ebook img

Residual Cooling and Persistent Star Formation Amid Active Galactic Nucleus Feedback in Abell PDF

21 Pages·2017·12.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Residual Cooling and Persistent Star Formation Amid Active Galactic Nucleus Feedback in Abell

UUnniivveerrssiittyy ooff KKeennttuucckkyy UUKKnnoowwlleeddggee Physics and Astronomy Faculty Publications Physics and Astronomy 8-1-2012 RReessiidduuaall CCoooolliinngg aanndd PPeerrssiisstteenntt SSttaarr FFoorrmmaattiioonn AAmmiidd AAccttiivvee GGaallaaccttiicc NNuucclleeuuss FFeeeeddbbaacckk iinn AAbbeellll 22559977 G. R. Tremblay European Southern Observatory, Germany C. P. O'Dea Rochester Institute of Technology S. A. Baum Chester F. Carlson Center for Imaging Science T. E. Clarke Naval Research Laboratory C. L. Sarazin University of Virginia SFoeello nwe xtth pisa agned f oard additdioitnioanl awl oaruktsh aotr:s h ttps://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons RRiigghhtt cclliicckk ttoo ooppeenn aa ffeeeeddbbaacckk ffoorrmm iinn aa nneeww ttaabb ttoo lleett uuss kknnooww hhooww tthhiiss ddooccuummeenntt bbeenneefifittss yyoouu.. RReeppoossiittoorryy CCiittaattiioonn Tremblay, G. R.; O'Dea, C. P.; Baum, S. A.; Clarke, T. E.; Sarazin, C. L.; Bregman, J. N.; Combes, F.; Donahue, M.; Edge, A. C.; Fabian, A. C.; Ferland, Gary J.; McNamara, B. R.; Mittal, R.; Oonk, J. B. R.; Quillen, A. C.; Russell, H. R.; Sanders, J. S.; Salomé, P.; Voit, G. M.; Wilman, R. J.; and Wise, M. W., "Residual Cooling and Persistent Star Formation Amid Active Galactic Nucleus Feedback in Abell 2597" (2012). Physics and Astronomy Faculty Publications. 32. https://uknowledge.uky.edu/physastron_facpub/32 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. RReessiidduuaall CCoooolliinngg aanndd PPeerrssiisstteenntt SSttaarr FFoorrmmaattiioonn AAmmiidd AAccttiivvee GGaallaaccttiicc NNuucclleeuuss FFeeeeddbbaacckk iinn AAbbeellll 22559977 Digital Object Identifier (DOI) https://doi.org/10.1111/j.1365-2966.2012.21278.x NNootteess//CCiittaattiioonn IInnffoorrmmaattiioonn Published in Monthly Notices of the Royal Astronomical Society, v. 424, issue 2, p. 1042-1060. This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. The copyright holder has granted the permission for posting the article here. AAuutthhoorrss G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. McNamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, and M. W. Wise This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/32 Mon.Not.R.Astron.Soc.424,1042–1060(2012) doi:10.1111/j.1365-2966.2012.21278.x Residual cooling and persistent star formation amid active galactic nucleus feedback in Abell 2597 (cid:2) G. R. Tremblay,1,2,3 C. P. O’Dea,2,4 S. A. Baum,3,5 T. E. Clarke,6 C. L. Sarazin,7 J. N. Bregman,8 F. Combes,9 M. Donahue,10 A. C. Edge,11 A. C. Fabian,12 G. J. Ferland,13 B. R. McNamara,4,14 R. Mittal,3 J. B. R. Oonk,15 A. C. Quillen,16 H. R. Russell,14 J. S. Sanders,12 P. Salome´,9 G. M. Voit,10 R. J. Wilman11 and M. W. Wise15 1EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMu¨nchen,Germany 2DepartmentofPhysics,RochesterInstituteofTechnology,84LombMemorialDrive,Rochester,NY14623,USA Do 3ChesterF.CarlsonCenterforImagingScience,54LombMemorialDrive,Rochester,NY14623,USA wn 4Harvard–SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA loa 5RadcliffeInstituteforAdvancedStudy,10GardenStreet,Cambridge,MA02138,USA de d 6NavalResearchLaboratoryRemoteSensingDivision,Code72134555OverlookAvenueSW,Washington,DC20375,USA fro 7DepartmentofAstronomy,UniversityofVirginia,POBox400325,Charlottesville,VA22904-4325,USA m 8DepartmentofAstronomy,UniversityofMichigan,AnnArbor,MI48109,USA http 910OPbhsyesrivcastoainrdeAdestProanroism,LyEDReMpaAr,tmCeNnRt,SM,6ic1hAigva.ndeSlt’aOtebUsenrivvaetrosiirtey,,7E5a0s1t4LaPnasriinsg,,FMraIn4c8e824-2320,USA ://mn 11DepartmentofPhysics,DurhamUniversity,DurhamDH13LE ras 12InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA .ox 13DepartmentofPhysics,UniversityofKentucky,Lexington,KY40506,USA ford 14PhysicsandAstronomyDepartment,WaterlooUniversity,200UniversityAvenueW.,Waterloo,ONN2L2G1,Canada jo u 15ASTRON,NetherlandsInstituteforRadioAstronomy,POBox2,7990AADwingeloo,theNetherlands rn 16DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NY14627,USA als .o rg a/ t U Accepted2012May9.Received2012May8;inoriginalform2012March1 n iv e rs ity ABSTRACT of K NewChandraX-rayandHerschelFar-Infrared(FIR)observationsenableamultiwavelength e n studyofactivegalacticnucleus(AGN)heatingandintraclustermedium(ICM)coolinginthe tuc k brightest cluster galaxy (BCG) of Abell 2597 (z = 0.0821). The new Chandra observations y L revealthecentral(cid:2)30kpcX-raycavitynetworktobemoreextensivethanpreviouslythought, ibra andassociatedwithenoughenthalpytotheoreticallyinhibittheinferredclassicalcoolingflow. rie s o Nevertheless, we present new evidence, consistent with previous results, that a moderately n A strongresidualcoolingflowispersistingat4–8percentoftheclassicallypredictedratesina u g u spatiallystructuredmanneramidthefeedback-drivenexcavationoftheX-raycavitynetwork. st 2 New Herschel observations are used to estimate warm and cold dust masses, a lower limit 0, 2 gas-to-dust ratio and a star formation rate consistent with previous measurements. [OI] and 014 CO(2−1)lineprofilesareusedtoconstrainthekinematicsofthe∼109M(cid:3) reservoirofcold molecular gas. The cooling time profile of the ambient X-ray atmosphere is used to map the locations of the observational star formation entropy threshold as well as the theoretical thermal instability threshold. Both lie just outside the (cid:2)30-kpc central region permeated by X-raycavities,andstarformationaswellasionizedandmoleculargaslieinteriortoboth.The