ResilientConsensusofSecond-OrderAgentNetworks: AsynchronousUpdateRuleswithDelays SeyedMehranDibajia and HideakiIshiib aDepartmentofMechanicalEngineering,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA bDepartmentofComputerScience,TokyoInstituteofTechnology,Yokohama226-8502,Japan 7 1 0 2 Abstract n a Westudytheproblemofresilientconsensusofsampled-datamulti-agentnetworkswithdouble-integratordynamics.Theterm J resilientpointstoalgorithmsconsideringthepresenceofattacksbyfaulty/maliciousagentsinthenetwork.Eachnormalagent 4 updatesitsstatebasedonapredeterminedcontrollawusingitsneighbors’informationwhichmaybedelayedwhilemisbehaving 1 agentsmakeupdatesarbitrarilyandmightthreatentheconsensuswithinthenetwork.Assumingthatthemaximumnumber ofmaliciousagentsinthesystemisknown,wefocusonalgorithmswhereeachnormalagentignoreslargeandsmallposition ] Y valuesamongitsneighborstoavoidbeinginfluencedbymaliciousagents.Themaliciousagentsareassumedtobeomniscient inthattheyknowtheupdatingtimesanddelaysandcancolludewitheachother.Wedealwithbothsynchronousandpartially S asynchronouscaseswithdelayedinformationandderivetopologicalconditionsintermsofgraphrobustness. . s c Keywords: Multi-agentSystems;Cyber-security;ConsensusProblems [ 2 v 1 Introduction the normal agents from reaching consensus. This type 0 3 ofproblemshasarichhistoryindistributedalgorithms 4 Inrecentyears,muchattentionhasbeendevotedtothe intheareaofcomputerscience(see,e.g.,(Lynch1996)) 3 wheretheagents’valuesareoftendiscreteandfinite.It studyofnetworkedcontrolsystemswithanemphasison 0 isinterestingthatrandomizationsometimesplayacru- cyber security. Due to communications through shared . cialrole;seealso(MotwaniandRaghavan1995,Tempo 1 networks, there are many vulnerabilities for potential 0 attacks, which can result in irreparable damages. Con- andIshii2007,Dibajietal.2016). 7 ventional control approaches are often not applicable 1 for resiliency against such unpredictable but probable Insuchproblems,thenon-faultyagentscooperatebyin- v: misbehaviorsinnetworks(e.g.,(Sandbergetal.2015)). teracting locally with each other to achieve agreement. i Oneofthemostessentialproblemsinnetworkedmulti- There are different techniques to mitigate the effects of X agentsystemsisconsensuswhereagentsinteractlocally attacks.Insomesolutions,eachagenthasabankofob- r to achieve the global goal of reaching a common value. servers to identify the faulty agents within the network a HavingawidevarietyofapplicationsinUAVformations, using their past information. Such solutions are formu- sensor networks, power systems, and so on, consensus latedasakindoffaultdetectionandisolationproblems problems have been studied extensively (Mesbahi and (Pasqualetti et al. 2012, Shames et al. 2011, Sundaram Egerstedt 2010, Ren and Cao 2011). Resilient consen- and Hadjicostis 2011). However, identifying the mali- sus pointstothecasewheresomeagentsinthenetwork cious agents can be challenging and requires much in- anonymously try to mislead the others or are subject formation processing at the agents. In particular, these to failures. Such malicious agents do not comply with techniques usually necessitate each agent to know the the predefined interaction rule and might even prevent topology of the entire network. This global information typically is not desirable in distributed algorithms. To (cid:63) overrule the effects of f malicious agents, the network ThisworkwassupportedinpartbytheJapanScienceand hastobeatleast(2f +1)-connected. Technology Agency under the EMS-CREST program and by JSPS under Grant-in-Aid for Scientific Research Grant No.15H04020. Thereisanotherclassofalgorithmsforresilientconsen- Emailaddresses: [email protected](SeyedMehran sus where each normal agent disregards the most de- Dibaji),[email protected](HideakiIshii). viated agents in the updates. In this case, they simply neglect the information received from suspicious agents datingrules:Synchronousandpartiallyasynchronous1. or those with unsafe values whether or not they are Inthesynchronouscase,allagentssimultaneouslymake trulymisbehaving.Thisclassofalgorithmshasbeenex- updatesateachtimestepusingthecurrentinformation tensively used in computer science (Azadmanesh and oftheirneighbors.Bycontrast,intheasynchronouscase, Kieckhafer2002,AzevedoandBlough1998,Bouzidetal. normal agents may decide to update only occasionally 2010, Lynch 1996, Plunkett and Fekete 1998, Vaidya et andmoreover,theneighbors’datamaybedelayed.This al.2012)aswellascontrol(DibajiandIshii2015a,Dibaji is clearly a more vulnerable situation, allowing the ad- andIshii2015d,LeBlancandKoutsoukos2012,LeBlanc versaries to take advantage by quickly moving around. et al. 2013); see also (Feng et al. 2016, Khanafer et We consider the worst-case scenarios where the mali- al. 2012) for related problems. They are often called cious agents are aware of the updating times and even Mean Subsequence Reduced (MSR) algorithms, which thedelaysintheinformationofnormalagents.Thenor- was coined in (Kieckhafer and Azadmanesh 1993). Un- malagentsontheotherhandareunawareoftheupdat- tilrecently,thisstrategyhadbeenstudiedmostlyinthe ingtimesoftheirneighborsandhencecannotpredictthe case where the agent networks form complete graphs. plans of adversaries. For both cases, we develop graph The authors of (LeBlanc et al. 2013) have given a thor- robustnessconditionsfortheoverallnetworktopologies. ough study for the non-complete case and have shown Itwillbeshownthatthesynchronousupdatingrulesre- thatthetraditionalconnectivitymeasureisnotadequate quire less connectivity than the asynchronous counter- forMSR-typealgorithmstoachieveresilientconsensus. part; see also (Dibaji and Ishii 2015d) regarding corre- Theythenintroducedanewnotioncalledgraphrobust- spondingresultsforfirst-orderagentsystems. ness. We note that most of these works have dealt with single-integratorandsynchronousagentnetworks. Themainfeaturesofthisworkarethree-fold:(i)Wedeal with second-order agents, which are more suitable for In this paper, we consider agents having second-order modelingnetworksofvehicles,butexhibitmorecompli- dynamics,whichisacommonmodelforautonomousmo- cated dynamics in comparison to the single-order case. bile robots and vehicles. Such applications in fact pro- (ii) For the malicious agents, we consider the f-total vide motivations different from those in computer sci- model,whichislessstringentthanthef-localcase,but ence as we will see. In our previous paper (Dibaji and the analysis is more involved. (iii) In the asynchronous Ishii 2015a), an MSR-type algorithm has been applied case with delayed information, we introduce a new up- to sampled-data second-order agent networks. We have datescheme,whichismorenaturalinviewofthecurrent consideredtheproblemofresilientconsensuswheneach research in the area of multi-agent systems than those agentisaffectedbyatmostf maliciousagentsamongits based on the so-called rounds, commonly employed in neighbors. Such a model is called f-local malicious. We computerscienceaswediscusslater. haveestablishedasufficientconditionontheunderlying graphstructuretoreachconsensus.Itisstatedinterms Thepaperisorganizedasfollows.Section2presentspre- of graph robustness and is consistent with the result in liminariesforintroducingtheproblemsetting.Section3 (LeBlancetal.2013)forthefirst-orderagentcase. focusesonresilientconsensusbasedonsynchronousup- date rules. Section 4 is devoted to the problem of par- Here, the focus of our study is on the so-called f-total tial asynchrony with delayed information. We illustrate model, where the total number of faulty agents is at the results through a numerical example in Section 5. mostf,whichhasbeendealtwithin,e.g.,(Azadmanesh Finally, Section 6 concludes the paper. The material of and Kieckhafer 2002, Bouzid et al. 2010, Kieckhafer thispaperappearsin(DibajiandIshii2015b,Dibajiand and Azadmanesh 1993, LeBlanc and Koutsoukos 2012, Ishii 2015c) in preliminary forms; here, we present im- LeBlancetal.2013,Lynch1996,Vaidyaetal.2012).We provedresultswithfullproofsandmorediscussions. derive a necessary and sufficient condition to achieve resilient consensus by an MSR-like algorithm. Again, weshowthatgraphrobustnessinthenetworkistherel- 2 ProblemSetup evantnotion.However,thef-totalmodelassumesfewer malicious agents in the system, and hence, the condi- 2.1 GraphTheoryNotions tionwillbeshowntobelessrestrictivethanthatforthe f-local case. The works (Bouzid et al. 2010, Kieckhafer We recall some concepts on graphs (Mesbahi and andAzadmanesh1993,Lynch1996,Vaidyaetal.2012) Egerstedt 2010). A directed graph (or digraph) with n have studied this model for the first-order agents case, butbasedontheByzantinemaliciousagents,whichare 1 The term partially asynchronous refers to the case where allowedtosenddifferentvaluestotheirneighbors.Such agents share some level of synchrony by having the same attacks may be impossible, e.g., if the measurements sampling times; however, they make updates at different aremadebyon-boardsensorsinmobilerobots. timesbasedondelayedinformation(BertsekasandTsitsiklis 1989). This is in contrast to the fully asynchronous case Underthef-totalmodel,wesolvetheresilientconsensus whereagentsmustbefacilitatedwiththeirownclocks;such problemusingMSR-typealgorithmsfortwodifferentup- settingsarestudiedin,e.g.,(Qinetal.2012). 2 nodes (n > 1) is defined as G = (V,E) with the node 1 set V = {1,...,n} and the edge set E ⊆ V ×V. The edge (j,i) ∈ E means that node i has access to the in- 5 2 formation of node j. If E = {(i,j) : i,j ∈ V, i (cid:54)= j}, the graph is said to be complete. For node i, the set of its neighbors, denoted by N = {j : (j,i) ∈ E}, con- 4 3 i sists of all nodes having directed edges toward i. The Fig.1.Agraphwhichis(2,2)-robustbutnot3-robust. degree of node i is the number of its neighbors and is denotedbyd =|N |.TheadjacencymatrixA=[a ]is i i ij robust,butnot3-robust;further,removinganyedgede- given by a ∈ [γ,1) if (j,i) ∈ E and otherwise a = 0, ij ij stroysits(2,2)-robustness.Ingeneral,todetermineifa where γ > 0 is a fixed lower bound. We assume that given graph has a robustness property is computation- (cid:80)n a ≤1. Let L=[l ] be the Laplacian matrix j=1,j(cid:54)=i ij ij ally difficult since the problem involves combinatorial of G, whose entries are defined as l = (cid:80)n a aspects.Itisknownthatrandomgraphsbecomerobust ii j=1,j(cid:54)=i ij and l = −a , i (cid:54)= j; we can see that the sum of the whentheirsizetendstoinfinity(Zhangetal.2015). ij ij elementsofeachrowofLiszero. 2.2 Second-OrderConsensusProtocol A path from node v to v is a sequence (v ,v ,...,v ) 1 p 1 2 p in which (vi,vi+1) ∈ E for i = 1,...,p−1. If there is Consideranetworkofagentswhoseinteractionsarerep- a path between each pair of nodes, the graph is said to resented by the directed graph G. Each agent i∈V has be strongly connected. A directed graph is said to have adouble-integratordynamicsgivenby a directed spanning tree if there is a node from which thereisapathtoeveryothernodeinthegraph. x˙ (t)=v (t), v˙ (t)=u (t), i=1,...,n, i i i i For the MSR-type resilient consensus algorithms, the where x (t) ∈ R and v (t) ∈ R are its position and ve- i i critical topological notion is graph robustness, which is locity, respectively, and u (t) is the control input. We i a connectivity measure of graphs. Robust graphs were discretizethesystemwithsamplingperiodT as introduced in (LeBlanc et al. 2013) for the analysis of resilientconsensusoffirst-ordermulti-agentsystems. T2 x [k+1]=x [k]+Tv [k]+ u [k], i i i 2 i (1) Definition2.1 ThedigraphGis(r,s)-robust(r,s<n) v [k+1]=v [k]+Tu [k], i=1,...,n, i i i ifforeverypairofnonemptydisjointsubsetsS ,S ⊂V, 1 2 atleastoneofthefollowingconditionsissatisfied: where x [k], v [k], and u [k] are, respectively, the posi- i i i tion, the velocity, and the control input of agent i at 1.XSr1 =S1, 2.XSr2 =S2, 3.