| : z ∈ Ω\Ω, z ≤ 0}×N (r), f,φ φ q Im e 2 Nq(r) = n+(r,νpqWpq)|lnr|+ n1(r/ν)+ n2(r/ν) = O(|lnr|r−δ⊥), Mφ where and depends φ only on . e e MAGNETIC SCHRÖDINGER RESONANCES AND SSF 7 3. Definition of resonan es via distortion analyti ity In this se tion, we start with the de(cid:28)nition oRf the deformation for the ele tromagneti S hrödinger operator by analyti distortion on x3. We al ulate the essential spe trum H H θ θ of the distorted S hrödinger operator . We prove that the dis rete eigenvalues of are independentofthedistortion, thisjusti(cid:28)esthede(cid:28)nitionofaresonan easadis reteeigenvalue H H θ of the distorted operator . We will also prove that the resonan es of repeated with their det (I + A) 2 multipli ity oin ide with the zeros of a regularized determinant de(cid:28)ned for a A Hilbert-S hmidt operator by (I +A) := det((I +A)e A), 2 − (3.1) det (see Krein [13℄). Let us now introdu e the one-parameter family of unitary distortions in the x 3 magneti (cid:28)eld dire tion : 1 U f(x)= J2 f(φ (x)), θ ∈ R, f ∈ S(R), (3.2) θ φθ(x) θ φ (x) = x+θg(x) g : R7−→ R J = det(I+θg (x)) where θ , is a smooth fun tion and φθ(x) ′ is the φ (x) g θ Ja obian of . We suppose that satis(cid:28)es the assumption |g (x)| < 1, x R ′ (Ag) (i) sgu(px)∈= 0, [−R0,R0], ( ( )),  (ii) g(x) = x, in the ompa t set K(⊃ [−Rsee,R2.]8). 0 0 (iii) outside a ompa t set  We re all that H := (I ⊗U )H(I ⊗U 1) = H +V . θ θ θ− 0,θ θ ⊥ ⊥ From (2.9) and using Kato's theorem [11, Theorem 4.5.35℄ we have the following (see also Hunziker [10℄ for S hrödinger operator and [12, Se tion 3℄ for the Dira operator). V Proposition 3.1. We suppose that the potential satis(cid:28)es all the assumptions of Se tion 2. Then we have θ ∈ D 7−→ H = H +V ǫ θ 0,θ θ (i) σ (H ) =σ (H ) = 2bNis+aσn(Hanaly(θti) ).family of type A. ess θ ess 0,θ 0, (ii) k H (θ) 0, Lemma 3.1. The essential spe trum of k is µ σ (H (θ))= ∈ C; µ ∈ [0,+∞[ . (3.3) ess 0,k n(1+θ)2 o The rest of the spe trum is σ (H )∪{z ,z ,...}, disc 0, 1 2 k σ (H ) H z ,z ,... disc 0, 0, 1 2 where k denotes the dis rete spe trum of k and are the omplex eigen- H (θ) 0, values of k . σ (H ) ∪ {z ,z ,...} H (θ) disc 0, 1 2 0, Remark 3.1. The part k of the spe trum of k orrespond to I ⊗H (θ) 0, eigenvalues with in(cid:28)nite multipli ity of ⊥ k . q ∈ N Ω 2bq+λ q In the following we (cid:28)x and a ompa t set entered at su h that Ω ∩σ (H ) = {2bq+λ}. q ess θ (3.4) Repeatingargumentsintheproofof[4,Proposition1℄,[4,Lemma1℄andusingtheresolvent equation (H −z) 1 = (H −v −z) 1 I −v (H −z) 1 , 0 − 0 0 − 0 0 − (cid:0) (cid:1) we obtain the following lemma. 8 ABDALLAHKHOCHMAN V(H − z) 1 ∂ (V(H − z) 1) {z ∈ 0 − z 0 − LCe;mm(za)3>.20.}The operators and S are holomoSrphi on 2 1 Im with values intheHilbert-S hmidt lass andinthe tra e lass respe tively. V (H −z) 1 ∂ (V (H −z) 1) z ∈ θ 0,θ − z θ 0,θ − Lemma 3.3. The operators and are holomorphi for Ω \{2bq+λ} S S q 2 1 with values in the Hilbert-S hmidt lass and in the tra e lass respe tively. Ω z 7−→ q Proof. A ording to (i) of Proposition 3.1 and to the de(cid:28)nition of , the fun tion V (H −z) 1 z ∈ Ω \{2bq +λ} θ 0,θ − q is analyti for . Moreover, from the resolvent equation, for z ∈Ω \{2bq +λ} q , we have V (H −z) 1 = V (H −i) 1 1+(H −H +z−i)(H −z) 1 . θ 0,θ − θ 0 − 0 0,θ 0,θ − (3.5) (cid:0) (cid:1) p H := (H −2bq) q q 0, If we denote by the orthogonal proje tion onto ker ⊥ we have (H −z) 1 = p ⊗(H (θ)+2bq−z) 1, z ∈ Ω \{2bq +λ}. 0,θ − q 0, − q (3.6) Xq N k ∈ Sin e H −H = I ⊗(H −H (θ)) 0 0,θ 0, 0, ⊥ k k (H −H )(H −z) 1 0 0,θ 0,θ − the operator is bounded. Consequently, a ording to Lemma 3.2 an(cid:3)d equation (3.5), we obtain the lemma. Let us now introdu e the fun tion z ∈Ω \{2bq+λ} −→ d (z) = (I +T (z)), q θ 2 V,θ (3.7) det T (z) = V (H −z) 1 d (z) V,θ θ 0,θ − θ with . The determinant is well de(cid:28)ned a ording to Lemma 3.3 V v H Ω 0 q Proposition 3.2. Let and as in Se tion 2. The resonan es of in are the zeros of d (z) = (I +T (z)) Ω \{2bq +λ} θ 2 V,θ q the regularized determinant det in , and are independent θ ∈D Ω ∩σ (H ) = {2bq+λ} ǫ q ess θ on su h that . z f(z) z z 0 0 If is a resonan e, there exists a holomorphi fun tion , for lose to , su h that f(z ) 6= 0 0 and (I +T (z)) = (z−z )l(z0)f(z), 2 V,θ 0 det 0 < l(z )= (z ) (z ) 0 0 0 with mult where mult is the multipli ity of the resonan e de(cid:28)ned by (2.13). H Ω \{2bq +λ} 0,θ q Proof. Sin e the operator has no spe trum in , we have H −z = I +V (H −z) 1 (H −z). θ θ 0,θ − 0,θ (3.8) (cid:0) (cid:1) z ∈ Ω \{2bq +λ} H q Then, if is a resonan e of whi h is by de(cid:28)nition a dis rete eigenvalue of H d (z) = (I +V (H −z) 1) = (I +T (z)) θ θ 2 θ 0,θ − 2 V,θ , the determinant det det vanishes. A Let us re all that, if is a bounded operator and B is a tra e lass operator on some det(I +AB) = det(I +BA) A separable Hilbert spa e, we have . Moreover, for bounded and B Hilbert-S hmidt, we have (I +AB)= (I +BA). 2 2 (3.9) det det d (z) = det (I+T (z)) det (I+T (z)) = (I+V(H − θ 2 V,θ 2 V,0 2 0 zT)he1n), theθfu∈n Rti,on z > 0 oin idewith det θ ∈ D − ǫ for Im and by uniqueness of the extension, it is independent on . H d (z) θ ∈ D θ ǫ Sin e the resonan es of are the zero of the resonan es are independents on . MAGNETIC SCHRÖDINGER RESONANCES AND SSF 9 z d (z) l(z ) d (z) = (z − 0 θ 0 θ In a neighborhood of a zero of with multipli ity , we write z )l(z0)G(z), G(z) z G(z ) 6= 0 0 0 0 where is a holomorphi fun tion in a neighborhood of with . l (z) 0 Then, by the de(cid:28)nition of , 1 l (z) = ∂ ln (1+T (z))dz, 0 z 2 V,θ 2iπ Z det Γ Γ z 0 where is a small positively oriented ir le entered at . Further, we have ∂ lndet(1+T(z)) = (1+T(z)) 1∂ T(z) , z ∈ Ω z − z q tr (cid:0) (cid:1) T(z) S 1 for any operator-valued holomorphi fun tion in the tra e lass . Therefore, ∂ ln (1+T (z)) = (1+T (z)) 1∂ T (z) − (∂ T (z)). z 2 V,θ V,θ − z V,θ z V,θ det tr tr (cid:0) (cid:1) ∂ T (z) Γ z V,θ A ording to Lemma 3.3, is holomorphi in the tra e lass, then its integral on vanishes and (3.8) yields 1 l (z) = (H −z) 1V (H −z) 1 dz 0 θ − θ 0,θ − 2iπ Z tr Γ (cid:0) (cid:1) 1 = − (H −z) 1−(H −z) 1 dz θ − 0,θ − 2iπ Z tr Γ (cid:0) (cid:1) 1 = (z−H ) 1−(z−H ) 1 dz θ − 0,θ − rank2iπ Z Γ(cid:0) (cid:1) 1 = (z−H ) 1dz. θ − rank2iπ Z Γ In the two latter equ(Halitie−s,zw)e1haveΓused that the tra e of the proje tor oΩin ide with its ran(cid:3)k 0,θ − q and the integral of on vanishes sin e it is holomorphi in . 