ebook img

Research on using ANP to establish a performance assessment model for business intelligence ... PDF

12 Pages·2008·0.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Research on using ANP to establish a performance assessment model for business intelligence ...

ExpertSystemswithApplications36(2009)4135–4146 ContentslistsavailableatScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa Research on using ANP to establish a performance assessment model for business intelligence systems Yu-Hsin Lina,*, Kune-Muh Tsaib, Wei-Jung Shiangc, Tsai-Chi Kuoa, Chih-Hung Tsaid aDepartmentofIndustrialEngineeringandManagement,Ming-HsinUniversityofScienceandTechnology,1HsinhsinRoad,Hsinfong30401,Hsin-Chu,Taiwan,ROC bDepartmentofLogisticsManagement,NationalKaohsiungFirstUniversityofScienceandTechnology,No.2,JhuoyueRoad,NazihDistrict,Kaohsiung,Taiwan,ROC cDepartmentofIndustrialEngineering,ChungYuanChristianUniversity200,ChungPeiRoad,ChungLi32023,Taiwan,ROC dDepartmentofIndustrialEngineeringandManagement,Ta-HwaInstituteofTechnology,1Ta-HwaRoad,Chung-Lin,Hsin-Chu,Taiwan,ROC a r t i c l e i n f o a b s t r a c t Keywords: Inordertocompeteintherigorousenvironment,theelectronizationhasenabledbusinesstodeploybusi- Businessintelligence nessintelligence(BI)systemsforthepurposeofdecision-making.However,toavoidtheineffectiveexpe- Analyticnetworkprocess riencesduringthedeployment,itisimportanttoclarifytheimpactfactorsofaBIsystemandfindouta Performanceindices suitableassessmentmethodtoevaluatetheperformanceofBIsystems.Inthispaper,ananalyticnetwork process(ANP)basedassessmentmodelwasconstructedtoassesstheeffectivenessofBIsystems.Fur- thermore,anexpertquestionnairewasusedtofilteroutusefulperformancematrices,usedasthesub- criteriaoftheANPmodel.Finally,arealcasewasanalyzedusingtheconstructedANP-basedeffectiveness assessmentmodelforBusinessIntelligencesystems.Theresultsindicatethatthemostcriticalfactors thatimpacttheeffectivenessofaBIsystemare:outputinformationaccuracy,conformitytotherequire- ments,andsupportoforganizationalefficiency.UtilizingthismodeltoassesstheBIperformanceofthe studiedcase,itrevealsthat24%improvementineffectivenesshasbeenreached,whichconsistswiththe perceptionofthemanagementlevel.Therefore,thiseffectivenessassessmentmodelcanbeusedtoeval- uatetheperformancesofaBIsystem.Itcanalsoprovideperformanceindicesandimprovementdirec- tions for BI users and vendors, respectively, for the total succession in system effectiveness and satisfaction. (cid:2)2009-ElsevierLtd.Allrightsreserved. 1.Introduction accuracy and in real-time, in order to expedite the speed of pro- cessing and decision-making. Existing electronization software Traditional enterprises may normally face issues such as the packagecanprovideasetofcompletesolutionsfortheoperation overflow of data, the lack of information, the lack of knowledge and management processes of enterprises. However, the effects and insufficiency of reports. Therefore, in order to make prompt oftheimplementationofelectronizationtoolsvarythattheprob- decisionwithintheshortestperiodoftimepossibletokeeppace abilityoffailureishigherthanthatofthesuccess(Ward,Heming- with the situation, high levels of management commonly make way, & Daniel, 2005). Therefore, defining the performance of decisionsbasedontheirexperiences,leadingtotheever-increas- information tool and laying down related assessment criteria is ingriskofdecisionfailurewhileloweringthevalueofthedecision an important issue that has to be tackled for the deployment of itself.Asworldwidecompetitionismaturating,pastdecision-mak- electronization. ingmodescannolongersatisfytherequirementsofenterprisesfor Businessintelligence(BI)isthetoolusedbyenterprisestocol- decisionefficiencyandbenefits;enterprisesmustmakegooduse lect, manage and analyze structural and non-structural data and ofelectronictoolstoquicklyextractusefulinformationfromhuge information by takingadvantage ofmodern information technol- volumeofdatabyprovidingtheskillsoffastdecision-making(Ra- ogy (IT). It utilizes a substantial amount of collected data during kar&Jovan,2004).Thewaytopromotetheelectronizationsolu- thedailyoperationalprocesses,andtransformsthedataintoinfor- tions from the operational levelto the decision making levelis a mationandknowledgetoavoidthesuppositionandignoranceof topic enterprises cannot avoid in the face of the next wave of theenterprises(Wang,2005).Underthespeed-orientedoperation electronization.Theinformationsystemappliedwithintheenter- mode,inordertoimprovemanagementeffectsandperformance, prisesshouldbeabletodemonstratethedataorinformationwith BIwillsurelybecomethetoolenterpriseswouldliketoactivelyde- ployaswellasthesolutionthatcanbringenterprisescompetitive * Correspondingauthor.Tel.:+886968623090;fax:+88635593142x3212. edge. However, current BI application is still at its fledging stage E-mailaddress:[email protected](Y.-H.Lin). and most of the enterprises fall short of sufficient understanding 4136 towards BI (Wang, 2005); currently, research on conducting per- nessstatus,salesanalysis,customerdemand,productpreference, formanceevaluationfortheimplementationofBIsystemisscarce, etc.isprovidedforenterprisesthroughlargedatabasesystemanal- not to mention the analysis of on-line performance. Beside that, ysisaswellasmathematical,statistical,artificialintelligence,data managersusuallyhavetomeasurealltheprosandconstoachieve mining and on-line analysis processing (OLAP) (Berson & Smith, abalanceinassessingtheperformancesofBI/ITsystems.Different 1997;Thomsen,2002).EckersonWayne(2005)heldthatBImust endusersandITpeopleadoptdifferentperformancemeasurement beabletoprovidethefollowingtools:productionreportingtools, criteria.Therefore,itisasignificantissuetoimplementacross-the- end-user query and reporting tools, on-line analysis processing, boardconsiderationstoincorporatedifferentviewpointsandper- dashboard/scorecardtools,dataminingtools,planningandmodel- spectivesfrommanifoldexpertsinBIdevelopmentandusageinto ingtools. thechoiceforassessingBIperformanceeffectiveness. BIisnotonlyatoolreflectingissues,butalsothemanagement Inordertolowerthefailureriskafterimplementation,itisnec- of transferring internal messages in the enterprise environment essarytoconductin-depthdiscussionfortheaforementionedissue. (EckersonWayne,2005).Therefore,apartfromsubstantialITsup- Therefore,thisresearchstartsbyanalyzingBIbenefits,takesadvan- port, sound and proper planning abilities are needed when con- tageofanalyticnetworkprocess(ANP)todiscussBIeffectiveness structing BI working environment, for example, ensuring the andrelatedperformanceassessmentindications.Theresultsthus delivery and implementation of BI projects; ability of acquiring provideenterprisesthatareinterestedindeployingBIsystemswith standardized data elements and changing process to ensure the a consistent and effective assessment model for future BI imple- qualityofdataacquired,integratingallstrategicobjectiveswithin mentationwhileservingasadirectionoffutureimprovementand the organization, and designing strategic map and transmitting enhancementforBIsoftwaresuppliersandconsultingcompanies. important corporate value. Therefore, BI covers a wide range of The remainder of this paper is organized as follows. Section2 tools and broad scope, and among the commonly mentioned presents the related studies regarding to this research. Then, the important applications are data warehouse, data mining, OLAP, research theory and method is presented in Section 3. Section 4 decision support system (DSS), balance scorecard (BSC), etc. All demonstrates the proposed architecture for assessing the perfor- inall,thepurposeofBIistoprovideuserswiththebestpossible mance of BI systems. An empirical research and related analysis assistanceintheprocessofdecision-making.Apartfromdelivering is illustrated in Section 5. Then a case study on a global supplier therightinformationtorightpersonduringtherighttime(Back, of computer peripherals is described in Section 6, and the sum- 2002; Eckerson Wayne, 2005), at the BI planning, implementing maryandconclusionsaredrawnfinally. and go-live stages, enterprise operation contents and business objectives must be understood in order to properly plan related performance measurement indices and ensure the correctness 2.Informationsystems andvalidityoftheinformationprovidedbyBI. Withthedemandsforinformationtechnology,applicationsoft- 2.2.Performancemeasurementindicesofinformationsystem ware and enterprise information tactics constantly are enhanced and expanded. The deployment of SCM, ERP, CRM systems, etc. Effectivelyassessingtheefficiencyofaninformationsystemis hasbecomemature,andthegrowthofbusinessintelligenceinfor- the key element in the successful implementation of the system. mationsystemwillbecomeanewdirectionforenterprises’electr- Assessing the performances of an information system means if onizationconstruction(Chung,Lee,&Pearn,2005). the information system can be accepted by users, and if users’ work-related needs can be met and the objective at the initial 2.1.Businessintelligence implementationcanbeachieved.Astohowtoassesstheefficiency ofinformationsystem,roughlyitcanbeclassifiedintotheassess- Startingfromtheuseofinitialdatastoragedevices,enterprises ment of system satisfaction and the assessment of effectiveness. have continued innovating and creating new system modes, in a Among the assessments of system satisfaction are contents cor- pursuit of higher operation efficiency. After the development of rectness (Doll & Torzadeh, 1988; Ives, Olson, & Baroudi, 1983), relational database, the development of business intelligence is resilience of the format (Doll & Torzadeh, 1988), easiness of the then underway. Currently, there are multiple software suppliers operation(Doll&Torzadeh,1988;Tan&Lo,1990),real-timenat- and specialty consulting companies conducting even more logic ure (Doll & Torzadeh, 1988), integrity of the output (Doll & Tor- planning and enhancement for the function and applicability of zadeh, 1988), credibility of the output (Ives et al., 1983), BIsystems,e.g.toolsassistingenterprisesindecision-makingsuch integrationandsafetyofthesystem(Tan&Lo,1990).Wildemann asdatawarehouseandreal-timeanalysis.Hence,commerciallogic (1987)indicatedthatthesuccessoftheinformationsystemshould thinkingisstillbeinginnovatedanddevelopedandthroughsuch beconsideredfrombothaspectsofthesuccessofprojectmanage- processes, systematic enterprise operation mode is expected to mentandtheefficiencyofsoftwareexecutionatthetimeofsystem becreatedtoenhancethecompetitiveedgeofenterprises. implementation.Ifabusinessintelligencesystemcanbesuccess- Theapplicationofbusinessintelligenceistheprocessthrough fullyimplemented,itcanplayitsdueroleinfouraspects,namely, whichenterprisestakeadvantagesofmoderninformationtechnol- assistinginunderstandingbusinessstatus,measuringorganization ogy to collect, manage and analyze structural or non-structural performance, improving stakeholder relationship, and creating data.Inorderwords,throughtheextraction,integrationandana- profitableopportunities(Wang,2005). lysisofdata,technologyandcommercialprocessingproceduresin To prevent inefficiency of an information system after the thedecision-makingaresupported(Wang,2005).Problemsanda introduction from appearing again, assessing the effectiveness hugeamountofdataofenterprisesareinputintodataminingsys- of a BI system is an important issue and must be carefully tems for data analysis so that decision makers can obtain useful planned. It can serve as the criteria for BI system selection and informationpromptlyformakingcorrectjudgment;thatis,inre- implementation. However, current research has not yet pointed gardtoenterpriseoperatingcontents,abilitiesoffastunderstand- outtheeffectivenessanditsassessmentmethodsafterBIsystem inganddeducingareprovided,andthusenhancingthequalityof actuallygoesonline.Therefore,throughliteraturediscussion,this decision-makingandimprovingperformanceandexpeditingpro- researchsummedup40criteriaofevaluatinginformationsystem cessing speed (Back, 2002). Business intelligence is an analysis performances. Proper key criteria are then picked out through mechanismbywhichautomateddecision-makingregardingbusi- experts’ questionnaires as the major basis for constructing BI 4137 system performance assessment model. This paper proposes to hierarchy, consisting of network relationships between elements apply ANP method to construct an integrated performance andclusters. evaluation model for BI systems. ANP method was proposed by ThenetworkrelationshipofANPmethoddoesnotonlypresent Saaty and Takizawa (1986), and it is an extension of analytic the relationship between rules, but also calculate the relative hierarchyprocess (AHP).Inreality, theelementswithin thehier- weightings(characteristicvectors)ofeachrule.Theresultofthese archy of various criteria are often interdependent, but low-level computationsformsasupermatrix.Finally,afterthecomputation elements may dominate high-level ones. A feedback relationship of the relationship of the super matrix and the comprehensive also exists in the process, thus, this structure resembles a evaluations, it is possible to derive the interdependence of each network system. valuation criteria and options and the weighting of priorities. ThenetworkrelationshipofANPmethoddoesnotonlypresent The higher the priority weightings, the more priority will be thedependenciesbetweencriteria,butalsocalculatetherelative placed.Inthis manner,it ispossibletoselect themostappropri- weights(eigenvectors)ofeachcriterion.Theresultofthesecompu- ate option (Saaty, 2003). In the previous literature regarding the tationsformsasupermatrix.Aftercomputationoftherelationship application of ANP method, Saaty and Takizawa (1986) uses the betweenthesupermatrixandthecomprehensiveevaluations,itis matrix applications to solve the network structure of ANP meth- possibletoderivetheweightvaluesbetweencriteriaandalterna- od,inasimilarwaytoAHPmethod.However,theirapproachcon- tives.Thehighertheweights,themoreprioritywillbeplaced.In siderstheinterdependencebetweenrulesandoptions.Meadeand thismanner,itispossibletoselectthemostappropriatealternative Sarkis(1999)proposedthe useof ANPmethod toconductpolicy (Saaty,1996).JharkhariaandShankar(2007)usedANPmethodto analysis in order to evaluate projects so that organizations be- selectdistributionserviceproviders.TheyindicatedthatANPmeth- come more swifter and better in improving procedures and oddoesnotonlyestablishabetterunderstandingofthecomplex achieving specific targets. Lee and Kim (2000) applied Saaty’s relationshipbetweencriteriaindecisionmaking,butalsoimproves ANP method in the selection of IT systems in order to respond thereliabilityofdecision-making.Chungetal.(2005)adoptedthe to the interdependency of the valuation rules and feasible matrixmethodproposedbySaatyandsuggestedasimplifiedANP projects. structuretoanalyzetheinputsandoutputsofmanykindsofpro- JharkhariaandShankar(2007)usedANPmethodtoselectdis- ductionprocesses.Thebestproductmixcanbederivedbyintegrat- tributionservicesproviders.TheyindicatedthatANPmethoddoes ingexperts’opinions.ANPmethodismostlyappliedintheselection notonlyestablishabetterunderstandingofthecomplexrelation- ofmultiple feasiblealternatives, suchas resourceallocationsand ship between valuation criteria in decision-making, but also im- sequencing,toimprovethereliabilityofdecisionsintheevaluation proves the reliability of decision-making. Chung et al. (2005) process(Jharkharia&Shankar,2007;Lee,Chen,&Chang,2006;Lin, adopted the matrix method proposed by Saaty and suggested a Chiu,&Tsai,2008).Inthispaper,detailsoftheANPtechniquewill simplifiedANPstructuretoanalyzetheinputsandoutputsofmany notbediscussed.However,Section3willpresentanapplicationof kindsofproductionprocesses.Thebestproductmixcanbederived the ANP technique to the assessment of business intelligence byintegratingexperts’opinions.Fromthepreviousliterature,we systems. knowthatANPmethodismostlyappliedintheselectionofmulti- plefeasibleoptions,suchasresourceallocationsand sequencing, in order to improve the reliability of decisions in the evaluation 3.Researchtheoryandmethod process(Jharkharia&Shankar,2007).Therefore,thisstudyapplies ANPmethodtoconstructanassessmentmodeltoeffectivelyeval- Thisresearchmethodisconsistedofthreeparts.Thefirstpart uatetheperformancesofBIsystems. chooses the factors that influence the BI system’s effects as the foundation of the ANP analysis method. In this section, we sort out the key elements that influence the effects of information 3.2.ANPdecision-makingflowchart systems after gathering kinds of documents, and resort to the experiences and opinions acquired from questionnaire for ex- Step1: Definitionofpolicyissuesandestablishmentofpolicy-making perts. The second part adopts the selected elements to build up members the ANP model. The third part is for case study. Based on the All the factors that may affect policy issues should be analysis result of the ANP model, the contents of interview are incorporated based on the nature of the policy issues, in designed, the experiences of the studied company implementing ordertodefinethedomainofdiscussions.Abodyofdeci- the BI system and the effects after the implementation are pre- sionmakersshouldbeestablishedinordertocollatethe sented, and subsequently, we verify that the effectiveness of opinions of the experts in the relevant fields, based on the ANP structure built up in this research in the appraisal of a the level of complexity, and the fields of domain issues BI system. involved.Generally,thenumberofsurveyedexpertshould notbetoomuch,5–50isasuitablenumber(Reza&Vass- 3.1.ANPtheoryoverview ilis,1988). Step2: Constructionofthenetworkhierarchylayerstructureofthe ANP method was proposed by Saaty (1996) in 1975. It is an problems extension of analytic hierarchy process (AHP). In reality, the ele- Afterconsolidatingandcategorizingrelevantinformation, mentswithinthehierarchyofvariousrulesareofteninterdepen- keyissuesthataffectthedecisionsareidentified.Thenet- dent. Low-level elements also dominate high-level elements. work hierarchy layer valuation model is illustrated in There is a feedback relationship. In such instances, the structure Fig. 2. In the structure, there exists interdependency ofasystemresemblesthatofanetwork.ANPmethodisstemmed withineachlayerandlooparcsareusedtoindicatefeed- from this type of network system structure (Wang, 2005). Fig. 1 backrelationships. illustrates the structural relationship of ANP method (Wang, Step3: Questionnairesurveysandexpertpreferenceintegration 2005).Thissystemcanbedividedintotwoparts.Thefirstpartis Accordingtothenetworkhierarchylayervaluationmodel thecontrolhierarchy,consistingofnetworkrelationshipsbetween structuredforthedecisionissues,weightingsaregivento thegoal,criteriaandsub-criteria.Thecontrolhierarchyaffectsthe each element according to their corresponding upper internalrelationshipsofthesystem.Thesecondpartisthenetwork elements via questionnaires issued to experts to gather 4138 Objective Criteria Control Level Sub-Criteria Group C Group C 1 2 Network Group Group Level Group C N The example of a network structure of sub-criteria Fig.1. StructuralrelationshipofANPmethod. Desired Objective Objective Criteria 1 Criteria 2 …… Criteria N Performance Measurements Alternative 1 Alternative 2 … Alternative M Alternatives … Represents inter- relationships of performance measurements Fig.2. ANPnetworkhierarchylayervaluationmodelarchitecture(Saaty,1996). opinions regarding the relative importance of different ratios (C.R.) of the comparison matrixes. The C.R. of a elements. If there are a number of experts involved in pairwisecomparisonmatrixistheratioofitsconsistency theevaluation,averagescanbeusedtocomputethecol- indextothecorrespondingrandomvalue.Thedetailscan lective weightings. When it comes to the integration of befoundinSaaty’s(Saaty,2005). expert preferences, Saaty (1980) thinks that geometrical Step6: Computationsofsupermatrixes averagesyieldbetterresults. Asupermatrixlistsdownallthesub-matrixesconsisting Step4: Establishment of pairwise comparison matrixes of all the clusters and necessary elements in the order After the consolidation of judgments and preferences ontheleftanduppersidesofthematrix.Iftheaggregate from various experts, it is possible to construct a com- ofthecolumnvectorsofasupermatrixisnotequalto1,it parisonmatrixofmultiplevaluationcriteriaandoptions. iscalledanun-weightedsupermatrix,whichmaybecon- ANP method applies a measurement of 1–9 and derives verted with specific procedures to make it a weighted relative weightings based on this measurement. These supermatrix.Afterwards,thematrixwillbelimited,and weightings then are entered as values of the super gradually the consolidation of the interdependency and matrix structure so as to reflect the interdependency relativeweightingswillbederived(Saaty,1996). and relative importance of each valuation criteria and Step7: Selectionofmostoptimaloptions option. Desirabilityindex(DI)isusedtodeterminethemostopti- Step5: Consistencytest maloptions.Theformulaisasfollows: IntheANPmethod,decisionmakersorexpertswhomake Xr Xr judgments or preferences must go through the consis- DIi¼ Sij¼ RjWij; 8i; j¼1;2;...;r; ð1Þ tencytest,whichareconductedbasedontheconsistency j¼1 j¼1 4139 whereDI isdenotesexpectedindicatorofthenumberioption;S is Themajorcriteriawhichinfluencethegoalincludefunctionsofa i ij denotestheweightingofnumberioptionunderthecriteriaofnum- BI system (FBIS), service and integration ability (SIA), meeting berj;R isdenotestherelativeweightingofnumberjsub-criteria; user’sneeds(MUN)andmeetingenterprisesrequirements(MER), j W isdenotestherelativeweightingofnumberioptionundernum- andtheyareinteractedandinterdependent.Thesub-criteriarefer ij berjsub-criteria. to those performance indicators, i.e. system response time (SRT), system security (SS), output information accuracy (OIA), imple- Theoptionwiththehighestvalueofexpectedindicatorsisthe menting experiences of consultant (IEC), comprehension degree mostoptimaloptionA*: toimplementer’sbusiness(CDIB),supportdegreeofusersandhigh A(cid:2)¼fAjDI ¼maximum ðDI Þg: ð2Þ i i k¼1;2;...;n k management level (SDUH), conformity to the requirement (CR), support of organizational efficiency (SOE) and support in deci- sion-makinginorganization(SDM). 