|XSr1|+|XSr2|≥s, t=kT fork ∈Z+.Ourdiscretizationisbasedoncontrol inputs generated by zeroth order holds; other methods where XSr(cid:96) is the set of all nodes in S(cid:96) which have at areemployedin,e.g.,(LinandJia2009,Qinetal.2012). leastr incomingedgesfromoutsideofS .Inparticular, (cid:96) graphswhichare(r,1)-robustarecalledr-robust. At each time step k, the agents update their positions andvelocitiesbasedonthetime-varyingtopologyofthe Thefollowinglemmahelpstohaveabetterunderstand- graphG[k],whichisasubgraphofGandisspecifiedlater. ingof(r,s)-robustgraphs(LeBlanc2012). Inparticular,thecontrolusestherelativepositionswith itsneighborsanditsownvelocity(RenandCao2011): Lemma2.2 Foran(r,s)-robustgraphG,thefollowing (cid:88) hold: u [k]=− a [k][(x [k]−δ )−(x [k]−δ )]−αv [k], i ij i i j j i (i) Gis(r(cid:48),s(cid:48))-robust,where0≤r(cid:48) ≤rand1≤s(cid:48) ≤s, j∈Ni (2) andinparticular,itisr-robust. where a [k] is the (i,j) entry of the adjacency matrix ij (ii) G is(r−1,s+1)-robust. A[k]∈Rn×ncorrespondingtoG[k],αisapositivescalar, (iii) G isatleastr-connected,butanr-connectedgraph andδ ∈Risaconstantrepresentingthedesiredrelative i isnotnecessarilyr-robust. positionofagentiinaformation. (iv) G hasadirectedspanningtree. (v) r ≤(cid:100)n/2(cid:101).Also,ifG isacompletegraph,thenitis Theagents’objectiveisconsensusinthesensethatthey (r(cid:48),s)-robustforall0<r(cid:48) ≤(cid:100)n/2(cid:101)and1≤s≤n. cometoformationandthenstopasymptotically: Moreover,agraphis(r,s)-robustifitis(r+s−1)-robust. x [k]−x [k]→δ −δ , v [k]→0ask →∞, ∀i,j ∈V. i j i j i It is clear that (r,s)-robustness is more restrictive than In(RenandCao2011),itisshownthatifthereissome r-robustness.ThegraphwithfivenodesinFig.1is(2,2)- (cid:96) ∈ Z such that for any nonnegative integer k , the 0 + 0 3 unionofG[k]acrossk ∈[k ,k +(cid:96) ]hasadirectedspan- We introduce the notion of resilient consensus for the 0 0 0 ningtree,thenconsensuscanbeobtainedunderthecon- networkofsecond-orderagents(DibajiandIshii2015a). trollaw (2)byproperlychoosingα andT. Definition2.5 If for any possible set of malicious Inthispaper,westudythecasewheresomeagentsmal- agents,anyinitialpositionsandvelocities,andanyma- functionduetofailure,disturbances,orattacks.Insuch licious inputs, the following conditions are met, then circumstances, they may not follow the predefined up- thenetworkissaidtoreachresilientconsensus: date rule (2). In the next subsection, we introduce nec- essary definitions and then formulate the resilient con- 1. Safety: There exists a bounded interval S deter- sensusprobleminthepresenceofmaliciousagents. mined by the initial positions and velocities of the normal agents such that xˆ [k] ∈ S, i ∈ V\M,k ∈ i Finally,werepresenttheagentsysteminavectorform. Z+.ThesetS iscalledthesafetyinterval. Let xˆ [k] = x [k] − δ , xˆ[k] = [xˆ [k] ··· xˆ [k]]T, and 2. Agreement: For some c ∈ S, it holds that i i i 1 n lim xˆ [k]=candlim v [k]=0,i∈V\M. v[k]=[v [k] ··· v [k]]T.Forthesakeofsimplicity,here- k→∞ i k→∞ i 1 n after,theagents’positionsrefertoxˆ[k]andnotx[k].The Afewremarksareinorderregardingthesafetyinterval system(1)thenbecomes S. (i) The malicious agents may or may not be in S, while the normal agents must stay inside though they T2 may still be influenced by the malicious agents staying xˆ[k+1]=xˆ[k]+Tv[k]+ u[k], 2 (3) inS.(ii)Weimposethesafetyconditiontoensurethat v[k+1]=v[k]+Tu[k], thebehaviorofthenormalagentsremainsclosetothat whennomaliciousagentispresent.(iii)Wedonothave andthecontrollaw (2)canbewrittenas asafetyintervalforvelocityofnormalagentsandhence theymayevenmovefasterthantheirinitialspeeds. u[k]=−L[k]xˆ[k]−αv[k], (4) 3 SynchronousNetworks whereL[k]istheLaplacianmatrixforthegraphG[k]. 3.1 DP-MSRAlgorithm 2.3 ResilientConsensus Wefirstoutlinethealgorithmforachievingconsensusin the presence of misbehaving agents in the synchronous We introduce notions related to malicious agents and case,whereallagentsmakeupdatesateverytimestep. consensus in the presence of such agents (LeBlanc et The algorithm is called DP-MSR, which stands for al.2013,Lynch1996,Vaidyaetal.2012). Double-Integrator Position-Based Mean Subsequence Reduced algorithm. It was proposed in (Dibaji and Definition2.3 Agent i is called normal if it updates Ishii2015a)forthef-localmaliciousmodel. itsstatebasedonthepredefinedcontrol(2).Otherwise, it is called malicious and may make arbitrary updates. Thealgorithmhasthreestepsasfollows: TheindexsetofmaliciousagentsisdenotedbyM⊂V. Thenumbersofnormalagentsandmaliciousagentsare 1. Ateachtimestepk,eachnormalagentireceivesthe denotedbyn andn ,respectively. N M relativepositionvaluesxˆ [k]−xˆ [k]ofitsneighbors j i j ∈N [k]andsortstheminadecreasingorder. i Weassumethatanupperboundisavailableforthenum- 2. If there are less than f agents whose relative posi- ber of misbehaving agents in the entire network or at tion values are greater than or equal to zero, then leastineachnormalagent’sneighborhood. thenormalagentiignorestheincomingedgesfrom those agents. Otherwise, it ignores the incoming Definition2.4 The network is f-total malicious if the edgesfromf agentscountingfromthosehavingthe number nM of faulty agents is at most f, i.e., nM ≤ f. largest relative position values. Similarly, if there On the other hand, the network is f-local malicious if arelessthanf agentswhosevaluesaresmallerthan the number of malicious agents in the neighborhood of orequaltozero,thenagentiignorestheincoming eachnormalagentiisboundedbyf,i.e.,|Ni∩M|≤f. edges from those agents. Otherwise, it ignores the f incoming edges counting from those having the According to the model of malicious agents considered, smallestrelativepositionvalues. the difference between normal agents and malicious 3. Applythecontrolinput(2)bysubstitutinga [k]= ij agents lies in their control inputs u : For the normal 0foredges(j,i)whichareignoredinstep2. i agents, it is given by (2) while for the malicious agents, it is arbitrary. On the other hand, the position and The main feature of this algorithm lies in its simplicity. velocitydynamicsforallagentsremainthesameas(1). Eachnormalagentignorestheinformationreceivedfrom 4 itsneighborswhichmaybemisleading.Inparticular,it Forthesampling period T andthe parameter α,weas- ignoresuptof edgesfromneighborswhosepositionsare sume2 large, and f edges from neighbors whose positions are T2 T2 1+ ≤αT ≤2− . (9) small.TheunderlyinggraphG[k]attimekisdetermined 2 2 bytheremainingedges.TheadjacencymatrixA[k]and Thefollowinglemmafrom(DibajiandIshii2015a)plays theLaplacianmatrixL[k]aredeterminedaccordingly. akeyroleintheanalysis. The problem for the synchronous agent network can be Lemma3.1 Underthecontrolinputs(6),theposition stated as follows: Under the f-total malicious model, vectorxˆ[k]oftheagentsfork ≥1canbeexpressedas find a condition on the network topology such that the normalagentsreachresilientconsensusbasedontheDP- (cid:34) (cid:35) MSRalgorithm. (cid:104) (cid:105) xˆ[k] xˆ[k+1]= Φ Φ 1k 2k xˆ[k−1] 3.2 MatrixRepresentation (cid:34) (cid:35) + T2 0 (cid:0)uM[k]+uM[k−1](cid:1), We provide a modified system model when malicious 2 I agentsarepresent.Tosimplifythenotation,theagents’ nM indicesarereordered.Letthenormalagentstakeindices where 1,...,n andletthemaliciousagentsben +1,...,n. N N Thus, the vectors representing the positions, velocities, (cid:34) (cid:35) T2 LN[k] andcontrolinputsofallagentsconsistoftwopartsas Φ =R+I − , 1k n 2 0 (cid:34) (cid:35) (cid:34) (cid:35) (cid:34) (cid:35) xˆN[k] vN[k] uN[k] (cid:34) (cid:35) xˆ[k]= , v[k]= , u[k]= , T2 LN[k−1] xˆM[k] vM[k] uM[k] Φ2k =−R− 2 0 . (5) where the superscript N stands for normal and M (cid:2) (cid:3) for malicious. Regarding the control inputs uN[k] and Moreover,under(9),thematrix Φ1k Φ2k isnonnega- uM[k],thenormalagentsfollow (2)whilethemalicious tive,andthesumofeachofitsfirstnN rowsisone. agentsmaynot.Hence,theycanbeexpressedas Remark3.2 It is clear from the lemma that the con- (cid:104) (cid:105) trolsuM[k]anduM[k−1]donotdirectlyenterthenew uN[k]=−LN[k]xˆ[k]−α I 0 v[k], nN (6) positionsxˆN[k+1]ofthenormalagents.Moreover,the uM[k]:arbitrary, positions of the normal agents xˆN[k+1] for k ≥ 1 are obtainedviatheconvexcombinationofthecurrentposi- where LN[k]∈RnN×n is the matrix formed by the first tionsxˆ[k]andthosefromtheprevioustimestepxˆ[k−1]. n rowsofL[k]associatedwithnormalagents.Therow N sumsofthismatrixLN[k]arezeroasinL[k]. 3.3 ANecessaryandSufficientCondition With the control inputs of (6), we obtain the model for We are now ready to state the main result for the syn- theoverallsystem(3)as chronouscase.LettheintervalS begivenby (cid:32) T2 (cid:34)LN[k](cid:35)(cid:33) (cid:20) (cid:26) (cid:18) αT2(cid:19) (cid:27) xˆ[k+1]= I − xˆ[k]+Qv[k] S = minxˆN[0]+min 0, T − vN[0] , n 2 0 2 (cid:26) (cid:18) αT2(cid:19) (cid:27)(cid:21) T2 (cid:34) 0 (cid:35) maxxˆN[0]+max 0, T − vN[0] , (10) + uM[k], (7) 2 2 I nM (cid:34) (cid:35) (cid:34) (cid:35) 2 The condition (9) on T and α ensures that the matrix v[k+1]=−T LN[k] xˆ[k]+Rv[k]+T 0 uM[k], (cid:2)Φ1k Φ2k(cid:3)possessesthepropertiesstatedinLemma3.1.We 0 InM lmesasytrhealanx1i.t,Wfohrileexa(9m)pclae,nbbyenfoutlfiimllepdosbiyngan(cid:80)ynjT=1,athije[kc]otnotrboel law (2) may make the agents exhibit undesired oscillatory where the partitioning in the matrices is in accordance movements. This type of property is also seen in previous withthevectorsin(5),andQandR aregivenby works on consensus of agents with second-order dynamics; see, e.g., (Ren 2008, Ren and Cao 2011). We remark that (cid:34) (cid:35) (cid:34) (cid:35) αT2 I 0 I 0 the condition (9) is less restrictive than that in (Qin and Q=TI − nN , R=I −αT nN . (8) Gao2012).Ingeneral,shortcomingsduetothisassumption n 2 0 0 n 0 0 shouldbefurtherstudiedinfutureresearch. 5 where the minimum and the maximum are taken over In what follows, we show that x[k] is a nonincreasing allentriesofthevectors.Notethattheintervalisdeter- function of k ≥ 1. For k ≥ 2, Lemma 3.1 and Re- minedonlybytheinitialstatesofthenormalagents. mark 3.2 indicate that the positions of normal agents are convex combinations of those of its neighbors from Theorem3.3 Under the f-total malicious model, the time k −1 and k −2. If any neighbors of the normal networkofagentswithsecond-orderdynamicsusingthe agents at those time steps are malicious and are out- control in (6) and the DP-MSR algorithm reaches re- side the range of the normal agents’ position values, silient consensus if and only if the underlying graph is they are ignored by step 2 in DP-MSR. Hence, we have (f+1,f+1)-robust.Thesafetyintervalisgivenby(10). maxxˆN[k] ≤ max(cid:0)xˆN[k−1],xˆN[k−2](cid:1). It also easily followsthatmaxxˆN[k−1]≤max(cid:0)xˆN[k−1],xˆN[k−2](cid:1). Proof.