CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 1 Reservoir Simulation CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 2 CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences,supported by the National Science Foundation and published by SIAM. GARRETTBIRKHOFF,The Numerical Solution of Elliptic Equations D. V. LINDLEY,Bayesian Statistics,A Review R. S. VARGA,Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR,Some Limit Theorems in Statistics PATRICKBILLINGSLEY,Weak Convergence of Measures:Applications in Probability J. L. LIONS,Some Aspects of the Optimal Control of Distributed Parameter Systems ROGERPENROSE,Techniques of Differential Topology in Relativity HERMANCHERNOFF,Sequential Analysis and Optimal Design J. DURBIN,Distribution Theory for Tests Based on the Sample Distribution Function SOLI. RUBINOW,Mathematical Problems in the Biological Sciences P. D. LAX,Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG,Cardinal Spline Interpolation IVANSINGER,The Theory of Best Approximation and Functional Analysis WERNERC. RHEINBOLDT,Methods of Solving Systems of Nonlinear Equations HANSF. WEINBERGER,Variational Methods for Eigenvalue Approximation R. TYRRELLROCKAFELLAR,Conjugate Duality and Optimization SIRJAMESLIGHTHILL,Mathematical Biofluiddynamics GERARDSALTON,Theory of Indexing CATHLEENS. MORAWETZ,Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT,Mathematical Theories of Populations:Demographics,Genetics and Epidemics RICHARDASKEY,Orthogonal Polynomials and Special Functions L. E. PAYNE,Improperly Posed Problems in Partial Differential Equations S. ROSEN,Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERTB. KELLER,Numerical Solution of Two Point Boundary Value Problems J. P. LASALLE,The Stability of Dynamical Systems - Z. Artstein,Appendix A:Limiting Equations and Stability of Nonautonomous Ordinary Differential Equations D. GOTTLIEBANDS. A. ORSZAG,Numerical Analysis of Spectral Methods:Theory and Applications PETERJ. HUBER,Robust Statistical Procedures HERBERTSOLOMON,Geometric Probability FREDS. ROBERTS,Graph Theory and Its Applications to Problems of Society JURISHARTMANIS,Feasible Computations and Provable Complexity Properties ZOHARMANNA,Lectures on the Logic of Computer Programming ELLISL. JOHNSON,Integer Programming:Facets,Subadditivity,and Duality for Group and Semi-Group Problems SHMUELWINOGRAD,Arithmetic Complexity of Computations J. F. C. KINGMAN,Mathematics of Genetic Diversity MORTONE. GURTIN,Topics in Finite Elasticity THOMASG. KURTZ,Approximation of Population Processes CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 3 JERROLDE. MARSDEN,Lectures on Geometric Methods in Mathematical Physics BRADLEYEFRON,The Jackknife,the Bootstrap,and Other Resampling Plans M. WOODROOFE,Nonlinear Renewal Theory in Sequential Analysis D. H. SATTINGER,Branching in the Presence of Symmetry R. TEMAM,Navier-Stokes Equations and Nonlinear Functional Analysis MIKLÓSCSÖRGO,Quantile Processes with Statistical Applications J. D. BUCKMASTERANDG. S. S. LUDFORD,Lectures on Mathematical Combustion R. E. TARJAN,Data Structures and Network Algorithms PAULWALTMAN,Competition Models in Population Biology S. R. S. VARADHAN,Large Deviations and Applications KIYOSIITÔ,Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces ALANC. NEWELL,Solitons in Mathematics and Physics PRANABKUMARSEN,Theory and Applications of Sequential Nonparametrics LÁSZLÓLOVÁSZ,An Algorithmic Theory of Numbers,Graphs and Convexity E. W. CHENEY,Multivariate Approximation Theory:Selected Topics JOELSPENCER,Ten Lectures on the Probabilistic Method PAULC. FIFE,Dynamics of Internal Layers and Diffusive Interfaces CHARLESK. CHUI,Multivariate Splines HERBERTS. WILF,Combinatorial Algorithms:An Update HENRYC. TUCKWELL,Stochastic Processes in the Neurosciences FRANKH. CLARKE,Methods of Dynamic and Nonsmooth Optimization ROBERTB. GARDNER,The Method of Equivalence and Its Applications GRACEWAHBA,Spline Models for Observational Data RICHARDS. VARGA,Scientific Computation on Mathematical Problems and Conjectures INGRIDDAUBECHIES,Ten Lectures on Wavelets STEPHENF. MCCORMICK,Multilevel Projection Methods for Partial Differential Equations HARALDNIEDERREITER,Random Number Generation and