youngstarsaredistributedinanelongatedregionthatisalignedwiththeradiolobes,andtheir estimatedagesarebothyoungerandolderthantheX-raycavitynetwork,suggestingbothjet- triggeredaswellaspersistentstarformationoverthecurrentAGNfeedbackepisode.Bright (cid:2)E-mail:[email protected] (cid:4)C 2012TheAuthors MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS ResidualcoolingamidAGNfeedbackinA2597 1043 X-ray knots that are coincident with extended Lyα and far-ultraviolet continuum filaments motivateadiscussionofstructuredcoolingfromtheambienthotatmospherealongaprojected axisthatisperpendiculartoX-raycavityandradioaxis.WeconcludethatthecoolingICMis thedominantcontributorofthecoldgasreservoirfuellingstarformationandAGNactivityin theAbell2597BCG. Keywords: galaxies:active–galaxies:clusters:general–galaxies:clusters:individual:Abell 2597–galaxies:clusters:intraclustermedium–galaxies:starformation. thethermalgas,whichthenbuoyantlyrise,entrainmagneticfields 1 INTRODUCTION andcolderinterstellarmedium(ISM)phases,andlocallythermalize For a subset of galaxy clusters with sharply peaked X-ray sur- enthalpyassociatedwiththeirinflationasambientgasmovestorefill facebrightnessprofiles,theintraclustermedium(ICM;e.g.Sarazin theirwakes(e.g.Begelman2001;Churazovetal.2002;Reynolds, 1986)cancoolviabremsstrahlungprocessesfrom>107to(cid:5)104K Heinz&Begelman2002;Ruszkowski&Begelman2002;Fabian D o ontime-scalesmuchshorterthanaGyrwithinaradiusof∼100kpc. 2003;Bˆırzanetal.2004;Robinsonetal.2004;Dursi&Pfrommer w n Simplemodelspredictthatrunawayentropylossbygaswithinthis 2008;Fabianetal.2008;Gittietal.2011).Thephenomenonislikely lo a d radius accompanies subsonic, nearly isobaric compression by the episodicataratecoupledtotheAGNdutycycle,andtotalenergy e d ambienthotreservoir,drivingalong-livedclassicalcoolingflowon inputwhensummedovertheclusterlifetimecanrangefrom∼1055 fro tothecentralbrightestclustergalaxy(hereafterBCG;seecooling to1061erg.Inprinciple,thisisenoughtoreplenishthetotalenergy m h flow reviews by Fabian 1994; Peterson & Fabian 2006). In these budget of ICM radiative losses for an average of the CC cluster ttp ‘cool core’ (CC) clusters, catastrophic condensation of the ICM population,althoughthespatialdistributionandthermalizationof ://m shoulddriveextremestarformationrates(102–103M(cid:3)yr−1)amid this energy is one of several important problems that challenge nra massive cold gas reservoirs (∼1012M(cid:3)) in the BCG, and high- the model(e.g. McNamara&Nulsen2007, 2012,and references s.o x resolution X-ray spectroscopy should detect bright coolant lines therein). The physics coupling AGN mechanical energy to ICM fo stemmingfrom(cid:2)103M(cid:3) cascadesofmultiphasegascondensing entropy remain poorly understood, and thermal conduction, gas rdjo from the hot atmosphere. Yet three decades of searches for these sloshing and dynamical friction likely play additional important urn a expectedcoolingflowmasssinksreturnedwithresultsthatwereor- roles (e.g. Sparks, Macchetto & Golombek 1989; Ruszkowski & ls .o dersofmagnitudebelowpredictions,consistentonlywithresidual Begelman 2002; Voigt et al. 2002; Brighenti & Mathews 2003; rg coolingat∼1–10percentoftheexpectedrates(e.g.Allen1969, El-Zant, Kim & Kamionkowski 2004; Soker, Blanton & Sarazin a/ 1995;DeYoung&Roberts1974;Baan,Haschick&Burke1978; 2004; Voigt & Fabian 2004; Sparks et al. 2009; Morsony et al. t U n Haynes,Brown&Roberts1978;Peterson1978;Shostaketal.1980; 2010; Parrish, Quataert & Sharma 2010; ZuHone, Markevitch & ive O’Dea&Baum1987,1997;McNamara&O’Connell1989;O’Dea Johnson2010;Blantonetal.2011;Sparksetal.2012). rsity et al. 1994a; O’Dea, Payne & Kocevski 1998; Peres et al. 1998; o Mittazetal.2001;Petersonetal.2001,2003;Tamuraetal.2001; f K 1.1 ResidualcoolingandstarformationamidAGNfeedback en Sakelliouetal.2002;Xuetal.2002;Edge&Frayer2003;Bregman tu c &Lloyd-Davies2006;Sandersetal.2008). Criticaldetailsoftheheatingandcoolingfeedbackloopareencoded ky AttemptstoreconciletheseresultswiththehighX-rayluminosi- inthemass,energyandtime-scalebudgetsofthelow-temperature, Lib tiesandlonglifetimesassociatedwiththeCCphasehaveinvoked high-densitygasphasespreferentiallyfoundinCCBCGs,suchas ra non-gravitationalheatingmechanismstoinhibitorreplenishanav- filamentaryforbiddenandBalmeremission-linenebulaeand∼109– ries erage∼90percentofICMradiativelossesovertheclusterlifetime 1010M(cid:3)reservoirsofbothvibrationallyexcitedandcold1molec- on A (e.g.reviewbyPeterson&Fabian2006).Onepromisingcandidate ular gas (e.g. Hu, Cowie & Wang 1985; Baum 1987; Heckman u g forquenchingcoolingflowsintheinnermostregionsofcoolcores etal.1989;Jaffe&Bremer1997;Donahueetal.2000;Edge2001; us isafeedbackloopregulatedbythemechanicaldissipationofactive Jaffe, Bremer & van der Werf 2001; Edge et al. 2002; Wilman t 20 galacticnucleus(AGN)power(e.g.Rosner&Tucker1989;Baum et al. 2002; McNamara, Wise & Murray 2004; Jaffe, Bremer & , 2 0 1 &O’Dea1991;Churazovetal.2002;Bˆırzanetal.2004;Dunn& Baker2005;Egamietal.2006;Raffertyetal.2006;Salome´ etal. 4 Fabian2006;Raffertyetal.2006;Bestetal.2007;Edwardsetal. 2006,2011;Wilman,Edge&Swinbank2009;Edgeetal.2010a,b; 2007; Mittal et al. 2009, reviews by McNamara & Nulsen 2007, Oonketal.2010;Mittaletal.2011;Wilmanetal.2011;Limetal. 