Conference Proceedings of the Society for Experimental Mechanics Series Simon Quinn · Xavier Balandraud Editors Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics Conference Proceedings of the Society for Experimental Mechanics Series Series Editor Kristin B. Zimmerman, Ph.D. Society for Experimental Mechanics, Inc. Bethel,CT,USA More information about this series at http://www.springer.com/series/8922 Simon Quinn (cid:129) Xavier Balandraud Editors Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9 Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics Editors SimonQuinn XavierBalandraud UniversityofSouthampton CNRS,UMR6602,InstitutPascal Southampton,UK Aubie´re,France Universite´ClermontAuvergne SigmaClermont,InstitutPascal Clermont-Ferrand,France ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-42254-1 ISBN978-3-319-42255-8 (eBook) DOI10.1007/978-3-319-42255-8 LibraryofCongressControlNumber:2016949067 #TheSocietyforExperimentalMechanics,Inc.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherightsof translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems represents one of ten volumes of technical papers presented at the 2016 SEM Annual Conference & Exposition on Experimental and Applied MechanicsorganizedbytheSocietyforExperimentalMechanicsandheldinOrlando,FL,June6–9,2016.Thecomplete Proceedings also includes volumes on Dynamic Behavior of Materials; Challenges In Mechanics of Time-Dependent Materials; Advancement of Optical Methods in Experimental Mechanics; Experimental and Applied Mechanics; Micro- and Nanomechanics; Mechanics of Biological Systems and Materials; Mechanics of Composite & Multifunctional Materials; Fracture, Fatigue, Failure and Damage Evolution; and Joining Technologies for Composites and Dissimilar Materials. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin ExperimentalMechanics,ResidualStress,Thermomechanics&InfraredImaging,HybridTechniquesandInverseProblems beingthreeoftheseareas. Residual stresses have a great deal of importance in engineering systems and design. The hidden character of residual stresses often causes them to be underrated or overlooked. However, they profoundly influence structural design and substantially affect strength, fatigue life and dimensional stability. Since residual stresses are induced during almost all materials’ processing procedures, for example welding/joining, casting, thermal conditioning and forming, they must be takenseriouslyandincludedinpracticalapplications. Inrecentyears,theapplicationsofinfraredimagingtechniquestothemechanicsofmaterialsandstructureshavegrown considerably. The expansion is marked by the increased spatial and temporal resolution of the infrared detectors, faster processing times and a much greater temperature resolution. The improved sensitivity and more reliable temperature calibrationsofthedeviceshavemeantthatmoreaccuratedatacanbeobtainedthanwerepreviouslyavailable. Advances in inverse identification have been coupled with optical methods that provide surface deformation measurements and volumetric measurements of materials. In particular, inverse methodology was developed to more fully use the dense spatial data provided by optical methods to identify mechanical constitutive parameters of materials. Sinceitsbeginningsduringthe1980s,creativityininversemethodshasledtoapplicationsinawiderangeofmaterials,with many different constitutive relationships, across material heterogeneous interfaces. Complex test fixtures have been implemented to produce the necessary strain fields for identification. Force reconstruction has been developed for high strainratetesting.Asdevelopmentsinopticalmethodsimproveforbothverylargeandverysmalllengthscales,applications ofinverseidentificationhaveexpandedtoincludegeologicalandatomisticevents. Southampton,UK SimonQuinn Aubie´re,France XavierBalandraud v Contents 1 FatigueBehaviourofStainlessSteels:AMulti-parametricApproach. . . . . . . . . . . . . . . . . . . . . . . . . . 1 R.DeFinis,D.Palumbo,F.Ancona,andU.Galietti 2 MeasurementofMechanicalDissipationinSMAsbyInfraredThermography. . . . . . . . . . . . . . . . . . . 9 DidierDelpueyo,XavierBalandraud,MichelGre´diac,SergiuStanciu,andNicanorCimpoesu 3 TheEffectofMicrostructureonEnergyDissipationin316LStainlessSteel. . . . . . . . . . . . . . . . . . . . . 15 P.J.Seelan,J.M.Dulieu-Barton,andF.Pierron 4 LargeAreaNondestructiveEvaluationofaFatigueLoadedCompositeStructure. . . . . . . . . . . . . . . . 21 JosephN.Zalameda,EricR.Burke,MichaelR.Horne,andEricI.Madaras 5 SensitivityAnalysisofHybridThermoelasticTechniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 W.A.SamadandJ.M.Considine 6 DeterminingStressIntensityFactorsUsingHybridThermoelasticAnalysis. . . . . . . . . . . . . . . . . . . . . 37 R.B.Vieira,G.L.G.Gonza´les,andJ.L.F.Freire 7 StressAnalysisofaFiniteOrthotropicPlateContaininganEllipticalHolefromRecorded TemperatureData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.Alshaya,X.Shuai,andR.Rowlands 8 UsingTSAtoIdentifyRegionsHavingDevelopedPlasticStrainduringWelding. . . . . . . . . . . . . . . . . 57 GeoffreyP.Howell,JaniceM.Dulieu-Barton,andMithilaAchintha 9 FiniteElementModellingofaSeriesofAusteniticStainlessSteel316LWeldments toInformThermoelasticStressAnalysisResidualStressAssessment. . . . . . . . . . . . . . . . . . . . . . . . . . 63 E.C.Chevallier,S.Blackwell,andJ.M.Dulieu-Barton 10 ResidualStressMeasurementofFull-ScaleJet-EngineBearingElements UsingtheContourMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DaultonD.Isaac,MichaelB.Prime,andNagarajArakere 11 ESPIHole-DrillingofRingsandHolesUsingCylindricalHoleAnalysis. . . . . . . . . . . . . . . . . . . . . . . . 83 T.J.RickertandWadeGubbels 12 PreliminaryStudyonResidualStressinFDMParts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 C.Casavola,A.Cazzato,V.Moramarco,andG.Pappalettera 13 PredictingResidualStressonX-rayTomographedComplexBi-LayerGeometries using3DFiniteElementAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 MasoudAllahkarami,LeilaSeyedFaraji,andJayC.Hanan 14 CombiningHole-DrillingandRing-CoreTechniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 AntonioBaldi vii viii Contents 15 ALow-CostResidualStressMeasuringInstrument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 AntonioBaldiandFilippoBertolino 16 Non-DestructiveInternalLatticeStrainMeasurementUsingHighEnergy SynchrotronRadiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Jun-SangParkandJohnOkasinski 17 DiscussiononX-RayandHDMResidualStressMeasurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 C.Barile,C.Casavola,andV.Moramarco 18 ReducingFull-FieldIdentificationCostbyUsingQuasi-NewtonMethods.. . . . . . .. . . . . . .. . . . . . .. 135 J.Neggers,F.Mathieu,S.Roux,andF.Hild 19 ParameterIdentificationofNonlinearViscoelasticMaterialModelUsingFinite Element-BasedInverseAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 SalahU.HamimandRamanP.Singh 20 StiffnessHeterogeneityofMultiplyPaperboardExaminedwithVFM. . . . . . . . . . . . . . . . . . . . . . . . . 151 AntonHagman,J.M.Considine,andMikaelNyga˚rds 21 Rigid-BodyMotionToleranceforIndustrialHelicalCTMeasurementsofLogs. . . . . . . . . . . . . . . . . . 161 EdwardAngusandGaryS.Schajer 22 DevelopmentandExperimentalValidationofThermallyStableUnimorphSMP ActuatorsIncorporatingTransverseCurvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 JasonT.CantrellandPeterG.Ifju 23 IdentificationofConstitutiveModelParametersinHopkinsonBarTests. . . . . . . . . . . . . . . . . . . . . . . 189 M.Fardmoshiri,M.Sasso,E.Mancini,G.Chiappini,andM.Rossi Chapter 1 Fatigue Behaviour of Stainless Steels: A Multi-parametric Approach R.DeFinis,D.Palumbo,F.Ancona,andU.Galietti Abstract Inrecentyearsdifferentexperimentalmethodshavebeenexperiencedtoenhancethefatiguecharacterisationof materials with the aim to overcome the Standard long-lasting tests, i.e. Wohler curve determination. Standard fatigue treatmentrequiresatleast15specimensbeingtestedtogetanestimationofmaterialfatiguelimitanditisworthnotingthat this kind of tests do not provide any information on damage phenomena occurring in the material. Thus, topic to be addressed in this research have to do with development of lock-in infrared measurement based thermal method for rapid evaluationoffatiguelimit.Byperformingasingletest,theadoptedmethodleadstomatchdifferentparameterinformation. The Assessed parameters are in number more than the ones provided by TSA, as well. Moreover, the adopted technique pointstostudydamagebyanalysingthedifferentphenomenainvolvedinfatigueandinthisregard,theaimofthispaperisto showhowathermaltechniquecanattainanearlyassessmentofthefailureprocessesduringacyclicallyloadingtest.The authoris,also,focusedontoillustratethestrongpointsofamethodbasedoninfraredmeasurementsforassessingendurance limitforbothausteniticandmartensiticstainlesssteelswhileconsidering,asreference,theStandardTestmethods. Keywords Lock-inthermography(cid:129)Fatigue(cid:129)Austenitic/martensiticstainlesssteels 1.1 Introduction Infrared thermography has been successfully exploited as an experimental, non-destructive, real-time and non-contact technique to observe physical processes of: damage, fatigue, and failure. The strong points of the technique concern the mechanicalcharacterisationofmetallic,compositesandstructuralcomponents [1–3].Differentworkswasmeanttoshow that the surface temperature monitoring is a reliable technique to detect the damage phenomena and thus, the material intrinsicdissipationareevaluated.FollowingfromtheworkofLuong[1]intotheuseofthermalsourcestoassessfatigue limit, in literature, different approaches have been performed to study the fatigue damage with thermography based on: themonitoringofthesurfacetemperature[2,4],theevaluationof“dissipative”thermalheatsources[5],theevaluationofthe phasevariationinthermographicsignalbyusinglock-inthermography[6–8].Referringtothetemperature,itisworthnoting that this parameter is very sensitive to the external influences and thus, room temperature and/or loading machine grip heatingcanaffectthemeasurementsandhavetobeconsideredintheanalysis.Inthisframework[2],DeFinisetAllpropose arobusttechniquetothermaldataanalysisinordertofilteroutallthenoisyalltheheatsourcescompromisingtheadiabatic conditionof the sample during the test andfor early detectingthe dissipationprocesses. Despite the direct use ofthermal parameter has opened-up the possibility of mechanical fatigue characterising with less-lasting and less expensive experi- mental campaign, temperature measurements are affected by thermal properties of the material [6], as well, i.e. thermal conductivity.Material withhighconductivity(e.g.aluminiumalloysorweldedjoints)experiencelowtemperatureduring thetestduetohighpercentageofreflectedradiation.Anotherissuerelatedtotheuseoftemperatureisrepresentedbythe lattice microstructures which cause extremely low temperature increments [2, 3]. To improve the analysing experimental dataset and to avoid the appearance of the ‘external’ influences another approach based on lock-in thermography is proposed. The technique, moreover, provides several parameters accounting for the study of damage phenomena. By demodulating thermal signal the harmonic analysis allows for achievement of 1(cid:1) phase and 2(cid:1) amplitude harmonic components: two significant parameters for assessing fatigue behaviour of material [7, 8], and all external heat source influence is eliminated. In this work lock-in thermography will support the Thermoelastic Stress Analysis by studying evolution of damage phenomena despite the loss of adiabatic conditions [6, 9]. In particular the phase shift of first R.DeFinis(*)(cid:129)D.Palumbo(cid:129)F.Ancona(cid:129)U.Galietti DepartmentofMechanics,MathematicsandManagement(DMMM),PolitecnicodiBari,Bari,Italy e-mail:rosa.defi[email protected];[email protected];[email protected];[email protected] #TheSocietyforExperimentalMechanics,Inc.2017 1 S.Quinn,X.Balandraud(eds.),ResidualStress,Thermomechanics&InfraredImaging,HybridTechniquesandInverse Problems,Volume9,ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-42255-8_1
Description: