ebook img

Resolution of Singularities: A research textbook in tribute to Oscar Zariski Based on the courses given at the Working Week in Obergurgl, Austria, September 7–14, 1997 PDF

610 Pages·2000·44.835 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Resolution of Singularities: A research textbook in tribute to Oscar Zariski Based on the courses given at the Working Week in Obergurgl, Austria, September 7–14, 1997

Progress in Mathematics Volume 181 Series Editors H. Bass J. Oesterle A. Weinstein Resolution of Singularities A research textbook in tribute to Oscar Zariski Based on the courses given at the Working Week in Obergurgl, Austria, September 7-14, 1997 H. Hauser J. Lipman F. Oort A. Quirös Editors Springer Basel AG Editors: Herwig Hauser Joseph Lipman Institut für Mathematik Department of Mathematics Universität Innsbruck Purdue University A-6020 Innsbruck West Lafayette, IN 47907 USA Frans Oort Adolfo Quirös Department of Mathematics Departamento de Matemäticas Universiteit Utrecht Universidad Autönoma de Madrid 3508 TA Utrecht 28049 Madrid The Netherlands Spain 1991 Mathematics Subject Classification 14B05, 32Sxx, 58C27 A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Deutsche Bibliothek Cataloging-in-Publication Data Resolution of singularities: a research textbook in tribute to Oscar Zariski; based on the courses given at the working week in Obergurgel, Austria, September 7- 14, 1997 / H. Hauser ... - Boston; Basel; Berlin: Birkhäuser, 2000 (Progress in mathematics; Vol. 181) ISBN 978-3-0348-9550-7 ISBN 978-3-0348-8399-3 (eBook) DOI 10.1007/978-3-0348-8399-3 ISBN 978-3-0348-9550-7 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2000 Springer Basel AG Originally published by Birkhäuser Verlag in 2000 Softcover reprint of the hardcover 1 st edition 2000 Printed on acid-free paper produced of chlorine-free pulp. TCF oo ISBN 978-3-0348-9550-7 987654321 Table of Contents Preface ................................................ Xl Program of the Working Week on Resolution of Singularities ......... xiii Participants of the Working Week Xv J. Lipman Oscar Zariski 1899-1986 1 H. Hauser Resolution of Singularities 1860-1999 5 Main achievements .................................... 5 Some research problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Dictionary .......................................... 15 Surveys ............................................ 25 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 Selection of references before 1930 ......................... 26 Selection of references after 1930 .......................... 27 Part 1: Classes of the Working Week D. Abramovich, F. Oort Alterations and resolution of singularities ....................... 39 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Part I The alteration theorem ............................... 45 1 Some preliminaries and generalities on varieties . . . . . . . . . . . . . . . . 45 2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Some tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Proof of de Jong's main theorem .......................... 58 5 Modifications of the proof for Theorems 2.4 and 2.7 . . . . . . . . . . . .. 67 6 Toroidal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 7 Weak resolution of singularities I .......................... 74 8 Weak resolution of singularities II . . . . . . . . . . . . . . . . . . . . . . . . . . 76 9 Intersection multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Part II Moduli of curves ................................... 80 10 Introduction to moduli of curves .......................... 80 11 Stable reduction and completeness of moduli spaces . . . . . . . . . . . . . 86 12 Construction of moduli spaces ............................ 93 VI Table of Contents 13 Existence of tautological families .......................... 96 14 Moduli, automorphisms, and families ....................... 100 References .......................................... 104 J.-M. Aroca Reduction of singularities for differential equations ................ 109 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 2 Singular foliations (co dimension one) ....................... 111 3 Reduction of singularities in dimension two . . . . . . . . . . . . . . . . . .. 115 4 Existence of integral curves .............................. 123 References .......................................... 126 J.-M. Aroca Puiseux solutions of singular differential equations 129 1 Introduction ........................... . 129 2 The Newton polygon of a differential equation ................ . 133 3 Solutions for first order, first degree equations ................ . 139 References ......................................... . 144 S. Encinas, O. Villamayor A course on constructive desingularization and equivariance ......... . 147 Introduction ........................................ . 147 1 First definitions ..................................... . 150 2 Pairs ............................................. . 153 3 Constructive desingularization .. . . . . . . . . . . . . . . . . . . . . . . . .. . 156 4 Basic objects ....................................... . 157 5 Monomial case .................................... .. . 165 6 Compatibility of the function t with induction ................ . 170 7 Equivariant desingularization . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 179 8 Change of base field and generalization to the non-hypersurface case ............... . . . . . . . . . . . . . . . . 193 9 Proofs ............................................ . 200 10 Exercises: Order of ideals and upper-semi-continuity ........... . 208 11 Exercises: Blow-ups ................................... . 210 12 Exercises: Desingularization ............................. . 212 13 Exercises: On basic objects ............................. . 213 14 Exercises: A do-it-yourself help guide of theorem 7.10 .......... . 219 15 Exercises: Non-embedded constructive desingularization. Compatibility with group actions and formal isomorphisms ...... . 221 References ......................................... . 225 Table of Contents vii Part 2: Contributions G. Bodnar, J. Schicho A computer program for the resolution of singularities .............. 231 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 231 2 How to blow up a circle ............................... " 232 3 How to compute the centers of the blowups. . . . . . . . . . . . . . . . . .. 236 References .......................................... 238 V. Cossart Uniformisation et desingularisation des surfaces d'apres Zariski ....... 239 Introduction ....................................... " 239 1 Uniformisation et recollement ........................... " 240 2 Desingularisation par eclatements normalises . . . . . . . . . . . . . . . . .. 251 References .......................................... 257 D. Cox Toric varieties and toric resolution ............................ 259 1 Introduction ....................................... " 259 2 Cones, fans, and toric varieties .......................... " 261 3 Divisors and support functions . . . . . . . . . . . . . . . . . . . . . . . . . . .. 266 4 Other constructions of toric varieties ....................... 270 5 Toric blow-ups and resolution of singularities ................. 276 6 Conclusion ........................................ " 283 7 Acknowledgements .................................... 283 References .......................................... 283 B. van Geemen, F. Oort A compactification of a fine moduli space of curves ................ 285 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 285 1 Notation ........................................... 286 2 Construction of a tautological family ....................... 288 3 Local structure of the moduli space ........................ 294 References .......................................... 297 T. Geisser Applications of de Jong's theorem on alterations .................. 299 1 Introduction ....................................... " 299 2 de Jong's theorem and Serre's conjecture .................... 300 3 Grothendieck topologies for which alterations are coverings ....... 301 4 Applications using trace maps ............................ 307 References .......................................... 313 Vlll Table of Contents R. Goldin, B. Teissier Resolving singularities of plane analytic branches with one toric morphism ................................... 315 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 315 2 Puiseux expansion and the semigroup of a curve ............... 317 3 Deforming curves ..................................... 319 4 Resolution using toric morphisms . . . . . . . . . . . . . . . . . . . . . . . . .. 321 5 Existence of a toric resolution ............................ 325 6 Simultaneous resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 331 7 The transforms of plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . .. 334 8 Appendix: An example ................................. 335 References .......................................... 339 H. Hauser Excellent surfaces and their taut resolution .................... .. 341 1 Introduction ........................................ . 341 2 Preliminaries ...................................... .. 346 3 Definition of the centers of blowup ........................ . 348 4 Transformation of equimultiple locus under blowup ............ . 353 5 Transformation of flags under blowup ...................... . 359 6 Construction of the induction invariant ..................... . 364 7 Transformation of iax under monomial blowup ............... . 367 8 Reduction to monomial blowup .......................... . 369 9 Proof of Theorem 1.1 ................................. . 371 References 372 A.J. de Jong An application of alterations to Dieudonne modules .............. .. 375 Introduction ........................................ . 375 1 The application of alterations ............................ . 376 2 Full faithfulness up to isogeny ........................... . 376 3 Essential surjectivity up to isogeny ........................ . 378 References ......................................... . 380 F.-V. Kuhlmann Valuation theoretic and model theoretic aspects of local uniformization ..................................... 381 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 381 2 What does local uniformization mean? ...................... 381 3 Local uniformization and the Implicit Function Theorem .. . . . . . .. 388 4 Hensel's Lemma ...................................... 389 5 A crash course in ramification theory ....................... 394 6 A valuation theoretical interpretation of local uniformization ...... 399 7 Inertial generation and Abhyankar places .................... 401 Table of Contents ix 8 The defect .......................................... 404 9 Maximal immediate extensions . . . . . . . . . . . . . . . . . . . . . . . . . . .. 408 10 A quick look at Puiseux series fields . . . . . . . . . . . . . . . . . . . . . . .. 410 11 The tame and the wild valuation theory ..................... 412 12 Some notions and tools from model theoretic algebra . . . . . . . . . . .. 415 13 Saturation and embedding lemmas . . . . . . . . . . . . . . . . . . . . . . . .. 421 14 The Generalized Grauert-Remmert Stability Theorem ........... 424 15 Relative local uniformization ...... . . . . . . . . . . . . . . . . . . . . . .. 428 16 Local uniformization for Abhyankar places ................... 432 17 Non-Abhyankar places and the Henselian Rationality of immediate function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 433 18 Bad places ................ . . . . . . . . . . . . . . . . . . . . . . . . .. 437 19 The role of the transcendence basis and the dimension . . . . . . . . . .. 439 20 The space of all places of FIK .. . . . . . . . . . . . . . . . . . . . . . . . . .. 443 21 lFp((t)) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 446 22 Local uniformization vs. Ax-Kochen-Ershov .................. 448 23 Back to local uniformization in positive characteristic ........... 451 References .......................................... 452 D.T. Le Les singularites Sandwich ................................... 457 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 457 2 Normalisation et eclatements . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 458 3 Singularites Sandwich ........ . . . . . . . . . . . . . . . . . . . . . . . . .. 460 4 Approche combinatoire ................................. 462 5 Singularites primitives, singularites minimales . . . . . . . . . . . . . . . .. 472 6 Courbes polaires des singularites rationnelles . . . . . . . . . . . . . . . . .. 475 7 Transformation de Nash des singularites minimales ............. 477 8 La resolution des singularites des surfaces via la transformee de Nash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 479 References .......................................... 481 J. Lipman Equisingularity and simultaneous resolution of singularities .......... 485 1 Introduction - equisingular stratifications .................... 485 2 Stratifying conditions .................................. 488 3 The Zariski stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 494 4 Equiresolvable stratifications ............................. 498 5 Simultaneous resolution of quasi-ordinary singularities . . . . . . . . . .. 501 References .......................................... 503

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.