(Necessity)Weprovebycontradiction.Suppose Thus,wearriveat thatthenetworkisnot(f+1,f+1)-robust.Then,there arenonemptydisjointsetsV1,V2 ⊂V suchthatnoneof x[k]=max(cid:0)xˆN[k],xˆN[k−1](cid:1) the conditions 1–3 in Definition 2.1 holds. Suppose all ≤max(cid:0)xˆN[k−1],xˆN[k−2](cid:1)=x[k−1]. agentsinV haveinitialpositionsataandallagentsinV 1 2 haveinitialpositionsatbwitha<b.Letallotheragents have initial positions taken from the interval (a,b) and Similarly,x[k]isanondecreasingfunctionoftime.Thus, every agent has 0 as initial velocity. From condition 3, wehavethatfork ≥2,normalagentssatisfyxˆi[k]∈S, we have that |Xf+1| + |Xf+1| ≤ f. Suppose that all i∈V \M.Thesafetyconditionhasnowbeenproven. V1 V2 agents in Xf+1 and Xf+1 are malicious and keep their V1 V2 Itremainstoestablishtheagreementcondition.Westart values constant. There is at least one normal agent in with the proof of agreement in the position values. Be- V1 and one normal agent in V2 by |XVf1+1| < |V1| and cause x[k] and x[k] are bounded and monotone, their |Xf+1| < |V | because conditions 1 and 2 do not hold. limits exist, which are denoted by x(cid:63) and x(cid:63), respec- ThVe2se norma2l agents have f or fewer neighbors outside tively. If x(cid:63) = x(cid:63), then resilient consensus follows. We oftheirownsetsbecausetheyarenotinXf+1 orXf+1. provebycontradiction,andthusassumex(cid:63) >x(cid:63). V1 V2 Asaresult,allnormalagentsinV andV updatebased 1 2 only on the values inside V and V by removing the Denote by β the minimum nonzero entry of the matrix 1 2 (cid:2) (cid:3) values received from outside of their sets. This makes Φ1k Φ2k over all k. This matrix is determined by the their positions at a and b unchanged. Hence, there will structure of the graph G[k] and thus can vary over a benoagreementamongthenormalagents. finite number of candidates; by (9), we have β ∈ (0,1). Let(cid:15) >0and(cid:15)>0besufficientlysmallthat 0 (Sufficiency) Wefirstestablishthesafetyconditionwith S given in (10), i.e., xˆi[k] ∈ S for all k and i ∈ V \M. x(cid:63)+(cid:15) <x(cid:63)−(cid:15) , (cid:15)< βnN(cid:15)0 . (13) For k = 0, it is obvious that the condition holds. For 0 0 1−βnN k =1,thepositionsofnormalagentsaregivenby(7)as Weintroducethesequence{(cid:15) }definedby (cid:18)(cid:104) (cid:105) T2 (cid:19) (cid:18) αT2(cid:19) (cid:96) xˆN[1]= I 0 − LN[0] xˆ[0]+ T− vN[0]. nN 2 2 (cid:15)(cid:96)+1 =β(cid:15)(cid:96)−(1−β)(cid:15), (cid:96)=0,1,...,nN −1. (11) While the initial velocities of the malicious agents do It is easy to see that (cid:15) < (cid:15) for i = 0,1,...,n −1. (cid:96)+1 (cid:96) N notappearinxˆN atthistime,theirinitialpositionsmay Moreover,by (13),theyarepositivebecause have influences. However, for a normal agent, if some otefrvitasln[meiignhxˆbNor[0s],amreaxmxˆaNlic[0io]]u,sthaenndtahreeyowuitllsibdeeitghneoriend- (cid:15) =βnN(cid:15) −n(cid:88)N−1β(cid:96)(1−β)(cid:15)=βnN(cid:15) −(cid:0)1−βnN(cid:1)(cid:15)>0. nN 0 0 by step 2 in DP-MSR because there are at most f such (cid:96)=0 agents.Thematrix[I 0]−(T2/2)LN[0]in(11)isnon- nN negative and its row sums are one because LN[0] con- Wealsotakek ∈Z suchthatfork ≥k ,itholdsthat (cid:15) + (cid:15) sists of the first n rows of the Laplacian L[0]. As a x[k]<x(cid:63)+(cid:15),x[k]>x(cid:63)−(cid:15).Duetoconvergenceofx[k] N result, the first term on the right-hand side of (11) is andx[k],suchk exists.Forthesequence{(cid:15) },let (cid:15) (cid:96) a vector whose entries are convex combinations of val- ueswithin[minxˆN[0],maxxˆN[0]].Thus,foreachnormal X (k +(cid:96),(cid:15) )={j ∈V : xˆ [k +(cid:96)]>x(cid:63)−(cid:15) }, agenti∈V \M,itholdsthatxˆi[1]∈S. X1(k(cid:15)+(cid:96),(cid:15)(cid:96))={j ∈V : xˆj[k(cid:15)+(cid:96)]<x(cid:63)+(cid:15)(cid:96)}. (14) 2 (cid:15) (cid:96) j (cid:15) (cid:96) Next,tofurtheranalyzethenormalagents,let Foreachfixed(cid:96),thesesetsaredisjointby(13)and(cid:15) < (cid:96)+1 (cid:15) .Here,weclaimthatinafinitenumberofsteps,oneof x[k]=max(cid:0)xˆN[k],xˆN[k−1](cid:1), (cid:96) these sets will contain no normal agent. Note that this (12) x[k]=min(cid:0)xˆN[k],xˆN[k−1](cid:1). contradictstheassumptionofx(cid:63) andx(cid:63) beinglimits. 6 Suppose that the set X (k ,(cid:15) ) has this normal agent; 1 (cid:15) 0 xˆ[k] denoteitsindexbyi.Becauseateachtime,eachnormal x[k] agent ignores at most f smallest neighbors and all of thesef +1neighborsareupperboundedbyx(cid:63)−(cid:15) ,at 0 leastoneoftheagentsaffectingihasavaluesmallerthan (cid:15)0 (cid:15) orequaltox(cid:63)−(cid:15)0.FromRemark3.2,everynormalagent updates by a convex combination of position values of current and previous time steps. By (9) and the choice x(cid:63) Normalagentsin Normalagentsin of β, one of the normal neighbors must be used in the (cid:15) (cid:15)1 X1(k(cid:15),(cid:15)0) xˆ X1(k(cid:15)+1,(cid:15)1) updatewithDP-MSR.Thus,foragenti, 0 i xˆN[k +1]≤(1−β)x[k ]+β(x(cid:63)−(cid:15) ). i (cid:15) (cid:15) 0 xˆ j By (15),xˆN[k +1]isupperboundedbyx(cid:63)−(cid:15) .Thus, k(cid:15) k(cid:15)+1 k at least, onie o(cid:15)f the normal agents in X (k ,(cid:15) )1has de- 1 (cid:15) 0 creased to x(cid:63)−(cid:15) , and the number of normal agents in Fig.2.AsketchfortheproofofTheorem3.3,whereasetof 1 normalagentsaroundx(cid:63) becomessmallerastimeproceeds. X1(k(cid:15) + 1,(cid:15)1) is less than X1(k(cid:15),(cid:15)0) (see Fig. 2). The same argument holds for X (k ,(cid:15) ). Hence, it follows 2 (cid:15) 0 that the number of normal agents in X (k + (cid:96),(cid:15) ) is WestartbyconsideringX (k ,(cid:15) )(seeFig.3.3).Because 1 (cid:15) (cid:96) 1 (cid:15) 0 ofthelimitx(cid:63),oneormorenormalagentsarecontained less than that in X1(k(cid:15) +(cid:96)−1,(cid:15)(cid:96)−1) and/or the num- berofnormalagentsinX (k +(cid:96),(cid:15) )islessthanthatin in this set or the set X (k +1,(cid:15) ) from the next step. 2 (cid:15) (cid:96) 1 (cid:15) 1 X (k +(cid:96)−1,(cid:15) ).Becausethenumberofnormalagents In what follows, we prove that X (k ,(cid:15) ) is nonempty. 2 (cid:15) (cid:96)−1 1 (cid:15) 0 is finite, there is a time (cid:96)(cid:63) ≤ n where the set of nor- We can in fact show that each normal agent j outside N malagentsinX (k +(cid:96),(cid:15) )and/orthatinX (k +(cid:96),(cid:15) ) of X (k ,(cid:15) ) at time k will remain outside of X (k + 1 (cid:15) (cid:96) 2 (cid:15) (cid:96) 1,(cid:15) )1. H(cid:15)er0e, agent j sa(cid:15)tisfies xˆN[k ] ≤ x(cid:63) − (cid:15) .1Fr(cid:15)om is empty for (cid:96) ≥ (cid:96)(cid:63). This fact contradicts the existence 1 j (cid:15) 0 of the two limits x(cid:63) and x(cid:63). Thus, we conclude that Remark 3.2, each normal agent updates its position by x(cid:63) =x(cid:63),i.e.,allnormalagentsreachpositionconsensus. takingaconvexcombinationoftheneighbors’positions at the current and previous time steps. Thus, by the choiceofβ,thepositionofagentj isboundedas Itisfinallyshownthatallnormalagentsstopasymptot- ically, which is agreement in the velocity values. When xˆN[k +1]≤(1−β)x[k ]+β(x(cid:63)−(cid:15) ) thenormalagentsreachagreementintheirpositions,the j (cid:15) (cid:15) 0 controls (2) become uN[k] → −αvN[k] as k → ∞. By ≤(1−β)(x(cid:63)+(cid:15))+β(x(cid:63)−(cid:15) ) i i 0 thedynamics(1)oftheagents,itholdsthatxˆN[k+1]→ ≤x(cid:63)−β(cid:15) +(1−β)(cid:15)=x(cid:63)−(cid:15) . (15) i 0 1 xˆN[k]+T (1−αT/2)vN[k] as k → ∞. Noting (9), we i i arriveatvN[k]→0ask →∞. (cid:3) i Hence,agentj isnotinX (k +1,(cid:15) ).Similarly,wecan 1 (cid:15) 1 showthatX (k ,(cid:15) )isnonempty. 2 (cid:15) 0 In(DibajiandIshii2015a),wehavestudiedthef-local model,whereeachnormalagenthasatmostf malicious Sincethegraphis(f +1,f +1)-robust,oneofthecon- agents as neighbors. Clearly, there may be more mali- ditions1–3fromDefinition2.1holds: cious agents overall than the f-total case. There, a suf- ficient condition for resilient consensus is that the net- 1. All agents in X (k ,(cid:15) ) have f +1 neighbors from work is (2f +1)-robust. From Lemma 2.2, such graphs 1 (cid:15) 0 outsideofX (k ,(cid:15) ). requiremoreedgesthan(f+1,f+1)-robustgraphs,as 1 (cid:15) 0 2. All agents in X (k ,(cid:15) ) have f +1 neighbors from giveninthetheoremabove. 2 (cid:15) 0 outsideofX (k ,(cid:15) ). 2 (cid:15) 0 3. Inthetwosetsintotal,therearef+1agentshaving Theresultisconsistentwiththatforthefirst-orderagent atleastf+1neighborsfromoutsidetheirownsets. case in (LeBlanc et al. 2013). More from the technical side, difficulties in dealing with second-order agent dy- In the first case, based on the definition of x(cid:63) and x[k] namics can be described as follows: In the proof above, there exists at least one normal agent inside the set an important step is to establish that x[k] and x[k] de- X (k ,(cid:15) ) having f +1 incoming links from outside of fined in (12) are monotonically nonincreasing and non- 1 (cid:15) 0 X (k ,(cid:15) ).Similarly,inthesecondcase,thereexistsone decreasing, respectively. These properties do not hold 1 (cid:15) 0 normal agent having f +1 incoming links from outside forthemaximumpositionmax xˆN[k]andtheminimum X (k ,(cid:15) ).Inthethirdcase,becausethemaximumnum- position min xˆN[k] as in the first-order case. Further- 2 (cid:15) 0 berofmaliciousagentsisf,thereisonenormalagentin more, as a consequence of this fact, it is more involved X (k ,(cid:15) ) or X (k ,(cid:15) ) which has f +1 neighbors from toshowthatthesetsX (k +(cid:96),(cid:15) )andX (k +(cid:96),(cid:15) )in 1 (cid:15) 0 2 (cid:15) 0 1 (cid:15) (cid:96) 2 (cid:15) (cid:96) outsidethesetitbelongsto. (14)becomesmalleras(cid:96)increases. 7 AsacorollarytoTheorem3.3,weshowthattheconver- instants.Moreover,theymakeupdatesbasedontherel- genceratetoachieveconsensusisexponential. ativelocationsoftheirneighborswithoutanytimedelay inthemodel.Inpractice,however,theagentsmightnot Corollary3.4 UndertheassumptionsinTheorem3.3, be synchronized nor have access to the current data of the network of agents with second-order dynamics all neighbors simultaneously. In this section, we extend reaches resilient consensus with an exponential conver- the setup so that the agents are allowed to update at gencerate. differenttimeswithdelayedinformation. Proof. Weoutlinetheproofwhichfollowsasimilarline Wewouldliketoemphasizethedifferenceinthepartially ofargumenttothatofTheorem3.3,butwiththeknowl- asynchronousagentmodelemployedherefromthosein edge that the agents come to agreement. Let V(k) = theresilientconsensusliterature.Inparticular,wefollow x[k]−x[k].Weshowthatthisfunctiondecreasestozero the approach generally assumed in asynchronous con- exponentiallyfastask →∞. sensus for the case without malicious agents; see, e.g., (Mesbahi and Egerstedt 2010, Su et al. 1998, Xiao and Takeanarbitraryconstantη ∈(0,1).Weintroducetwo Wang2006)forsingle-integratornetworksand(Linand setsasfollows:Fork =0,1,...,n ,let Jia 2009, Liu and Liu 2012, Qin and Gao 2012, Qin et N al. 2012) for the double-integrator case. That is, at the X(cid:48)(k)=(cid:8)j ∈V : xˆ [k]>(cid:0)1−βkη(cid:1)(cid:0)x[0]−x(cid:63)(cid:1)+x(cid:63)(cid:9), time for an update, each agent uses the most recently 1 j X(cid:48)(k)=(cid:8)j ∈V : xˆ [k]<βkη(cid:0)x[0]−x(cid:63)(cid:1)+x[0](cid:9). receivedpositionsofitsneighbors.Thisisanaturalset- 