2012;Fabian2012).Theparadigmissupportedbystrongcircum- 2012). stantialevidence,includingobservationsofkiloparsec(kpc)scale While residual ICM condensation can contribute a major frac- X-raycavitiesinspatialcorrelationwithradioemissionassociated tion of the mass budget for these phenomena (e.g. Baum 1987; withAGNoutflows(Bo¨hringeretal.1993;Fabianetal.2000,2006; Heckmanetal.1989;Cavagnoloetal.2008;Quillenetal.2008; McNamaraetal.2000,2001;Blantonetal.2001;Churazovetal. Rafferty, McNamara & Nulsen 2008; O’Dea et al. 2008; Hudson 2001;Bˆırzanetal.2004;Formanetal.2005,2007;Nulsenetal. et al. 2010; McDonald et al. 2010, 2011), their tempera- 2005).Thepoweroftheseradiosourcesarestatisticallycorrelated tures and ionization states are often inconsistent with the withX-rayluminosityfromwithinthecoolingradius,andthemost radio-loud BCGs are ubiquitously associated with the strongest 1Throughoutthispaper,wewilluse‘hot’todescribe107<T<108K(X- coolcores(e.g.Burns1990;Bˆırzanetal.2004;Raffertyetal.2006; raybright)ICM/ISMphases,‘warm’todescribe104(cid:2)T<105K[optical Mittaletal.2009;Sun2009;Hudsonetal.2010). andultraviolet(UV)bright]components,and‘cold’todescribe10(cid:2)T(cid:2) Observationallysupportedsimulationsshowthattheoutflowing 104K[N/M/far-infrared(FIR)bright]components.Wewillnotdiscussthe plasmacandrivesoundwavesandsubsonicallyexcavatecavitiesin criticallyimportant105–107Kregimeatgreatlengthinthispaper. (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS 1044 G.R.Tremblayetal. 10 (cid:2) T (cid:2) 104K phases of a purely radiative cooling flow (e.g. &Donahue1997).Thegalaxyishosttooneofthenearestknown Donahue & Voit 1991; Voit & Donahue 1997). Thermal conduc- compact steep spectrum (CSS; O’Dea 1998) radio sources, PKS tionandsuprathermalelectronheatingnowappearstobeimportant 2322−122,whichexhibitsacompact(10kpc)andbentFanaroff– (Ferland et al. 2008, 2009; Sparks et al. 2009, 2012; Donahue Riley class I (FR I) morphology at 8.4 GHz (Fanaroff & Riley et al. 2011; Fabian et al. 2011; Mittal et al. 2011; Oonk 2011; 1974; Wright & Otrupcek 1990; Griffith & Wright 1994; O’Dea Johnstone et al. 2012), and a critical role is played by the etal.1994a;Sarazinetal.1995). clumpy and filamentary distributions of star formation ongoing A2597 is one of the only CC clusters with a convincing Far amid these cold reservoirs on (cid:2) 30kpc scales (e.g. Johnstone, Ultraviolet Spectroscopic Explorer (FUSE) detection of Fabian&Nulsen1987;Romanishin1987;McNamara&O’Connell [OVI]λ1032 Å emission stemming from a 105−107K gas 1989; Hu 1992; Crawford & Fabian 1993; Allen 1995; Hansen, component (Oegerle et al. 2001), and high-resolution XMM– Jorgensen&Norgaard-Nielsen1995;Smithetal.1997;Voit&Don- Newton X-ray spectroscopy reveals weak FeXVII features amid ahue1997;Cardiel,Gorgas&Arago´n-Salamanca1998;Hutchings a soft X-ray excess (Morris & Fabian 2005). It is therefore &Balogh2000;Mittazetal.2001;Oegerleetal.2001;O’Deaetal. one of the best known candidates for harbouring a moderately 2001,2004,2008,2010;McNamara,Wise&Murray2004;Hicks powerfulresidualcoolingflowwithamassdepositionrateof90± &Mushotzky2005;Raffertyetal.2006,2008;Bildfelletal.2008; 15M(cid:3) yr−1 within a 100-kpc cluster-centric radius (Morris & Voitetal.2008;Loubseretal.2009;McDonaldetal.2010,2011; Fabian 2005). The BCG harbours a 1.8 ± 0.3 × 109M(cid:3) cold D o Oonketal.2011). H2 component, inferred from CO observations2 (e.g. Edge 2001; wn Estimated star formation rates range from a few to tens of so- Salome´ & Combes 2003), as well as a young stellar component loa d lar masses per year, and strongly correlate with upper limits on cospatialwithanHα-brightfilamentaryemission-linenebula(e.g. ed spectroscopically derived ICM mass deposition rates, as well as Heckman et al. 1989; Voit & Donahue 1997; Koekemoer et al. fro m CO-inferred molecular gas masses (e.g. O’Dea et al. 2008). This 1999;O’Deaetal.2004;Oonketal.2011).Thesefeaturesreside h suggestsadirectcausalconnectionbetweenreducedcoolingflows amid a network of prominent X-ray cavities (McNamara et al. ttp and star formation, as BCGs with young stellar populations are 2001; Clarke et al. 2005), making A2597 an ideal subject for ://m n always found in CC clusters (Bildfell et al. 2008; Loubser et al. studiesofAGN/ISMinteractions(Tremblayetal.2012).Forthese ra s 2009).Newevidencesuggeststhatstarformationoccurswhenmul- reasonsandothers,A2597enjoysalonghistoryofcross-spectrum .o x tiphasecloudsandfilamentsprecipitateoutoftheICMasitscentral analysis in the literature (X-ray – Crawford et al. 1989; Sarazin fo entropydropsbelowacriticalthreshold((cid:2)20–30keVcm−2;Cav- et al. 1995; Sarazin & McNamara 1997; McNamara et al. 2001; rdjo u agnolo etal. 2008; Raffertyetal. 2008; Voit et al. 2008; Sharma Clarkeetal.2005;Morris&Fabian2005;UV/optical–McNamara rn a etal.2011;Gaspari,Ruszkowski&Sharma2012). &O’Connell1993;DeYoung1995;Voit&Donahue1997;Cardiel ls .o Butwhilethepathwayofentropylossfromhotambientmedium etal.1998;Koekemoeretal.1999;McNamaraetal.1999;Oegerle rg to cold star-forming clouds may be strongly influenced by AGN etal.2001;O’Deaetal.2004;Jaffeetal.2005;Oonketal.2010, at U/ feedback,itisnotknownwhetherresidualcoolingpersistsatcon- 2011;IR–McNamara&O’Connell1993;Voit&Donahue1997; n iv stantlowlevelsorinelevatedepisodesanti-correlatedtotheAGN Koekemoeretal.1999;McNamaraetal.1999;O’Deaetal.2004; e rs duty cycle (e.g. O’Dea et al. 2010; Tremblay 2011). Moreover, Jaffeetal.2005;Donahueetal.2007,2011;sub-mm–Edge2001; ity modelsinvokingradio-modefeedbacktoquenchcoolingflowsig- Salome´ & Combes 2003; Edge et al. 2010a,b; radio – O’Dea, of K natures such as star formation must be reconciled with evidence Baum&Gallimore1994b;Sarazinetal.1995;Tayloretal.1999; e n that in several systems (e.g. Abell 1795 and Abell 2597; O’Dea Pollack,Taylor&Allen2005;Clarkeetal.2005). tu c et al. 2004), the propagating radio source may trigger compact, InSection2wedescribethenewandarchivalmultiwavelength ky L short-duration starbursts as it propagates amid a dense medium observationsusedinthispaper.InSection3weusethenewChandra ib (Me.cgN.aEmlmareag&reeOn’C&onEnlmelelg1r9e9e3n;1O9’7D8e;aVeotiatl.12908084;;DBeatYchoeulndgor1e9t8a9l;. Xby-ruasyinogbstherevkaptico-nsscatloeacsasveimtybnleetawnorAkGaNsafeloewdbearclkimeintecraglyorbimudegteert raries o 2007; Holt, Tadhunter & Morganti 2008; Holt et al. 2011). The to the AGN kinetic energy input. In Section 4 we present new n A picture is further complicated by the role played by (e.g.) ther- HerschelFIRdataandusethemtoplaceconstraintsontheresidual u g u malconductionandcoldaccretionscenarioslikegas-richmergers, coolingflow.Theseresultsareusedtoframeadiscussiononstar s t 2 whoseimportancerelativetoresidualhot-modeICMcoolinghas formation,whichwepresentinSection5.Aconcludingdiscussion 0 drivenadebatethatisstillunsettledafterthreedecades(e.g.Sparks and summary are provided in Sections 6 and 7. Throughout this , 20 etal.1989,2012;Holtzmanetal.1996).Advancesinunderstanding work,weadoptH0=71h−711kms−1Mpc−1,(cid:5)M=0.27and(cid:5)(cid:6)= 14 largelyrelyuponmultiwavelengthdatathatsamplealltemperature 0.73. In this cosmology, 1arcsec corresponds to ∼1.5kpc at the phases of the ISM in CC BCGs, the transport processes between redshiftoftheA2597BCG(z=0.0821).Thisredshiftcorresponds thesephases,andtheirassociatedmassandenergybudgets. to an angular size distance of DA ≈ 315Mpc and a luminosity distanceofD ≈369Mpc. L 1.2 ThebrightestclustergalaxyinAbell2597 2 OBSERVATIONS AND DATA REDUCTION Tothatend,inthispaperwepresentamultiwavelengthstudyofthe Table 1 contains a summary of all new and archival observations archetypalCCclusterAbell2597.NewChandraX-rayandHer- usedinthispaper.Wereferthereadertothepublicationslistedin schelFIRobservations,combinedwithavastsuiteofarchivaldata, column 9 for technical information pertaining to the archival ob- enablearadio-through-X-raystudyoftheICM/ISMonthescaleof servations.ThenewChandraX-rayobservations,totalling150ks itsAGNfeedbackinteractionregion(i.e.itscentral(cid:2)30kpcX-ray cavitynetwork).Abell2597(hereafterA2597)isanAbell(Abell 1958;Abell,Corwin&Olowin1989)richnessclass0galaxycluster 2UpdatedCO-inferredmolecularhydrogenmassisfromP.Salome´(private withanX-raysurfacebrightnessprofilethatissharplypeakedabout communication), using unpublished IRAM (Institut de Radioastronomie itscentrallydominantellipticalBCGatredshiftz=0.0821(Voit Millime´trique)observations.WediscussthisinSection4. (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS ResidualcoolingamidAGNfeedbackinA2597 1045 Table1. Asummaryofthenewandarchivalobservationsused(directlyorreferentially)inthisanalysis.Thistablealsoappliestotheanalysispresented inTremblayetal.2012.Column(1):facilityname;column(2):instrumentusedforobservation;column(3):configurationofinstrument/facility;column (4):wavelengthregime/spectrallineobservedorfilterused;column(5):exposuretime;column(6):facility-specificobservationorprogrammeID;column (7):dateofobservation;column(8):principalinvestigator(PI)ofobservationorprogramme;column(9):referencetopublicationwherethedatawerefirst published–1:McNamaraetal.(2001);2:Oonketal.(2011);3:O’Deaetal.(2004);4:Koekemoeretal.(1999);5:Holtzmanetal.(1996);6:Donahueetal. (2000);7:Donketal.(2010);8:Donahueetal.(2007);9:Edgeetal.(2010a);10:Edgeetal.(2010b);11:Sarazinetal.(1995);12:Tayloretal.(1999);13: Clarkeetal.(2005).New:datafirstpublishedinthispaper. Observatory Instrument Mode/config. Band/filter/line Exp.time Prog./obs.ID Obs.date ProgrammePI Reference (1) (2) (3) (4) (5) (6) (7) (8) (9) X-rayobservations Chandra ACIS-S FAINT X-ray(0.5−7keV) 39.8ks 922 2000Jul28 McNamara 1 ··· ACIS-S VFAINT X-ray(0.5−7keV) 52.8ks 6934 2006May1 Clarke New ··· ACIS-S VFAINT X-ray(0.5−7keV) 60.9ks 7329 2006May4 Clarke New Farultraviolet/optical/near-infraredobservations D HST ACS SBC F150LP(FUV) 8141s 11131 2008Jul21 Jaffe 2 o w ··· STIS FUVMAMA F25SRF2(Lyα) 1000s 8107 2000Jul27 O’Dea 3 n ··· WFPC2 ··· F410M 2200s 6717 1996Jul27 O’Dea 4 loa d ··· WFPC2 ··· F450W 2500s 6228 1995May07 Trauger 5 ed ··· WFPC2 ··· F702W(Rband) 2100s 6228 1995May07 Trauger 5 fro ··· NICMOS NIC2 F212N 12032s 7457 1997Oct19 Donahue 6 m ··· NICMOS NIC2 F160W(Hband) 384s 7457 1997Dec03 Donahue 6 http ESOVLT SINFONI ··· Kband 600s 075.A-0074 2005Jul/Aug Jaffe 7 ://m Mid-/far-infraredobservations nra Spitzer IRAC Mapping 3.6,4.5,5.8,8µm 3600s(each) 3506 2005Nov24 Sparks 8 s.o x ··· MIPS ··· 24,70,160µm 2160s(each) 3506 2005Jun18 Sparks 8 fo Herschel PACS Photometry 70,100,160µm 722s(each) 13421871(18-20) 2009Nov20 Edge 9 rdjo ··· SPIRE Photometry 250,350,500µm 3336s 1342187329 2009Nov30 Edge 9 urn ··· PACS Spectroscopy [OI]λ63.18µm 6902s 1342187124 2009Nov20 Edge 10 als ······ ······ ······ [[ONIIIII]]λλ18281.3.96µµmm 77388940ss 11334422118888974023 22000190DJaenc0340 EEddggee 1100 a.org/ ··· ··· ··· [OIB]λ145.52µm 7382s 1342188704 2009Dec30 Edge 10 t U ··· ··· ··· [CI]λ157.74µm 6227s 1342187125 2009Nov20 Edge 10 niv ··· ··· ··· [SiI]λ68.47µm 11834s 1342210651 2010Dec01 Edge New ers Radioobservations ity o NRAOVLA ··· Aarray 8.44GHz 15min AR279 1992Nov30 Roettiger 11 f K ··· ··· Aarray 4.99GHz 95min BT024 1996Dec7 Taylor 12,13 en ··· ··· Aarray 1.3GHz 323min BT024 1996Dec7 Taylor 12,13 tuc k ··· ··· Aarray 330MHz 180min AC647 2003Aug18 Clarke 13 y L ··· ··· Barray 330MHz 138min AC647 2002Jun10 Clarke 13 ib ra rie s o (128ks flare-free) in combined effective exposure time, were re- scopicresolution,isalsousedtoplaceconstraintsonthecoldgas n A ducedusingthestandardCIAOv4.2threadswithv4.3.1ofthecal- kinematics. ug ibration data base. More details can be found in Tremblay et al. us (2012), which presents the spatial and spectral analysis of these 3 AGN FEEDBACK ENERGY BUDGET t 20 newobservations. , 2 Kiloparsec-scaleX-raycavitiescanbeusedaslowerlimitcalorime- 01 Herschel Space Observatory observations of A2597 were ob- 4 tersonthekineticenergyassociatedwithAGNoutflows,andthe tained in 2009 November with the Photodetector Array Camera dutycycleover whichtheseoutburstsoccur(e.g. Churazovetal. and Spectrometer (PACS), as well as the Spectral and Photomet- 2002;Bˆırzanetal.2004;Dunn&Fabian2006;Raffertyetal.2006; ricImagingReceiver(SPIRE).Theseobservationswerepartofan McNamara & Nulsen 2007, 2012; Fabian 2012). A study of the OpenTimeKeyProject(OTKP)investigatingtheFIRlineandcon- original40-ksChandraobservationbyMcNamaraetal.