4.BusinessintelligenceANPperformanceassessmentmodel 4.1.Selectionofimpactfactors 5.Empiricalresearchandanalysis The ANP assessment model is aimed to assist enterprises to 5.1.Expertquestionnaire evaluatetheeffectivenessofaBIsystem.Itprovidestheeffective check and the effective analysis to those enterprises that have This paper utilizes ANP model to design expert questionnaire, implementedoraregoingtoimplementaBIsystem,andimproves andappraisestherelativeimportanceofcriteriaasnumbersusing theusabilityandsatisfactionofBIsystem.Inthisresearch,thekey thefundamentalscaleoftheAHP,showninTable2(Saaty,2005). elements that influence the performances of an information sys- Inthequestionnairedistributionphase,toavoidanyambiguity temareconstructedafterinterviewingthoseseniorsintheinfor- orhardreadabilitythatmayaffecttheexternalnatureofanswers mation department of industrial sectors and listening to the given by the interviewees, and to facilitate the understanding visionsandopinionsofexperts.Theambiguousandunsuitablefac- aboutthisANPmodel,ourresearchersphysicallyvisitedtheinter- torsinthequestionnairearemodifiedordeleted.Finally,theques- viewees to make an on-site survey. The projection presentation tionnaireconsistsoffourcategoriesofcriteria,i.e.functionofaBI and comparison of criteria was utilized to expedite the under- system,serviceandintegrationability,meetinguser’sneeds,and standing of the meaning and contents in the questionnaire by meetingenterprisesrequirements,andincludesatotalof26ques- thoseinterviewees.RezaandVassilis(1988)pointedoutthatthe tions, designed with the Likert-type scale. Twelve copies are re- numberofexpertsasintervieweeshouldnotbetoomuch,andin leased,andninevalidcopiesarerecovered.Thereturnrateis75%. general,5–15personsarebestsuited.Therefore,ourestimateddis- Byfollowingtheopinionsfromexperts,wechoosenineperfor- tributionnumberof questionnaires was allocated as threecopies mance indicators. Of the nice indicators, system response time, forimplementationconsultantsand12fortheuser-sidethathave system security, and output information accuracy belong to the implementedtheBIsystem.Amongthelattertargets,ninecopies criteria of functions of a BI system, while implementing experi- weredistributedtotheITpersonnelandthreetoendusers.Thefi- encesofconsultant,comprehensiondegreeofimplementer’sbusi- nalparticipatesofsurveywere12,amongthem,threewerecon- ness are for the criteria of service and integration ability. The sultants, seven were IT persons and two were end users. The indicators of the criteria of meeting user’s needs include support returnratewas80%. degreeofuserandhighmanagementlevelandconformitytothe Thesub-criteriaintheANPmodelaresubjecttodiscussionand requirements.Finally,supportoforganizationalefficiencyandsup- conclusionthroughrelevantdocumentsandfinallyarescreenedby port in decision-making in organization are the indicators of the experts.Inaddition,thedesignofthequestionnairehasbeenau- criteriaofmeetingenterpriserequirements.Afterdiscussionwith ditedanddiscussedbyBIexpertswithrichexperiencesformodi- BIexpertsandmanagersintheinformationdepartment,theinter- fication or correction. Thus, we believe the questionnaire in this dependencyamongthosenineperformanceindicatorsasthesub- researchissomewhatinexpert’sconsideration.TheCronbach’ava- criteriacanbeobtained,asshowninTable1. lue ofthequestionnairesis 0.8225,whichmeans theANPexpert questionnaireexhibitshighreliability(Saaty,2005). 4.2.ANPperformanceassessmentmodel 5.2.TheresultsofBIperformanceevaluationmodel Inthispaper,thegoaloftheANPperformanceassessmentmod- el(Fig.3)isdefinedas‘assessingtheperformanceofaBIsystem’. Through real examples, this research verifies the ANP-based business intelligence performance assessment model. As criteria Table1 Theinterdependencybetweenselectedindicators havemadethepair comparisona great deal,wecanonlychoose severalcomparisonmatrixesassamples.Inthisresearch,thesuper Criteria Criteria decisionsoftwareisusedtodefinetheBIperformanceassessment 1 2 3 4 5 6 7 8 9 model. p p p p 1.Systemresponsetime p p p p 2.Systemsecurity p p p p p 5.2.1.Pair-wisecomparisonsofmajorcriteria 3.Outputinformationaccuracy p p p p p UnderthekeyfactorsthatinfluencetheeffectsofaBIsystem, 4.Implementingexperiencesof consultant theexpertsappraisetherelativeimportanceamongthefourper- p p p p p 5.Comprehensiondegreeof formance indicators (major criteria). The appraisal results are implementer’sbusiness p p p shown in Table 3. The matrix showing pair-wise comparisons of 6.Supportdegreeofuserandhigh majorcriteriaalongwiththeeigenvector(e-vector)oftheseindi- managementlevel 7.Conformitytotherequirements p p p p p p p p catorsisshowninTable3. p p p p p p 8.Supportoforganizationalefficiency In order to ensure the consistency of experts’ judgments, the p p p p 9.Supportindecision-makingin consistency checks must be conducted. Table 3 lists the result of organization thepaircomparisonmatrixes.TheC.R.=0.0134,whichislessthan p Note: meansthattheinteractionexistsamongcriteria. 0.1, is an indication of the consistency of experts’ evaluations 4140 Goal Major criteria Selected Indices SRT Functions of BI system (FBIS) SS m e st y OIA s I B f a Service and Integration IEC o e Ability (SIA) c n ma CDIB r o f r pe Meeting User’s Needs SDUH e h (MUN) g t n CR si s e s s A Meeting Enterprise SOE Requirements (MER) SDM Fig.3. BusinessintelligenceANPperformanceassessmentmodel. Table2 With the weight value (the eigenvector), we can have the Definitionanddescriptionoftheninegradesappraisalscale weight of each criterion in the target, as is shown in matrix A Intensityof Definition Explanation below. Importance 20:0953 1 Equalimportance Twofactorscontributeequally 60:2477 totheobjective A¼6 7: ð3Þ 2 Weakorslight 640:28875 3 Moderateimportance Experiencesandjudgement 0:370 slightlyfavoronefactorover another 4 Moderateplus 5.2.2.Pair-wisecomparisonsofinterdependenciesofmajorcriteria 5 Strongimportance Experiencesandjudgement stronglyfavoronfactorover Tounderstandtheinterdependenciesofthemajorcriteria,the another pair-wisecomparisonmust bemade amongthemajorcriteria to 6 Strongplus obtainthe weights of all the criteria of the goal. From Table4, it 7 Verystrongordemonstrated Anfactorisfavoredvery importance stronglyoveranother;its dominancedemonstratedin practice Table4 8 Very,verystrong Pair-wise comparison among major criteria for enhancing functionalities of BI 9 Extremeimportance Theevidencefavoringonfactor Systems overanotherisofthehighest possibleorderofaffirmation Service Meeting Meeting Eigenvector Reciprocals Iffactorihasoneoftheabove Arationalassumption and user’s enterprises ofabove nonezeronumbersassignedtoit integration needs requirements whencomparedwithfactorj, ability thenjhasthereciprocalvalue Serviceandintegration 1 0.929 0.540 0.254 whencomparedwithi ability Meetinguser’sneeds 1.077 1 0.562 0.270 Meetingenterprises 1.854 1.781 1 0.476 (Saaty,1980).Theresultalsodemonstratesthattheenterprisehas requirements implementedtheBIsystemtomeetenterprises’requirements. Note:C.R.=0.0001. Table3 Pair-wisecomparisonsamongperformanceindicatorsunderassessingtheperformanceofBIsystem FunctionsofaBIsystem Serviceandintegration Meetinguser’sneeds Meetingenterprises Eigenvector ability requirements FunctionsofaBIsystem 1 0.418 0.262 0.300 0.095 Serviceandintegrationability 2.393 1 0.874 0.730 0.247 Meetinguser’sneeds 3.823 1.1436 1 0.618 0.288 Meetingenterprises 3.377 1.370 1.617 1 0.370 requirements Note:C.R.=0.0134. 4141 shows that the importance level of meeting enterprises require- valuesrepresenttherelativeweightingofeachselectedindicators ments on the functionality enhancement of BI system is 1.781 comparedtothatofthemajorcriterion.Wecandiscoverfromthe timeshigherthanthatofmeetingusers’needs.Otherfigurescan matrixCthatitissuitabletodesignevaluationindicatorsforthe be interpreted in same way. Thus, we can have the comparative OIA, IEC, UECC and MR criteria if the effects of a BI system is to weightvaluesaftercomparisonofprimarycriteria.Therefore,un- beevaluated der the criterion of FBIS, the relative weight values for ESIP, 20:114 3 MUN,andMERare(0.254,0.270,0.476),respectively. 60:242 7 ThefiguresshowthattheperformanceindicatorsofMERhave 6 7 the greatest impacton the FBIS while the ESIP influencesless. In 660:644 77 6 7 addition,theC.R.valueis0.0001andislessthan0.1,whichmeans 66 0:623 77 6 7 the appraisal result of experts is consistent. By resorting to the C¼6 0:377 7: ð5Þ 6 7 samemethod,wecanhavetheimportancelevelandthecompar- 6 0:722 7 6 7 ison figures. The results are shown in matrix B of formula 4, in 66 0:278 77 which the values in matrix represent the weights value of those 66 0:21477 4 5 criteria 0:789 2 0 0:328 0:135 0:1223 60:254 0 0:334 0:4037 B¼6 7: ð4Þ 5.2.4.Pair-wisecomparisonamongselectedindicators 640:270 0:331 0 0:47575 InTable6, thefigurein theblockof secondcolumnand third 0:476 0:431 0:531 0 row means the importance of IEC is 2.44 times that of the CDIB. With same manner, we know the importance comparison pairs. From the matrix we can see that the weight is sequenced in this TheresultisshowninthematrixDofformula6,inwhichthefig- way:1MER,2MUN,3ESIP.Thusweknowthemaintargetsofsur- uresrepresenttheweightvaluesofselectedindicators. vey(BIconsultants,ITpersonsandusers)careMERthemost.Ifitis : ð6Þ aimedtoimprovetheeffectsafterimplementingBIsystems, MER 5.3.CalculationofmatrixM shouldhavethehighestpriority. Theaggregationofall therelativeweightings ofthe pair-wise 5.2.3.Pair-wisecomparisonoftheselectedindicatorsundermajor comparisonmatrices(formula3–6)derivestheun-weightedsuper criteria matrixM(showninTable7)oftheBIsystemassessmentmodel. The three detailed indicators, SRT, SS, and OIA, affect the However,thesupermatrixMdoesnotmeetwith‘‘columnstochas- enhancementoftheBIfunctions.Thecomparisonresultbetween tic”limitation,i.e.thesumofeachofthecolumnmustbe1.Itis theimportanceofSRT,SSandOIAandtheimportanceofFBIS(ma- necessarytocomputeappropriateweightingssothattheaggrega- jorcriterion)intheexpert’sassessmentisshowninTable5. tionofallthecolumnvalueswillbeequalto1.Afterperforming InTable5,itshowsthatOIAis6.601timesmoreimportantthan necessaryoperationsforthelimitationoftheweightedsuperma- SRTfortheenhancementofBIfunctionality.Underthecriterionof trix,theconvergedsupermatrixM0isderived.Asthesumofrows enhancingthefunctionsofaBIsystem,therelativeweightingsof lessthan1iscalledtheun-weightedmatrix,weaddsomecertain SRT,SS,andOIAare0.114,0.242,and0.644,respectively.Thecom- weightstomakethesumequalto1andobtainaweightedmatrix parisonofimportancelevelsofotherscanbeobtainedinthesame M0,Table8.Afterthelimitationsoftheweightedsupermatrix,the manner.Theresultisshowninthematrixofformula5,wherethe convergedsupermatrixM00 isderived,asshowninTable9. Table6 Table5 Pair-wisecomparisonofperformanceindicatorsunderSRT Pair-wisecomparisonofperformanceindicatorsunderFBIScriterion IEC CDIB CR SOE Eigenvector SRT SS OIA Eigenvector IEC 1 2.44 1.70 1.23 0.348 SRT 1 0.553 0.152 0.114 CDIB 0.409 1 0.373 0.444 0.119 SS 1.811 1 0.440 0.242 CR 0.587 2.678 1 0.715 0.241 OIA 6.601 2.274 1 0.644 SOE 0.813 2.253 1.398 1 0.292 Note:C.R.=0.0239. Note:C.R.=0.0157. 