2 j tingespeciallyforautonomousmobilerobotsorvehicles usingsensorstolocatetheirneighborsinrealtime. Clearly,foreachk,thesetsX(cid:48)(k)andX(cid:48)(k)aredisjoint, 1 2 soby(f+1,f+1)robustness,thereisonenormalagent In contrast, the works (Azadmanesh and Kieckhafer i in one of the sets having f +1 incoming links from 2002, Kieckhafer and Azadmanesh 1993, LeBlanc and outsidethesettowhichitbelongs.IfagentiisinX(cid:48)(k), 1 Koutsoukos 2012, Vaidya et al. 2012) from the area then,similarto(15),wecanupperbounditspositionas of computer science consider asynchronous MSR-type algorithms based on the notion of rounds (for the case xˆ [k+1]≤(1−βk+1)x[0]+βk+1(cid:2)(1−η)(x[0]−x(cid:63))+x(cid:63)(cid:3). i with first-order agents). There, when each agent makes a transmission, it broadcasts its state together with its Hence, in this case, agent i is not in X(cid:48)(k+1) at time roundr,representingthenumberoftransmissionsmade 1 k+1.Ontheotherhand,ifagentiisinX(cid:48)(k),then so far. The agent makes an update to obtain the new 2 statecorrespondingtoroundr+1byusingthestatesof xˆ [k+1]≥(1−βk+1)x[0]+βk+1(cid:2)η(x(cid:63)−x[0])+x[0](cid:3), neighbors,butonlywhenasufficientnumberofthosela- i beledwiththesameroundrarereceived.Duetodelays implyingthatxˆ [k+1]isoutsideofX(cid:48)(k+1).Sincethe in communication, the states labeled with round r may i 2 number of normal agents is n , at time k = n , both be received at various times, causing potentially large N N ofthesetsX(cid:48)(n )andX(cid:48)(n )donotcontainanynor- delaysinmakingthe(r+1)thupdateforsomeagents. 1 N 2 N mal agent. Hence, we can conclude that the maximum position x[k] and the minimum position x[k] of normal Comparedtotheresultsintheprevioussection,theanal- agents,respectively,decreasedandincreasedsincetime ysis in the partially asynchronous model studied here 0. More concretely, we have V(nN) ≤ (1−βnNη)V(0). becomes more complicated. Moreover, the derived con- By repeating this argument, we can establish that dition is more restrictive because there are additional V(knN)≤(1−βnNη)kV(0). (cid:3) waysforthemaliciousagentstodeceivethenormalones. Forexample,theymayquicklymovesothattheyappear Thiscorollaryalsoindicatesthatconventionalconsensus to be at different positions for different normal agents, algorithmswithoutmaliciousagentsinthenetworkhave whichmaypreventthemfromcomingtogether. exponentialconvergencerate.IntheproposedMSR-type algorithm,therateofconvergenceisaffectedbytwofac- 4.1 AsynchronousDP-MSRAlgorithm tors.Oneisthatanumberofedgesareignoredandnot usedfortheupdates,whichwillreducetheconvergence Here,weemploythecontrolinputtakingaccountofpos- rate.Theotheristhatifmaliciousagentsstaytogether sibledelaysinthepositionvaluesfromtheneighborsas with some of the normal agents, they can still influence theratetoachieveconsensusandslowitdown. (cid:88) (cid:0) (cid:1) u [k]= a [k] xˆ [k−τ [k]]−xˆ [k] −αv [k], i ij j ij i i j∈Ni 4 NetworkswithPartialAsynchronyandDelay (16) whereτ [k]∈Z denotesthedelayintheedge(j,i)at ij + Sofar,theunderlyingassumptioninthemodelhasbeen time k. From the viewpoint of agent i, the most recent that all agents exchange their states at the same time information regarding agent j at time k is the position 8 at time k −τ [k] relative to its own current position. Then, let D[k] be a diagonal matrix whose ith entry is ij Thedelaysaretimevaryingandmaybedifferentateach given by d [k] = (cid:80)n a [k]. Now, the n × (τ + 1)n i j=1 ij edge,butweassumethecommonupperboundτ as matrixL [k]isdefinedas τ 0≤τ [k]≤τ, (j,i)∈E, k ∈Z . (17) (cid:104) (cid:105) ij + L [k]= D[k]−A [k] ··· −A [k] . τ 0 τ Hence,eachnormalagentbecomesawareoftheposition ofeachofitsneighborsatleastonceinτ timesteps,but It is clear that the summation of each row is zero as in possibly at different time instants. In other words, nor- theLaplacianmatrixL[k]. malagentsmustupdateandtransmittheirinformation oftenenoughtomeet(17).Itisalsoassumedin(16)that Now,thecontrolinput(16)canbeexpressedas agentiusesitsowncurrentvelocity.Weemphasizethat thevalueofτ in(17)canbearbitraryandmoreoverneed uN[k]=−LN[k]z[k]−α(cid:104)I 0(cid:105)v[k], notbeknowntotheagentssincethisinformationisnot τ nN (18) used in the update rule. In (Gao and Wang 2010, Liu uM[k]: arbitrary, andLiu2012,Qinetal.2012),timedelaysforpartially asynchronous cases have been studied for agents with where z[k] = [xˆ[k]Txˆ[k −1]T ···xˆ[k −τ]T]T is a (τ + second-orderdynamics. 1)n-dimensional vector for k ≥0 and LN[k] is a matrix τ formed by the first n rows of L [k]. Here, z[0] is the N τ As in the synchronous case, the malicious agents are given initial position values of the agents and can be assumedtobeomniscient.Here,itmeansthattheyhave chosen arbitrarily. By (3) and (18), the agent dynamics prior knowledge of update times and τij[k] for all links canbewrittenas andk ≥0.Themaliciousagentsmighttakeadvantageof thisknowledgetodecidehowtheyshouldmakeupdates (cid:34) (cid:35) T2 0 toconfuseandmisleadthenormalagents. xˆ[k+1]=Γ[k]z[k]+Qv[k]+ uM[k], 2 I nM To achieve resilient consensus, we employ a modified (cid:34) (cid:35) (cid:34) (cid:35) version of the algorithm in Section 3, called the asyn- v[k+1]=−T LNτ [k] z[k]+Rv[k]+T 0 uM[k], chronousDP-MSR,outlinedbelow. 