(2001)and tinuumpropertiesofasampleof11BCGsinwell-knownX-rayand Clarkeetal.(2005)(hereafterM01andC05,respectively)revealed opticallineselectedCCclusters(PI:A.Edge,140h).Preliminary westernandnorth-easternghostcavitiesinA2597.Thenew150-ks resultsforA2597havebeenpublishedintheworkssubmittedas Chandradatarevealthecavitynetworktobemoreextensivethan partofthesciencedemonstrationphase(Edgeetal.2010a,b).The originally thought, changing the interpretation of the AGN feed- datawereprocessedwiththeHerschelInteractiveProcessingEn- backenergybudgetandoutbursthistory.Wediscussthesetwonew vironment(HIPE)packageversion7.1.0.SeeEdgeetal.(2010a,b), resultsinthissection. Mittaletal.(2011)andOonketal.(inpreparation)fordetailson thedatareduction.ThepresentpaperusesPACSandSPIREdata 3.1 TheX-raycavitynetwork tofillincriticalgapsintheFIRspectralenergydistribution(SED) forA2597,enablingconstraintsondustmassesandtemperatures. In Fig. 1 we present the combined 150-ks 0.5–7keV X-ray data The[OI]λ68.4µmPACSobservation,becauseitisathighspectro- fromTremblayetal.(2012).Allpanelsarealignedwithanidentical (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS 1046 G.R.Tremblayetal. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o f K e n tu c k y L ib ra rie s o n A u g u s Figure1. Topleft:exposure-corrected0.5–7keVimageofthethreemergedChandraobservations(seeTable1).Thedatahavebeensmoothedwithan t 20 adaptiveGaussiankernel.Blackcontoursareoverlaidtobettershowthespatiallyanisotropicnatureoftheemission.Theinnermostcontourmarksafluxof , 2 4.6×10−7photonss−1cm−2pixel−1,andthecontoursmoveoutwardswithafluxdecrementof2.0×10−8photonss−1cm−2pixel−1.Topright:thesame 014 0.5–7keVX-raycontours(ingreen),overlaidonthebroad-bandHST/WFPC2F702W(R-band)exposureoftheA2597BCG(showninorange).Notethatthe anisotropyoftheX-rayemissionislargelyconfinedtotheinnerregionsofthegalaxy.Bottomleft:unsharpmaskoftheX-raydata,madebysubtractionofa 20-arcsecGaussiansmoothedversionfromtheadaptivelysmoothedversion.330-MHzVLAcontourshavebeenoverlaidingreen,whilethe1.3-GHzradio contoursareplottedinblue,andthe8.4-GHzradiocontoursappearinblack.bottomright:unsharpmaskmadebysubtractingthesame20-arcsecGaussian smoothedversionoftheimagefroma5-arcsecGaussiansmoothedversion,thendividingbythesumofthetwoimages.Themajor(10σ excessordeficit) morphologicalfeatureswhichwillbethesubjectoffurtherspatialanalysisinthispaperhavebeenlabelled1–6.Thecolourschemesofthetwobottompanels showregionsofX-raysurfacebrightnessexcessinred/orange,whiledeficits(cavities)appearinblack.Allpanelsshareanidenticalfieldofview,centredat RA=23h25m19s.75andDec.=−12◦07(cid:8)26(cid:8).(cid:8)9(J2000). 50×50arcsec2(75×75kpc2)fieldofview(FOV)centredonthe marksafluxof4.6×10−7photonss−1cm−2pixel−1,andthecon- X-ray centroid at RA = 23h25m19s.75 and Dec. = −12◦07(cid:8)26(cid:8).(cid:8)9 toursmoveoutwardswithadecrementof2.0×10−8 photonss−1 (J2000).Eastisleftandnorthisup.Thetopleftpanelshowsthe cm−2pixel−1. exposure-corrected,mergeddataadaptivelysmoothedwithavari- InthetoprightpanelofFig.1weoverlaytheadaptivelysmoothed ablewidthGaussiankernelwhoseradiusself-adjuststomatchthe X-raycontoursontheHubbleSpaceTelescope(HST)WideField localeventdensity.Blacksurfacebrightnesscontoursareoverlaid Planetary Camera 2 (WFPC2) R-band observation of the A2597 tomakeindividualfeatureseasiertoview.Theinnermostcontour BCG(showninred/orange).NotethattheanisotropyoftheX-ray (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS ResidualcoolingamidAGNfeedbackinA2597 1047 emissionisconfinedtothescaleoftheBCG,whiletheoutermost cluster-centricradiusR,thenthissonicrisetime-scaleisgivenby regionsassumeasmoother,moreellipticalshape.Themajoraxes oftheX-rayandBCGstellarisophotesarealigned. tcs (cid:9)R/cs. (1) InthebottomtwopanelsofFig.1weshowthesame0.5–7keV Astheinitialstagesofcavityinflationarethoughttobesupersonic, dataprocessedintwoways:(1)ahighlyprocessedunsharpmask followedbysubsonicbuoyantrise,thissimpleapproachmaybest made by subtracting a 30-arcsec Gaussian smoothed image from reflectanaverageofthetwophases.Alternatively,ifthesupersonic theadaptivelysmoothedimageshowninFig.1(topleft),and(2)a inflationperiodisanegligiblefractionofthecavity’sageanddrag moreconventionalunsharpmaskmadebysubtractinga20-arcsec forceslimitthecavity’sterminalvelocityv,thebuoyanttime-scale Gaussian smoothed image from a 5-arcsec (non-adaptive) Gaus- t canbewrittenas siansmoothedversion.Thesubtracteddataarethendividedbythe (cid:3) sum of the two images. Regions of X-ray surface brightness ex- R AC cessoverthesubtractedsmoothbackgroundappearinwhite,while tbuoy (cid:9) v (cid:9)R 2gV, (2) deficits(cavities)appearinblack.8.4-GHz,1.3-GHzand330-MHz t VeryLargeArray(VLA)radiocontoursfromSarazinetal.(1995), wheregisthelocalgravitationalacceleration,V isthecavityvol- Tayloretal.(1999)andC05areoverlaidonthebottomleftpanel. ume,Aisitscross-sectionalareaandC=0.75isthedragcoefficient See section 3.2 of Tremblay et al. (2012) for a discussion of the D adoptedfromChurazovetal.(2001)bye.g.Bˆırzanetal.(2004). o strongradio/X-rayspatialcorrelationsthatareevidentinthisfig- Finally,cavityagescanbeconstrainedbyestimatingthetimere- wn ure.Wenotethattheseunsharpmaskedgeenhancementmethods quiredtorefillthevolumedisplacedbyabubbleofradiusr asit load (particularlymethod1)areinherentlynoisy,andintroduceartefacts risesaheightequaltoitsdiameter, ed thatcomplicateaquantitativemorphologicalanalysis.Thesignif- (cid:4) (cid:4) fro m itchaenucne-porfotcheessoebdsedravtead.Wfeeatsuhreoswmthuesstethmeroesftolyreabsevieeswtiminagteadidfsrofomr trefill(cid:9)2R GM(r<R) =2 gr, (3) http the X-ray cavities discussed in this section. We do note that the ://m processedimagesshownheredonotsignificantlydifferinapparent whereM(<R)isthemassenclosedwithinasphereofradiusR. nra morphologyfromtheun-processedrawChandradatathatcanbe Bˆırzanetal.(2004)madeallthreeestimatesfortheNEandW s.o x seeninfig.2ofTremblayetal.(2012). ghost cavities in A2597 (features 1 and 3 in Fig. 1, bottom right fo InthebottomrightpanelofFig.1welabelthesixfeaturesthatare panel), using the early short (40 ks) Chandra observation. So as rdjo associatedwith(cid:3)10σdeficitsorexcessesrelativetothelocalmean. to provide an independent check of their results using the deeper urn Thesignificanceofthesefeatureswasestimatedbycomparingun- X-ray data, we follow their procedure almost exactly, and repeat als smoothed counts in like-sized regions at the same cluster-centric their calculations for the M01 ghost cavities, the western large .org rmadoinulsa.bTehlraonudgnhaomutet.hTishpeasepearrew:e(1r)eftehret‘oMth0e1sewfeesateturnregshwoistthcaavciotmy’-, caanvdit(y6)(f(eaastularebsel1leadnidn2F)i,ga.s1w).eLllikasetBhˆıerznaenwelytadle.t(e2c0te0d4)c,awvietieasdo(4p)t at Un/ (2) the ‘C05 X-ray tunnel’, (3) the ‘M01 northern ghost cavity’, theA2597BCGstellarvelocitydispersionofσ ≈224±19kms−1 ive (4) the ‘eastern ghost cavity’, (5) the ‘cold filament’ and (6) the fromSmith,Heckman&Illingworth(1990)inourcalculationof rsity ‘C05filamentbasecavity’.Forclarity,thesenamesandlabelswill thelocalgravitationalaccelerationg: of K be used consistently throughout this paper. Feature (2), the ‘cold 2σ2 en filament’,isdiscussedinsection5ofTremblayetal.(2012)inthe g(cid:9) , (4) tu contextofAGN/ISMinteractionsandmultiphasegasdredge-upby R cky L theradiosource. assumingthatthegalaxyisanisothermalsphere.InTremblayetal. ib While(for‘historical’reasons)welabelfeatures(1)and(2)in- (2012) we calculate a local value for g by estimating the total ra dependently,ourdeeperdatamakeitclearthatwesternghostcavity enclosedgravitatingmassfromaβ-modelfittedtotheX-raysur- ries o describedbyM01andC05ispartofalarger‘teardrop’shapedcav- face profile. For this discussion however, it is sufficient to adopt n A ity ∼25kpc in projected length (C05 originally suggested this in the Bˆırzan et al. (2004) method for estimating g (the two meth- u g u theirdiscussionofan‘X-raytunnel’).Thischangestheinterpreta- ods turn out to be roughly consistent at the radius of the X-ray s tionoftheAGNoutbursthistory(relativetotheconclusionsdrawn cavitynetworkanyway).UnlikeBˆırzanetal.(2004),weusekTin- t 20 inM01),whichwewilldiscussbelow.Soastoenablecomparison ferredfromthecavitypositionsontheX-raytemperaturemappre- , 20 1 withpastpapers(e.g.M01;Bˆırzanetal.2004;Raffertyetal.2006) sentedinTremblayetal.(2012)tocalculatethesoundspeedinthe 4 thathavetreatedtheM01cavityasaseparatefeature,wemaintain X-raygas.Weusethe2Dtemperaturemapinlieuofthe1Dradial independent labels (1 and 2) for the cavity and tunnel. We stress temperature profile because A2597 is azimuthally anisotropic in thatthesefeaturesarepartofonelargercavity,whichwewilllabel X-ray temperature (not to mention surface brightness) on these ‘1+2’andcallthe‘westernlargecavity’fortheremainderofthis scales. Furthermore, in calculating the pV work associated with paper. each cavity, we use the projected density profile to estimate the pressurenkTatthecluster-centricradiusofeachcavity. TheresultsofthesecalculationsaregiveninTable2.Ourfindings 3.2 AgedatingtheX-raycavities areroughlyconsistentwiththoseofBˆırzanetal.(2004).Forexam- We adopt the simple model used by Bˆırzan et al. (2004) and ple,inagedatingtheM01westernghostcavitywefindt ≈27Myr, cs Raffertyetal.(2006)inestimatingroughagesfortheX-raycavities, t ≈88Myrandt ≈66Myr,whileBˆırzanetal.(2004)find buoy refill assumingtheirdensityisverylowrelativetotheambientgasden- 26,66and86Myr,respectively.Noneoftheseestimatesaccounts sity.Threetime-scalescanbeconsidered,themostsimpleofwhich forprojectioneffects,andallassumethatthebubblerisespurelyin assumesthat(cid:2)thebubblerisesintheplaneoftheskyatthesound theplaneofthesky.Thisresultsinanunderestimationofthecavity speed c (cid:9) kT/μm , where μ = 0.62 is the mean molecular agebygenerallylessthanafactorof2(Bˆırzanetal.2004;Rafferty s p weightinunitsoftheprotonmass,m .Ifthebubbleisatprojected etal.2006;McNamara&Nulsen2007). p (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS 1048 G.R.Tremblayetal. Table2. SpatialpropertiesandenergeticsoftheX-raycavities.Column(1):labelofmorphologicalfeaturethatcorrespondstothat assignedinthelowerrightpanelofFig.1;column(2):namegiventothecorrespondingfeature;column(3):projectedradialdistance (length)ofthefeaturefromtheradiocoretotheestimatedcentre(edge)ofthefeature;column(4):estimatedradiusofthefeature; column(5):estimatedworkassociatedwithcavityassumingsubsonicinflation;column(6):ageofthecavityifitrisesatthelocalsound speed;column(7):buoyant,subsoniccavityrisetime;column(8):timeneededtorefillthedisplacedcavityvolume;column(9):X-ray cavitypower,assumingthecavityisfilledwithrelativisticplasma.SeeSection3formoredetailsonthesecalculations. Label Name R(k(pDc)) (kprc) (×10p5V7erg) (×1tc0s7yr) (×t1bu0o7yyr) (×t1re0fi7llyr) (×104P2ceavrgs−1) (1) (2) (3) (4) (5) (6) (7) (8) (9) 1+2 Western‘largecavity’ 9 9 35.9 1.0 1.4 5.6 170.6 3 M01northern‘ghost’cavity 21 6.6 7.0 2.7 6.1 7.3 16.5 4 Eastern‘ghost’cavity 35 3.6 0.79 3.8 17.8 6.9 1.05 6 Filamentbasecavity 9 2.3 0.30 1.1 2.7 2.8 1.73 D o energydensities(equipartition),asteepspectralindexof−2.7be- w 3.3 Cavityheatingenergyreservoir tween 1.3 GHz and 330 MHz, and that the source is a uniform nloa d Incolumn9ofTable2wecalculatethemeaninstantaneouspower prolate cylinder with a filling factor of unity. This model yields ed ofeach4cpavVityPcav, tahemrminaimlpurmesseunreergoyf5m×ag1n0e−t1ic1dfiyenldcmst−re2n.gWthenoofte29thµaGteqaunidpaartintoionn- h from Pcav= (cid:10)t(cid:11) , (5) m20a0y2)b.eFaulrethsse-rtmhaonr-ei,ddeaelepaessrummuplttiiobnanindtrhaidsiocaosebs(eer.gva.tFioanbsianareetrael-. ttp://m where(cid:10)t(cid:11)istheaverageofthecavityageslistedincolumns6–8.We quired to better assess the spectral index of the source across the nra haveassumedthecavitiesarefilledwitharelativisticplasma,such westernlargecavity. s.o x thattheirenthalpycanbeapproximatedas4pV(e.g.McNamara& The lower end of the 330-MHz lifetime range quoted above fo Nulsen2007). (t330MHz (cid:3) 8 × 106yr) is significantly shorter than the estimated rdjo u The total sum of all cavity thermal energies (pV)listedin col- buoyant rise time of the western large cavity it fills (see Table 2, rn umn5is4.4×1058erg.Thisservesasarough,lowerlimitestimate column7).Ifweassumethatthisistheactualageofthesource,and als .o onthekineticenergyinjectedbytheAGNintotheambientX-ray furtherassumethattheestimatedageofthewesternlargecavityis rg gpaasstdtwuroinogrmthoere(ae)pcisuordreenstoAfaGcNtiveitpyi.sTohdiesiosrcploesrehatopsth(ebi)ndfeurrriendgmthee- rtrooungshilnytchoercreacvti,tythoern(bw)earneeqwuierepi(sao)dienosfitauctriev-iatycctoelfeereadtiothneopflaeslemca- at Un/ chanicalenergyofthecentral8.4-GHzradiosource,whichSarazin intoanalreadypre-establishedcavity(which,ifempty,shouldcol- ive etal.(1995)estimatedtobe9×1057erg.Inprinciple,theroughly lapseonasound-crossingtime(cid:2)107yr).Aswewillelaborateupon rsity estimatedmechanicalinputfromtheradiosourcecouldbecapable below,thereislittlesupportingevidencefavouringeitherofthese o ofaccountingfortheenergybudgetinferredfromtheX-raycavi- scenarios. f Ke n ties,ignoringtime-scalearguments.Whetherornotthesecavities A‘radiosourceyoungerthanthecavity’scenariocouldalsobe tu c havebeenproducedbyoneormoreAGNepisodesisthesubjectof possibleifadiabaticand/orinverseComptonlossesdominateover ky thefollowingsection. thesynchrotronprocesses,whichwouldresultintheradiosource Lib fading on a time-scale shorter than the synchrotron lifetime. The ra importanceoftheseprocessesrelativetosynchrotronlossesdepends ries 3.4 TheAGNdutycycleandheatingtime-scalebudget o ontheBfieldstrengthandunknowndetailsofhowtheradiosource n A Anetworkofmultiplecavitiesfoundatvaryingcluster-centricradii fillsthebubble.InverseComptonlossesbecomemoreefficientthan u g (aswefindinA2597)maybeproducedwithanepisodicallyvarying synchrotronlosseswhentheBfieldisextremelyweak(B <1µG; us AGN,transitioningbetweeneither‘on’and‘off’orhighandlow e.g.Fabianetal.2002),andadiabaticlossesarenotlikelyalimiting t 20 modes.Cyclingtimesbetweenthetriggeringofradioactivity,the factorbecausethewesternlargecavityislikelyrisingatlessthan , 20 1 onsetofquiescenceandthesubsequentre-ignitionofactivityare thesoundspeed(notetheabsenceofanydetectedfastshocksinthe 4 typicallyestimatedtobeoftheorderof107−108yringeneral(e.g. X-raydata;e.g.Tremblayetal.2012).Wethereforeconsiderthis Parmaetal.1999;Bestetal.2005;Shabalaetal.2008;Tremblay scenariounlikely. et al. 2010), and synchrotron losses limit radio source lifetimes The upper end of the minimum-energy synchrotron lifetime is to ∼108yr, unless there has been re-acceleration of the electron t (cid:3) 5 × 107yr (which itself is merely a lower limit). The 330MHz population. Alternatively, a steady-state AGN with a duty cycle 330-MHz radio source could therefore easily be roughly of the near 100 per cent can also produce a series of discrete cavities sameageasthecavityitfills.Thisisthesimplestscenario,asitis (rather like a fish tank aerator or a dripping faucet; e.g. Peterson assumedthatthepropagationoftheradiosourceamidtheX-raygas & Fabian 2006; McNamara & Nulsen 2007). In this section we isthemechanismthatexcavatesthecavity.Eveniftheequipartition attempttodistinguishbetweenthesetwopossibilities. and spectral index assumptions mean that this estimated lifetime Basedonsynchrotronlosstime-scales,C05estimatedthemin- is wrong, pressure equilibrium between the radio source and the imum energy, lower limit lifetime of the 330-MHz source (green ambienthotgascanbeassumedtoestimateaverysimilar∼107yr contours in the bottom left panel of Fig. 1) to be in the range of minimumage(e.g.Fabianetal.2002).Consideringthehighuncer- t (cid:3)8×106yr(ifthespectralindexissteepdownto10MHz) taintiesassociatedwithagedatingbothcavitiesandradiosources, 330MHz tot (cid:3)5×107yr(ifthespectralindexflattensbeyond330 (nottomentionprojectioneffects),wesuggestthatthewesternlarge 330MHz MHz). This model assumes equal cosmic ray and magnetic field cavitywascreatedbythecurrent,ongoingepisodeofAGNactivity. (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS ResidualcoolingamidAGNfeedbackinA2597 1049 Considering the above, we cannot rule out the possibility that where T is the virial temperature of the cluster. Classical mass vir the AGN in A2597 is on nearly ∼100 per cent of the time. The deposition rates for A2597 range from ∼100 to 500M(cid:3)yr−1 oldestcavity(i.e.feature4,withanestimatedageof1.8×108yr) overarangeofcluster-centricradiusspanning∼30−100kpc(e.g. mayindeedbeassociatedwithapreviousepochofAGNactivity, Allenetal.2001;McNamaraetal.2001;Morris&Fabian2005). but it could also be a detached bubble excavated by the current Taking a cluster virial temperature of kT = 3.5keV, we find vir episode(theavailabledatadonotpermitustodiscriminatebetween that the corresponding range of cooling luminosity is roughly thesepossibilities).Wenotethatthepositionangleofthe8.4-GHz L ≈ (1−4)×1044 erg s−1. The rough sum of mean instan- cool radio lobes is significantly offset from the western large cavity, taneouscavitypowers(seeSection3.3andcolumn9ofTable2) 330-MHz and 1.3-GHz radio source (Fig. 1), and the Very Long is P ≈ 2 × 1044 erg s−1, suggesting that, in principle, there is cav BaselineArray(VLBA)small-scale(∼50pc)jetaxis(Tayloretal. enoughenthalpyassociatedwiththecurrentcavitynetworktooffset 1999).Wefinditunlikelythattheoffsetisduetothe8.4-GHzsource thebulkofradiativelossesandeffectivelyquenchthecoolingflow. beingassociatedwithapreviousepochofactivity,consideringits Thesameconclusionholdsifweestimatethepredictedcooling steepspectrum(O’Deaetal.1994b;Clarkeetal.2005),estimated flowluminositydirectlyfromthenewChandradata,usinglower minimum-energy age of >5 × 106yr (Sarazin et al. 1995), and limittemperaturesderivedfromspectralfits(i.e.theMKCFLOW alignmentoftheVLBA(<50pc)and330-MHz(>25kpc)major model kT values in table 1 of Tremblay et al. 2012). This is a low axes (Tremblay et al. 2012). Several past studies have suggested rough,order-of-magnitudeassumptionwhichneglectsmanyimpor- D o thatthebendisduetotheinteractionoftheradiosourcewiththe tantconsiderationssuchashowthisenthalpymightbedissipated w n ambientdensegaseousmedium,eitherbydeflectionorback-flow anddistributedintheambientgas.OurfindingthattheX-raycavities loa d alongpre-establishedpressuregradients(e.g.Sarazinetal.1995; areassociatedwithenoughenergytoinhibitthepredictedclassical ed Koekemoeretal.1999;O’Deaetal.2004;Clarkeetal.2005;Oonk coolingflowluminosityisconsistentwithpreviousresults(Bˆırzan fro m etal.2010). etal.2004;Dunn&Fabian2006). h ttp ://m 3.5 Blackholeaccretionrate n ra 4 NEW EVIDENCE SUPPORTING A RESIDUAL s If the AGN is indeed nearly steady state, the central black hole .o (BH) requires a stable supply of gas from the ambient accretion COOLING FLOW MODEL FOR A2597 xfo reservoir.Assumingamass-to-energyconversionefficiencyof(cid:9)= Intheprevioussection,weestimatedthattheX-raycavitynetwork rdjo u 0.1(Wiseetal.2007),andassumingthattheenergyassociatedwith is associated with enough enthalpy to (in principle) replenish a rn a theX-raycavitiesisprovidedbytheAGN,thesumofmeaninstan- significantfractionoftheradiativelossesassociatedwithaclassical ls.o rtaanteeooufscavitypowers(Pcav)re(cid:5)quire(cid:6)satime-averagedBHaccretion cBoCoGlinsgtrfloonwgl.yHsouwgegveesrt,tthhaetwsoarmmeacnodolcionlgdfgraosmphthaeseasminbtihenetAX2-5r9ay7 at Urg/ M˙acc∼ P(cid:9)cca2v ∼0.003−0.03 0(cid:9).1 −1 M(cid:3)yr−1, (6) adtimscousspshtehriesphoasssmibailnitayghedereto. persist,evenamidAGNheating.We nivers wherecisthespeedoflight.UsingtheMBH−σ relation(Magor- ity o rian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000) f K e with the K-band host luminosity and stellar velocity dispersion 4.1 HowmightcoolingpersistamidAGNfeedback? ntu yieldsaroughBHmassestimateof∼3×108M(cid:3),forwhichthe ck corresponding Eddington accretion rate would be ∼10M(cid:3)yr−1 AsmentionedinSection1,resultsfromXMM–NewtonandFUSE y L areconsistentwithamoderatelystrongresidual(sometimescalled ib (isRsatfrfoenrtgylyetsualb.-2E0d0d6i)n.gTtohnis,scuogngsiessttesntthwatitthhepaacstcrreetsiuolntsreavtee,niffostrevaedryy, ‘reduced’) cooling flow with a mass deposition rate of ∼30 ± rarie powerful AGN (e.g. Hydra A; Wise et al. 2007). If the AGN is 15M(cid:3)yr−1at∼30kpcto90±15M(cid:3)yr−1at∼100kpc(Oegerle s on insteadstronglyvariableorepisodic,thengastransporttotheBH et al. 2001; Morris & Fabian 2005). The cooling luminosity as- A couldbenon-steadyandtheactualaccretionratecouldvary. sociated with this residual cooling flow is LCool,Resid ≈ (0.3–1) × ugu 1044 ergs−1.Aswith15–30percentofCCBCGs(dependingon st 2 3.6 Thereisenoughenergytoquenchaclassicalcoolingflow tshuebsstaamntpialel;1.e8.g±.S0a.3lo×me´10e9tMal(cid:3).2r0e0s6e)r,vothireoAf2c5o9ld7HBC(Ginfhearrrebdoufrrosma 0, 20 2 1 4 COobservations)withinitscentral30kpc(Edge2001;Salome´ & WecalculatetheclassicalX-rayderivedcoolingtimeforA2597, Combes 2003; P. Salome´, private communication). If the bulk of t ≡ 5nkT, (7) themassbudgetforthiscoldgasissuppliedbytheresidualcooling cool 2n2(cid:6) flow(ratherthane.g.amerger),thenAGNfeedbackcannotestab- where n and kT are respectively the gas density and temperature lishanimpassableentropyfloor,andsomecoolingto<100Kmust profiles obtained by Tremblay et al. (2012), and (cid:6) is the T > bepermittedevenifthereisenoughenergyinprincipletoquench 0.02keVportionofthecoolingfunctionfromSutherland&Dopita theclassicalcoolingflow.Weconsiderfourpossibilities: (1993),usingthegeneralizationfromTozzi&Norman(2001). (i) LowlevelsofresidualcoolingpersistevenwhileAGNfeed- We find that the cooling time at the (cid:2)30kpc outermost radius backisheatingtheambientenvironment; oftheX-raycavitynetworkis∼300Myr.Theinstantaneouscool- (ii) coolingoccursinaspatiallystructuredmanner,awayfrom ingluminosityassociatedwiththeuninhibitedcoolingflow(with thoseregionswhicharebeinglocallyheatedbye.g.buoyantcavities noheating)canbecalculatedfromtheclassicaluninhibitedmass andsoundwaves; depositionrateM˙ using cool (iii) cooling occurs in episodes which correspond to the times 5M˙ whentheBHisinactive,ortransitioningbetweenactiveandinactive L = coolkT , (8) cool 2 μm vir statesorbetweenhighandlowmodes; p (cid:4)C 2012TheAuthors,MNRAS424,1042–1060 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2012RAS

Description:
axis that is perpendicular to X-ray cavity and radio axis. We conclude .. ACIS-S. VFAINT. X-ray (0.5−7 keV). 60.9 ks. 7329. 2006 May 4. Clarke. New. Far ultraviolet/optical/near-infrared observations. HST. ACS. SBC. F150LP (FUV) .. described by M01 and C05 is part of a larger 'teardrop' shaped ca
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.