2bq+λ 4. Upper bound for the number of resonan es near Ω q In this se tion, we establish an upper bound on the number of resonan es in a ring of 2bq +λ z ∈ Ω z = 2bq +λ+η η q entered at (see (3.4)). For , we write where is a omplex number in a domain entered at 0 and 0 < r < |η|. Let W = supx3∈Cǫ,0|hx3iδkV|. There M(x) exists a bounded fun tion su h that V(x) = W(X )hx i 2δ3M(x), δ = δ /2. 3 − 3 ⊥ for k Ω q A ording to the previous se tion, the resonan es in an be identi(cid:28)ed with the points z ∈Ω d (z) = det (I +T (z)) q θ 2 V,θ where the determinant vanishes. Using (3.9), we have d (z) = (I +T (z)) θ 2 V,θ det with (4.1) TV,θ(z) = W21Mθhx3i−θδ3(H0,θ −z)−1W21hx3i−θδ3 where Mθ = M(X⊥,φθ(x3)) and hx3iθ := Uθhx3iUθ−1 = (1+(φθ(x3))2)12. z > 0 Using spe tral theorem, for Im , we an write (H −z) 1 = p ⊗(H (θ)−z+2bj) 1. 0,θ − j 0, − (4.2) Xj N k ∈ 10 ABDALLAHKHOCHMAN 2bq+λ T (z) V,θ In order to study the resonan es near , we split into two parts: T (z) = T +T+, V,θ J−,θ J,θ T (z) = T T+ = T J > q kT+k< w1herekTJ−,θ+k< 1Pj≤J j,θ and J,θ hPj>J j,θ for su(cid:30) iently large su h that J,θ 8 and J,0 8 (for that weusethe -pseudo-di(cid:27)erential al ulusand thespe traltheorem). Here, Tj,θ = MθBj ⊗hx3i−θδ3Rj,θhx3i−θδ3, Bj = W21pjW21 Rj,θ = (H0, (θ)−z+2bj)−1 hx3i−δ3Rj,0hx3i−δ3 with and k . The operator is of lass tra e (see [2℄). B j Further, let us de ompose the self-adjoint operator into a tra e- lass operator whose ε/2 ε > 0 r norm is bounded by for some and an operator of (cid:28)nite-rank independent on , namely B = B 1 (B )+B 1 (B ). j j [0,ε/2] j j ]ε/2,+ [ j (4.3) ∞ j 6= q Then, for , we have T = M B 1 (B )⊗hx i δ3R hx i δ3 +M B 1 (B )⊗hx i δ3R hx i δ3 j,θ θ j [0,ε/2] j 3 −θ j,θ 3 −θ θ j ]ε/2,+ [ j 3 −θ j,θ 3 −θ ∞ = T< +T>. j,θ j,θ T p (θ) H (θ)− q,θ 0, λ Letusnowpan(aθl)y·z=ethh·,eψteirψm . Dψen=oteUby1ψk thψespe tralproje tionontoKer( k ). We have k θ¯ θ with θ θ− and is an eigenfun tion satisfying H0, ψ =λψ, kψkL2(R) = 1, ψ = ψ¯ R. k on η = z−2bq−λ Then we have, for T =M B ⊗hx i δ3R p (θ)hx i δ3 +M B ⊗hx i δ3R (I −p (θ))hx i δ3 q,θ θ q 3 −θ q,θ 3 −θ θ q 3 −θ q,θ 3 −θ k k 1 =− τ +T˜ , q q,θ η with τq = MθBq ⊗hx3i−θδ3pk(θ)hx3i−θδ3. We also have T˜q,θ = MθBq1[0,ε/2](Bq)⊗hx3i−θδ3Rq,θ(I −p (θ))hx3i−θδ3 k + MθBq1]ε/2,+ [(Bq)⊗hx3i−θδ3Rq,θ(I −p (θ))hx3i−θδ3 ∞ k = T˜< +T˜>. q,θ q,θ A>(z) = T˜> + T>, A<(z) = T˜< + T< + T+. We denote by q,θ j6=q, j≤J j,θ and q,θ j6=q, j≤J j,θ J,θ P P Then, we have 1 T (z) = − τ +A>(z)+A<(z). V,θ q (4.4) η τ rν 1 q − We de ompose the operator into a tra e- lass operator whose norm is bounded by for ν > 0 and an operator of (cid:28)nite-rank: τq = MθBq1[0,rν−1](Bq)⊗hx3i−θδ3p (θ)hx3i−θδ3 +MθBq1]rν−1,+ [(Bq)⊗hx3i−θδ3p (θ)hx3i−θδ3 k ∞ k = τ +τ . q,1 q,2 ε ν > 0 If we take su(cid:30) iently small and su(cid:30) iently large, we have the two following lemmas

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.