4142 Table7 Theun-weightedsupermatrixM Goal Majorcriteria Selectedindicators 0.0Assessingthe 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 performanceofBI FBIS SIA MUN MER SRT SS OIA IEC CDIB SDUH CR SOE SDM system Goal 0.0Assessingthe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 performanceofaBI system Major 1.1FBIS 0.095 0 0.238 0.135 0.122 0 0 0 0 0 0 0 0 0 criteria 1.2SIA 0.247 0.254 0 0.334 0.403 0 0 0 0 0 0 0 0 0 1.3MUN 0.288 0.270 0.331 0 0.475 0 0 0 0 0 0 0 0 0 1.4MER 0.370 0.476 0.431 0.531 0 0 0 0 0 0 0 0 0 0 Selected 2.1SRT 0 0.114 0 0 0 0 0 0 0.093 0.081 0 0.062 0.065 0 indicators 2.2SS 0 0.242 0 0 0 0 0 0 0.132 0.121 0 0.078 0.088 0 2.3OIA 0 0.644 0 0 0 0 0 0 0.360 0.374 0 0.204 0.280 0.347 2.4IEC 0 0 0.623 0 0 0.348 0.331 0.243 0 0.183 0 0.092 0 0 2.5CDIB 0 0 0.377 0 0 0.119 0.138 0.177 0.150 0 0 0.056 0 0 2.6SDUH 0 0 0 0.722 0 0 0 0 0 0 0 0.210 0.230 0.329 2.7CR 0 0 0 0.278 0 0.241 0.350 0.205 0.265 0.241 0.201 0 0.146 0.145 2.8SOE 0 0 0 0 0.214 0.292 0.181 0.158 0 0 0.249 0.135 0 0.179 2.9SDM 0 0 0 0 0.786 0 0 0.217 0 0 0.550 0.163 0.191 0 Table8 TheweightedsupermatrixM0 Goal Majorcriteria Selectedindicators 0.0Assessingthe 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 performanceofBI FBIS SIA MUN MER SRT SS OIA IEC CDIB SDUH CR SOE SDM system Goal 0.0Assessingthe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 performanceofaBI system Major 1.1FBIS 0.095 0 0.119 0.068 0.061 0 0 0 0 0 0 0 0 0 criteria 1.2SIA 0.247 0.127 0 0.167 0.201 0 0 0 0 0 0 0 0 0 1.3MUN 0.288 0.135 0.165 0 0.238 0 0 0 0 0 0 0 0 0 1.4MER 0.370 0.238 0.216 0.265 0 0 0 0 0 0 0 0 0 0 Selected 2.1SRT 0 0.057 0 0 0 0 0 0 0.093 0.081 0 0.062 0.065 0 indicators 2.2SS 0 0.121 0 0 0 0 0 0 0.132 0.121 0 0.078 0.088 0 2.3OIA 0 0.322 0 0 0 0 0 0 0.360 0.374 0 0.204 0.280 0.347 2.4IEC 0 0 0.311 0 0 0.348 0.331 0.243 0 0.183 0 0.092 0 0 2.5CDIB 0 0 0.189 0 0 0.119 0.138 0.177 0.150 0 0 0.056 0 0 2.6SDUH 0 0 0 0.361 0 0 0 0 0 0 0 0.210 0.230 0.329 2.7CR 0 0 0 0.139 0 0.241 0.350 0.205 0.265 0.241 0.200 0 0.146 0.145 2.8SOE 0 0 0 0 0.107 0.292 0.181 0.158 0 0 0.249 0.135 0 0.179 2.9SDM 0 0 0 0 0.393 0 0 0.217 0 0 0.551 0.163 0.191 0 5.4.Selectionofthebestevaluationindicator betweenthetwogroupsofexperts.TheresultisshowninTables 11and12. Theselectionofthebestalternativedependsontheoutcomeof InTables11and12,theresultsshowthattheaverageweight thedesirabilityindex(DI),showninTable10.AccordingtotheDIs priority sequences are identical between the technical experts showninTable10,thelargerthepriorityweighting,thehigherthe and the end users. Among the indicators, the most addressed is priorityofbeingadoptedis.FromTable10,mostexpertsthinkthe number 2.3-OIA (0.1853, 0.1794), which is followed by number ‘Outputinformationaccuracy’(OIA)canbestevaluatethebenefits 2.7-CR (0.1691, 0.1687) and number 2.9-SDM (0.1559, 0.1628). of BI. The OIA indicator is also the most concerned one for users The SRT is the least important item. Thus, we can see that both and consultants to improve the total benefits of BI systems. The the technical experts and the end users have identical opinions ‘conformitytotherequirements’(CR)ranksthesecond,and‘sup- ontheconclusionofperformanceevaluationindicatorsfromthis portindecision-makinginorganization’(SDM)thethird.‘system research.Thoseassessmentindicatorscanbeutilizedasthebasics response time’ (SRT) is believed to be hardest factor to appraise forthecompaniedintendingtoimplementorimplemented. thebenefitsresultedfromBIsystems. 5.6.Summary 5.5.Analysisofcriteriaweightings The above analysis shows that there is little difference on the To make effective judgment on the results of the ANP model importance of the nine performance indicators between experts analysis, those experts in survey are divided into two groups. withdifferentbackgrounds.FortheeffectsoftheBIsystem,they One is those with technical background (including consultants regard OIA as the first priority indicator, followed by CR and and IT personnel) and the other is end users. We have made an SDM,andetc.ItdemonstratesthatbothITpersonnelandendusers analysistosee if thereis anydifferenceon theprioritysequence expectaccurateinformationfromtheBIsystem.Thus,toimprove 4143 Table9 TheconvergedsupermatrixM00 Goal Majorcriteria Selectedindicators 0.0Assessingthe 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 performanceofBI FBIS SIA MUN MER SRT SS OIA IEC CDIB SDUH CR SOE SDM system Goal 0.0Assessingthe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 performanceofaBI system Major 1.1FBIS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 criteria 1.2SIA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3MUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4MER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Selected 2.1SRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 indicators 2.2SS 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 2.3OIA 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 2.4IEC 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 2.5CDIB 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 2.6SDUH 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 2.7CR 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 2.8SOE 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 2.9SDM 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 Table10 6.1.Casebrief Thedesirabilityindex(DI)andsequenceofassessingcriteriaforBIsystems ThecompanyinthecasewasfoundedintheUSin1981,andisthe Performancecriteria DI Sequence largestsupplierofcomputerperipherals.Thecompanyhassetupits 2.3OIA 0.1853 1 operationcentersinSwitzerland,HongKongandTaiwan.Listedin 2.7CR 0.1691 2 2.9SDM 0.1559 3 NASDAQ, with 7200 employees, the company has products like 2.8SOE 0.1270 4 internet cams, input devices, multi-media systems, computer 2.6SDUH 0.1161 5 microphones,mobilephoneearphones,bluetoothearphone,recrea- 2.4IEC 0.0998 6 tiondevicesandotheritemswithhumaninterfacedevices.Inthis 2.5CDIB 0.0675 7 research,thesurveytargetsarethemanagersinchargeofproducts 2.2SS 0.0457 8 2.1SRT 0.0336 9 manufacturedintheHsinchuScience-basedIndustrialPark. 6.2.Analysis theeffectivenessoftheBIsystem,theaccuracyofresultsshouldal- This research adopts the manner of interview to know the waysbeaddresses.Afterall,mistakeninformationdoesnothingfor varioussituationsthecompanymeetswhenitpromotestheBIsys- theoperationsofenterprise,andevenworse,itcouldbringfatality tem.Theintervieweesaretheseniormanagersintheinformation totheenterprise. departmentofthecompany. Questionsintheinterview: 6.Casestudy 1. Systemaspect ToverifytheeffectivenessoftheANPmodel,westudiedacom- The company has adopted ERP as the tool of data analysis panythathasimplementedtheBIsystemasanexample.Through beforetheBIsystemisimplemented.Therefore,globalMRPis theinterview,theprocessofimplementingtheBIsystemandusing executed and material plan is generated. It is a challenge for informationcanbepresented. the planning job. To improve the planning efficiency, the Table11 Weightingsanalysisofselectedindicatorsforallexperts Expert PerformanceindicatorsthatinfluenceoneffectofBIsystem 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 E1 0.0336 0.0457 0.1853 0.0998 0.0675 0.1161 0.1691 0.127 0.1559 E2 0.0460 0.0774 0.1604 0.1074 0.0602 0.0548 0.1742 0.2190 0.1006 E3 0.0446 0.0253 0.1587 0.0373 0.0362 0.2070 0.1589 0.1142 0.2178 E4 0.0229 0.0155 0.0757 0.1358 0.1071 0.1490 0.1691 0.121 0.2039 E5 0.0504 0.0230 0.1890 0.1070 0.0213 0.1656 0.1416 0.0956 0.2065 E6 0.0271 0.0507 0.2242 0.0521 0.0921 0.0593 0.1890 0.1770 0.1285 E7 0.0414 0.0725 0.1074 0.0903 0.0631 0.1297 0.2361 0.1309 0.1286 E8 0.0216 0.0363 0.1056 0.1153 0.0344 0.1578 0.1954 0.1507 0.1829 E9 0.0266 0.0696 0.2100 0.1023 0.0958 0.1201 0.0778 0.1037 0.1941 E10 0.0250 0.0368 0.3327 0.1240 0.0368 0.0280 0.1758 0.1315 0.1094 E11 0.0312 0.0521 0.2233 0.1007 0.0931 0.0765 0.2042 0.1017 0.1172 E12 0.0332 0.0430 0.2510 0.1260 0.1028 0.1292 0.1382 0.0514 0.1252 Average 0.0336 0.0457 0.1853 0.0998 0.0675 0.1161 0.1691 0.1270 0.1559 Note:E1–E3aretheconsultants,E4–E10aretheITpersonnel,andE11–E12aretheendusers. 4144 Table12 Weightingsanalysisofselectedindicatorsfor10experts Expert PerformanceindicatorsthatinfluenceoneffectofBIsystem 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 E1 0.0336 0.0457 0.1853 0.0998 0.0675 0.1161 0.1691 0.1270 0.1559 E2 0.0460 0.0774 0.1604 0.1074 0.0602 0.0548 0.1742 0.2190 0.1006 E3 0.0446 0.0253 0.1587 0.0373 0.0362 0.2070 0.1589 0.1142 0.2178 E4 0.0229 0.0155 0.0757 0.1358 0.1071 0.1490 0.1691 0.121 0.2039 E5 0.0504 0.0230 0.1890 0.1070 0.0213 0.1656 0.1416 0.0956 0.2065 E6 0.0271 0.0507 0.2242 0.0521 0.0921 0.0593 0.1890 0.1770 0.1285 E7 0.0414 0.0725 0.1074 0.0903 0.0631 0.1297 0.2361 0.1309 0.1286 E8 0.0216 0.0363 0.1056 0.1153 0.0344 0.1578 0.1954 0.1507 0.1829 E9 0.0266 0.0696 0.2100 0.1023 0.0958 0.1201 0.0778 0.1037 0.1941 E10 0.0250 0.0368 0.3327 0.1240 0.0368 0.0280 0.1758 0.1315 0.1094 Average 0.0339 0.0453 0.1749 0.0971 0.0615 0.1187 0.1687 0.1371 0.1628 Note:E1–E3aretheconsultantsandE4–E10aretheITpersonnel. companyboughtOracleDataWarehouseandsavedthetransac- system is set in the US and India and it is responsible for the tiondata,customerordersandcostinformationintothedata- coordination and communication with suppliers of BI system. base. Then, the company bought Business Objects 5.0, which TheITpersonnelintheWorldwideServiceProviderarerespon- is used to assist managers and users in generating dynamic sibleforlearninganddescribingthespecialskillsforinterface reports. The BI system is expected to shorten the duration of design, KPI, formulation of cube data and statement format data processing, to improve the integration and completeness development.Also,theyneedtounderstandthecurrentsitua- of information, and to catch the data required by the analysis tionsofusers,promotethefunctionsofBIsystems,andenable forthesubmittaltothesuperior.Toimprovetheeffectsofthe theuserstobeinterestedintheuseofthesystemandwilling system, the company implemented Oracle 11i at the end of toqueryoranalyzewiththemeansofBItools.TheWorldwide 2004. Now, the IT personnel are active to try to present the ServiceUserincludesoperationsandfinancedepartments,and information from the BI system in the manner of showing on the managers, who ought to raise their opinions for the KPIs the war room dashboard, and to enhance the conformity and andtheinterfaces,areofferedwithasetofsuitableanalysistool resistanceoftheoutputinformationforefficiencyimprovement aftercommunicatingwithITpersonnel. ofdecision-making. 3. Effectaspect 2. Implementationaspect ByutilizingtheindicatorsandweightingsoftheANPmodel,the ThecompanyutilizestheBIimplementationteamintheUSand effectivenesscanbecomputedwiththescoresoftheinterview- IndiatoimplementandintegratetheBIsystemsinthebranches ees through formula 7. The overall effectiveness analysis is intheglobally.Thus,theleaderofeachbranchmustphysically showninTable13. visittheUSheadquartersandtheIndiaBranchtoexchangethe X9 demandswithlocalteams.TheKPIs(keyperformanceindices) Wj(cid:3)Gi¼PVi foralli ð7Þ aregeneratedafterthediscussionandcoordinationamongman- j¼1 agersandITdepartmentpersonnelineachbranchcompanyand WjistheweightingofNo.jassessmentindicator(j=1,2,...,9). thustheyhavehighreferencevalue.Theparticipantsanduseof GiisthescorefromtheNo.iinterviewee.PViistheeffectiveness BIsystemareshowninFig.4. FromFig.4,thedesigncenterofBI recognizedbyNo.iintervieweefortheBIsystem. Design Center BI implementation team (InUS and India) Fulfill Requirements Feedback Deliver designed BI system Deliver requirements and to branch company World Wide Service Provider discuss with BI team Local IT Department Training Propose Requirements Teach end users Deliver requirements and World Wide Service User discuss with BI team Functional Department Fig.4. ParticipantsanduseofBIsystem.

Description:
Saaty and Takizawa (1986), and it is an extension of analytic hierarchy matrix method proposed by Saaty and suggested a simplified ANP structure
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.