0 I nM (19) 1. At each time step k, each normal agent i decides whethertomakeanupdateornot. whereΓ[k]isann×(τ +1)nmatrixgivenby 2. Ifitdecidestodoso,thenitusestherelativeposi- tionvaluesofitsneighborsj ∈N basedonthemost i (cid:34) (cid:35) recentvaluesintheformofxˆ [k−τ [k]]−xˆ [k]and T2 LN[k] j ij i Γ[k]=[I 0]− τ thenfollowsstep2oftheDP-MSRalgorithmbased n 2 0 on these values. Afterwards, it applies the control input(16)bysubstitutinga [k]=0foredges(j,i) ij whichareignoredinstep2ofDP-MSR. and Q and R are given in (8). Based on the expression 3. Otherwise,itappliesthecontrol(16)wherethefirst (19),wecanderivearesultcorrespondingtoLemma3.1 termofpositionvaluesofitsneighborsremainsthe forthepartiallyasynchronousanddelayedprotocol.The sameastheprevioustimestep,andforthesecond proof is omitted since it is by direct calculation similar term,itsowncurrentvelocityisused. toLemma3.1shownin(DibajiandIshii2015a). The asynchronous version of the resilient consensus Lemma4.1 Underthecontrolinputs(18),theposition problemisstatedasfollows:Underthef-totalmalicious vectorxˆ[k]oftheagentsfork ≥1canbeexpressedas model,findaconditiononthenetworktopologysothat (cid:34) (cid:35) the normal agents reach resilient consensus using the z[k] (cid:2) (cid:3) asynchronousDP-MSRalgorithm. xˆ[k+1]= Λ1k Λ2k z[k−1] 4.2 MatrixRepresentation (cid:34) (cid:35) + T2 0 (cid:0)uM[k]+uM[k−1](cid:1), 2 I Beforepresentingthemainresultofthissection,wein- nM troducesomenotationtorepresenttheequationsinthe matrixform.DefinethematricesA [k],0≤(cid:96)≤τ,by where (cid:96) (cid:0)A [k](cid:1) =(cid:26)aij[k] if(j,i)∈E[k]andτij[k]=(cid:96), Λ =(cid:2)R 0(cid:3)+Γ[k], Λ =−RΓ[k−1]−QT (cid:34)LNτ [k](cid:35). (cid:96) ij 0 otherwise. 1k 2k 0 9 (cid:2) (cid:3) Furthermore, the matrix Λ Λ is nonnegative and Here,weclaimthatx [k]isanonincreasingfunctionof 1k 2k τ thesumofeachofitsfirstn rowsisone. k ≥1.ByLemma4.1,attimek ≥2,eachnormalagent N updates its position based on a convex combination of theneighbors’positionsfromk−1tok−τ−1.Ifsome 4.3 ResilientConsensusAnalysis neighbors are malicious and stay outside of the interval determined by the normal agents’ positions, then they The following theorem is the main result of the paper, areignoredinstep2ofDP-MSR.Hence,weobtainxˆ [k+ i addressingresilientconsensusviatheasynchronousDP- 1] ≤ max(cid:0)xˆN[k],xˆN[k−1],...,xˆN[k−τ −1](cid:1) for i ∈ MSRinthepresenceofdelayedinformation.Thesafety V \M.Italsofollowsthat intervaldiffersfromthepreviouscaseandisgivenby (cid:20) (cid:26) (cid:18) αT2(cid:19) (cid:27) xˆi[k]≤max(cid:0)xˆN[k],...,xˆN[k−τ −1](cid:1), Sτ = minzN[0]+min 0, T − 2 vN[0] , xˆi[k−1]≤max(cid:0)xˆN[k],...,xˆN[k−τ −1](cid:1), (cid:26) (cid:18) αT2(cid:19) (cid:27)(cid:21) .. maxzN[0]+max 0, T − vN[0] . (20) . 2 xˆ [k−τ]=xˆ [k+1−(τ +1)] i i ≤max(cid:0)xˆN[k],...,xˆN[k−τ −1](cid:1) Theorem4.2 Under the f-total malicious model, the networkofagentswithsecond-orderdynamicsusingthe controlin(18)andtheasynchronousDP-MSRalgorithm fori∈V \M.Hence,wehave reaches resilient consensus only if the underlying graph (f+1,f+1)-robust.Moreover,iftheunderlyinggraph x [k+1]=max(cid:0)xˆN[k+1],...,xˆN[k+1−(τ +1)](cid:1) τ is (2f +1)-robust, then resilient consensus is attained ≤max(cid:0)xˆN[k],...,xˆN[k−(τ +1)](cid:1)=x [k]. τ withasafetyintervalgivenby (20). We can similarly prove that x [k] is nondecreasing in The proof of this theorem given below follows an argu- τ time. This indicates that for k ≥ 2, we have xˆ [k] ∈ S i τ mentsimilartothatofTheorem3.3.However,theprob- fori∈V\M.Thus,wehaveshownthesafetycondition. lemismoregeneralwiththedelayboundτ ≥0in(17). Thisinturnresultsinmoreinvolvedanalysiswithsub- In the rest of the proof, we must show the agreement tledifferences.Weprovidefurtherdiscussionslater. condition. As x [k] and x [k] are monotone functions τ τ andcontainedin[x [1],x [1]],bothoftheirlimitsexist, τ τ Proof. (Necessity) The synchronous network is a spe- whicharedenotedbyx(cid:63) andx(cid:63),respectively.Weclaim τ τ cial case of partially asynchronous ones with τ = 0. thatthelimitsinfactsatisfyx(cid:63) =x(cid:63),i.e.,thepositions τ τ Thus,thenecessaryconditioninTheorem3.3isvalid. ofthenormalagentscometoconsensus.Theproofisby contradiction,soweassumethatx(cid:63) >x(cid:63). τ τ (Sufficiency) We first show that the safety condition holds. For k = 0, by (20), we have xˆi[0] ∈ Sτ for i ∈ First, let β be the minimum nonzero element over all V\M.Fork =1,by(19),thepositionsofnormalagents possible cases of (cid:2)Λ Λ (cid:3). From (9) and the bound γ 1k 2k canbeexpressedas on a [k], it holds that β ∈ (0,1). Choose (cid:15) > 0 and ij 0 (cid:15)>0smallenoughthat (cid:18)(cid:104) (cid:105) T2 (cid:19) (cid:18) αT2(cid:19) xˆN[1]= I 0 − LN[0] z[0]+ T− vN[0]. nN 2 τ 2 x(cid:63) +(cid:15) <x(cid:63) −(cid:15) , (cid:15)< β(τ+1)nN(cid:15)0 . (23) (21) τ 0 τ 0 1−β(τ+1)nN This vector may be affected by the malicious agents throughtheirinitialpositions.However,bystep2inDP- Wenexttakethesequence{(cid:15) }via (cid:96) MSR,foranynormalagent,ifsomeneighborsaremali- ciousandareoutsideof[minzN[0],maxzN[0]],thenthey (cid:15) =β(cid:15) −(1−β)(cid:15), (cid:96)=0,1,...,(τ +1)n −1. (cid:96)+1 (cid:96) N willbeignored.In(21),thematrix[I 0]−(T2/2)LN[0] nN τ isnonnegativeanditsrowsumsareone.Hence,thefirst Itcanbeshownthat0<(cid:15) <(cid:15) forall(cid:96).Inparticular, (cid:96)+1 (cid:96) termontheright-handsideof(21)becomesconvexcom- theyarepositivebecauseby (23),itholdsthat binationsofvaluesintheinterval[minzN[0],maxzN[0]]. Thus,wehavexˆ [1]∈S fori∈V \M. i τ (τ+1(cid:88))nN−1 (cid:15) =β(τ+1)nN(cid:15) − βk(1−β)(cid:15) Next,fork ≥1,definetwovariablesby (τ+1)nN 0 k=0 x [k]=max(cid:0)xˆN[k],xˆN[k−1],...,xˆN[k−τ −1](cid:1), =β(τ+1)nN(cid:15)0−(cid:0)1−β(τ+1)nN(cid:1)(cid:15)>0. τ x [k]=min(cid:0)xˆN[k],xˆN[k−1],...,xˆN[k−τ −1](cid:1). We also take k ∈ Z such that x [k] < x(cid:63) + (cid:15) and τ (cid:15) + τ τ (22) x [k] > x(cid:63) −(cid:15) for k ≥ k . Due to convergence of x [k] τ τ (cid:15) τ 10