Quasi-Monte Carlo Methods JOELSPENCER,Ten Lectures on the Probabilistic Method,Second Edition CHARLESA. MICCHELLI,Mathematical Aspects of Geometric Modeling ROGERTEMAM,Navier–Stokes Equations and Nonlinear Functional Analysis,Second Edition GLENNSHAFER,Probabilistic Expert Systems PETERJ. HUBER,Robust Statistical Procedures,Second Edition J. MICHAELSTEELE,Probability Theory and Combinatorial Optimization WERNERC. RHEINBOLDT,Methods for Solving Systems of Nonlinear Equations,Second Edition J. M. CUSHING,An Introduction to Structured Population Dynamics TAI-PINGLIU,Hyperbolic and Viscous Conservation Laws MICHAELRENARDY,Mathematical Analysis of Viscoelastic Flows GÉRARDCORNUÉJOLS,Combinatorial Optimization:Packing and Covering IRENALASIECKA,Mathematical Control Theory of Coupled PDEs J. K. SHAW,Mathematical Principles of Optical Fiber Communications ZHANGXINCHEN,Reservoir Simulation:Mathematical Techniques in Oil Recovery CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 4 CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 5 ZHANGXIN CHEN University of Calgary Calgary, Alberta, Canada Reservoir Simulation Mathematical Techniques in Oil Recovery SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS PHILADELPHIA CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 6 Copyright © 2007 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced,stored,or transmitted in any manner without the written permission of the publisher. For information,write to the Society for Industrial and Applied Mathematics, 3600 Market Street,6th floor,Philadelphia,PA 19104-2688. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Library of Congress Cataloging-in-Publication Chen,Zhangxin,1962– Reservoir simulation :mathematical techniques in oil recovery / Zhangxin Chen. p. cm. – (CBMS-NSF regional conference series in applied mathematics ; 77) Includes bibliographical references and index. ISBN 978-0-898716-40-5 (alk. paper) 1. Oil reservoir engineering–Mathematical models. 2. Oil reservoir engineering–Simulation methods. 3. Porous materials–Permeability–Mathematical models. 4. Transport theory–Mathematical models. I. Title II. Series. TN871.C465 2007 622’.3382015118–dc22 2007061749 is a registered trademark. CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 7 This book is dedicated to my parents, wife, and children. (cid:2) CB77_Chenfm_A.qxp 9/7/2007 12:29 PM Page 8 chenb (cid:1) (cid:1) 2007/9 pageix (cid:1) (cid:1) Contents ListofFigures xiii ListofTables xv ListofNotation xvii Preface xxvii 1 Introduction 1 1.1 PetroleumReservoirSimulation . . . . . . . . . . . . . . . . . . . . . 1 1.2 ClassicalReservoirEngineeringMethods . . . . . . . . . . . . . . . . 1 1.2.1 MaterialBalanceMethods . . . . . . . . . . . . . . . . . 1 1.2.2 DeclineCurveMethods . . . . . . . . . . . . . . . . . . 2 1.2.3 StatisticalMethods . . . . . . . . . . . . . . . . . . . . . 2 1.2.4 AnalyticalMethods . . . . . . . . . . . . . . . . . . . . 2 1.3 ReservoirSimulationMethods . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 ReservoirSimulationStages . . . . . . . . . . . . . . . . 3 1.3.2 ReservoirSimulatorClassifications . . . . . . . . . . . . 4 1.3.3 ReservoirSimulationApplications . . . . . . . . . . . . 4 1.4 SIMetricConversionFactors . . . . . . . . . . . . . . . . . . . . . . 6 2 AGlossaryofPetroleumTerms 7 2.1 ReservoirRockProperties . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 ReservoirFluidProperties . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Wettability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 FluidDisplacementProcesses . . . . . . . . . . . . . . . . . . . . . . 13 2.5 ReservoirRock/FluidProperties. . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Two-PhaseRelativePermeability . . . . . . . . . . . . . 15 2.5.2 Three-PhaseRelativePermeability . . . . . . . . . . . . 17 2.6 TermsUsedinNumericalSimulation . . . . . . . . . . . . . . . . . . 20 3 Single-PhaseFlowandNumericalSolution 23 3.1 BasicDifferentialEquations . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 MassConservation . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Darcy’sLaw . . . . . . . . . . . . . . . . . . . . . . . . 25 ix (cid:1) (cid:1) (cid:1) (cid:1)
Description: