This book can be ordered in a paper bound reprint from: The Educational Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212 USA Toll Free: 1-866-880-5373 E-mail: [email protected] Peer Reviewer: Prof. Wenpeng Zhang, Department of Mathematics, Northwest University, Xi’an, Shaanxi, P. R. China. Prof. Xingsen Li, Ningbo Institute of Technology, Zhejiang University, Ningbo, P. R. China. Prof. Chunyan Yang and Weihua Li, Guangdong University of Technology, Institute of Extenics and Innovative Methods, Guangzhou, P. R. China. Prof. Qiaoxing Li, Lanzhou University, Lanzhou, P. R. China. Ph. D. Xiaomei Li, Dept. of Computer Science, Guangdong University of Technology, P. R. China. Copyright 2012 by The Educational Publisher, translators, editors and authors for their papers Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN: 9781599731902 Words: 175,000 Standard Address Number: 297-5092 Printed in the United States of America 8 ¹ 8 ¹ c ó................................................................................. III 1 {0.................................................................................. 1 2 Smarandache¼ê†–Smarandache¼ê.......................................... 3 2.1 'uSmarandache¼ê(cid:27)˜‡ßŽ .............................................. 3 2.2 ˜a(cid:157)¹Smarandache¼êÚEuler¼ê(cid:27)(cid:144)§I ............................... 5 2.3 ˜a(cid:157)¹Smarandache¼êÚEuler¼ê(cid:27)(cid:144)§II .............................. 9 2.4 'u–Smarandache¼ê(cid:27)ߎ................................................. 12 2.5 'uSmarandache¼ê†–Smarandache¼ê(cid:27)(cid:144)§I ......................... 16 2.5.1 (cid:18)µ9yG.................................................................... 16 2.5.2 ˜(cid:10)ƒ'¯K ................................................................. 19 2.6 'uSmarandache¼ê†–Smarandache¼ê(cid:27)(cid:144)§II ........................ 20 2.7 'uSmarandache¼ê†ƒê ................................................... 23 3 †Smarandache¼ê9–Smarandache¼êƒ'(cid:27)˜(cid:10)Ù§¼ê................ 27 3.1 ˜a†–Smarandache¼êƒ'(cid:27)¼ê(cid:144)§.................................... 27 3.2 'uSmarandachep‡¼ê†–Smarandache¼ê(cid:27)(cid:144)§..................... 29 3.3 'u¹–Smarandache¼ê9Ùéó¼ê(cid:27)(cid:144)§............................... 34 3.4 'u¹Smarandachep‡¼ê†–Smarandache¼ê(cid:27)(cid:144)§ .................. 39 3.5 'uSmarandacheV(cid:30)¦¼ê ................................................... 42 3.6 ˜a2–Smarandache¼ê ................................................... 45 3.7 ˜‡(cid:157)¹Smarandache¼ê91(cid:19)a–Smarandache¼ê(cid:27)(cid:144)§ ............. 48 3.8 'uSmarandache LCM¼ê†Smarandache¼ê(cid:27)þŠ ...................... 51 3.9 'uSmarandache LCM¼ê9Ùéó¼ê..................................... 53 4 SmarandacheS(cid:15)ïÄ.............................................................. 57 4.1 Smarandache LCM 'ÇS(cid:15)I................................................... 57 4.2 Smarandache LCM 'ÇS(cid:15)II.................................................. 61 4.3 Smarandache 1(cid:15)ª ............................................................. 64 4.3.1 SmarandacheÌ‚1(cid:15)ª ..................................................... 64 4.3.2 Smarandache Vé¡1(cid:15)ª.................................................. 67 4.4 Smarandache (cid:17)(cid:28)ê ............................................................. 69 4.5 Smarandache 3n êiS(cid:15)....................................................... 71 I 8 ¹ 4.6 Smarandache kn êiS(cid:15)....................................................... 74 4.7 Smarandache ²(cid:144)ê(cid:15) .......................................................... 78 5 Ù§êدK ....................................................................... 82 5.1 ¹kFibonacciê†Lucasê(cid:27)ð(cid:31)ª............................................ 82 5.2 Dirichlet L-¼ê†n(cid:14)Ú........................................................ 91 5.3 2ÂDirichlet L-¼ê.............................................................104 5.3.1 'u½n5.4 ...................................................................107 5.3.2 'u½n5.5 ...................................................................113 ë(cid:127)©z.................................................................................128 II c ó c ó êØq¡Š(cid:18)êØ, ´ïÄê(cid:27)5Æ, AO´ïÄ(cid:18)ê5Ÿ(cid:27)êÆ©|. êØ/¤ ˜€Õá(cid:27)Ɖ(cid:0), ‘XÙ¦êÆ©|(cid:27)uÐ, ïÄêØ(cid:27)(cid:144){(cid:143)3Øä(cid:27)uÐ, y“ êØ®²(cid:29)\(cid:20)êÆ(cid:27)Nõ©|, 3¥I, êØ(cid:143)´uÐ(cid:129)@(cid:27)êÆ©|ƒ˜. (cid:20)F1 <Ú¥I<(cid:31)é@Òk(cid:10)êØ(cid:127)£. êØ3êÆ¥(cid:27)/ ´ÕA(cid:27), pdQ²`L/êÆ´‰Æ(cid:27)•(cid:0), êØ´êÆ¥ (cid:27)•)0. Ïd, êÆ[ÑU(cid:129)rêØ¥˜(cid:10)](cid:13)™û(cid:27)¦J(cid:23)‰/•)þ(cid:27)²¾0, ±(cid:19)y<‚(cid:22)/Á(cid:18)0. êØfm©(cid:27)žÿ´^ȃ(cid:27)ín(cid:144){ïÄ(cid:18)ê(cid:27)5Ÿ, =Ð (cid:31)êØ. (cid:0)5úúuÐÑy)ÛêØ, “êêØ, |ÜêØ(cid:31). §‚Ï(cid:143)ïÄ(cid:144){(cid:27)ØÓ (cid:13)ˆ(cid:143)Ù¶, (cid:2)ѱÓ{Š(cid:143)Ù(cid:129)Ä(cid:29)(cid:27)nØ(cid:157)â. (cid:29)Ö̇éSmarandache¼ê9Ùƒ'¯K(cid:27)CÏïÄ(J?1(cid:18)nnã, ̇0(cid:11)(cid:10)Smarandache¼ê9†Ù§ƒ'¼ê(Ü(cid:27)ïÄ?Ð, Óž„0(cid:11)(cid:10) –Smarandache ¼ê9†Ù§ƒ'¼êéX(cid:27)˜(cid:10)(cid:129)#ïÄ(J, (cid:129)(cid:0)0(cid:11)A‡)Ûê Ø¥(cid:27)¯K¿Jј(cid:10)#(cid:27)¯K. äN5`, (cid:29)Ö̇ŠXeSü: 1˜Ù̇{ü0(cid:11)Smarandache¼ê9–Smarandache¼ê(cid:27)(cid:18)µÚ½Â; 1(cid:19) Ù̇0(cid:11)Smarandache¼ê†–Smarandache¼ê(cid:27)ïÄ(J9˜(cid:10)#(cid:27)¯K; 1n Ù̇0(cid:11)†Smarandache¼ê9–Smarandache¼êƒ'(cid:27)˜(cid:10)Ù§¼ê(cid:27)ïÄ( J; 1oÙ̇0(cid:11)SmarandacheS(cid:15)(cid:27)˜(cid:10)ïĤJ; 1ÊÙ̇0(cid:11)êإ٧S (cid:15)9Dirichlet L-¼ê(cid:27)A‡ïĤJ. (cid:29)Ö´ÄuSmarandache¼ê9Ùƒ'˜X(cid:15)êدK(cid:27)#(cid:27)ïĤJ(cid:27)®o. 3 (cid:17)¤L§¥, É(cid:20)(cid:10)Ü©+(cid:19)Ç(cid:27)õg(cid:141)(cid:19), édŠöL«š~a(cid:28). ÓžŠö(cid:143)a (cid:28)Ü(cid:16)ó’ŒÆÄ:ïÄÄ7é(cid:29)Ö(cid:27)]Ï. (cid:129)(cid:0)•¤k(cid:143)(cid:29)ÖŠÑ(cid:0)z(cid:27)P“ÚÆ )!Ó1Ú?6L«©%(cid:27)a(cid:28). duŠöY²k(cid:129), Ö¥J(cid:157)Ñy†Ø, (cid:129)H2ŒÖ ö1µ(cid:141)(cid:20). III c ó IV 1˜Ù {0 1˜Ù {0 35(cid:144)k¯K, vk)‰6˜Ö¥, {7ÛêZæͶêØ;[F.Smarandache(cid:19) ÇJÑ(cid:10)108‡ÿ™)û(cid:27)êدK, ùÚå(cid:10)¯õêØ;[(cid:27),(cid:21). (cid:29)Ö̇0(cid:11)(cid:10) ©¥k'Smarandache¼ê†–Smarandache¼ê9Ùƒ'¯K(cid:27)ïÄÚ#?Ð. é?¿(cid:20)(cid:18)ênͶ(cid:27)Smarandache¼êS(n)½Â(cid:143)(cid:129)(cid:2)(cid:27)(cid:20)(cid:18)êm¦(cid:26)n m!, = | S(n) = min m : m N,n m! . { ∈ | } lS(n)(cid:27)½Â<‚N´íÑXJn = pα1pα2 pαr L«n(cid:27)IO©)ª, @o 1 2 ··· r S(n) = max S(pαi) . 1 i r{ i } ≤ ≤ ddØJOŽÑS(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 1, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6 . ··· é?¿(cid:20)(cid:18)ênͶ(cid:27)–Smarandache¼êZ(n)½Â(cid:143)(cid:129)(cid:2)(cid:27)(cid:20)(cid:18)êm¦(cid:26)n(cid:18) Øm(m+1), = 2 m(m+1) Z(n) = min m : m N,n . ∈ 2 (cid:26) (cid:12) (cid:27) (cid:12) lZ(n)(cid:27)½ÂN´íÑZ(n)(cid:27)cA‡Š(cid:143): Z(1(cid:12)) = 1,Z(2) = 3,Z(3) = 2,Z(4) = (cid:12) 7,Z(5) = 4,Z(6) = 3,Z(7) = 6,Z(8) = 15,Z(9) = 8,Z(10) = 4,Z(11) = 10,Z(12) = 8,Z(13) = 12,Z(14) = 7,Z(15) = 5,Z(16) = 31, . ··· 'uS(n)ÚZ(n)(cid:27)Žâ5Ÿ, NõÆöÑ?1(cid:10)ïÄ, ¼(cid:26)(cid:10)Ø(cid:8)k(cid:21)(cid:27)( J. (cid:29)Ö̇Œ7ùüa¼ê9Ùƒ'¼ê(cid:27)(cid:129)#ïÄ?Љ˜‡XÚ(cid:27)8Bo (. äN/`, (cid:29)Ö̇(cid:157))Smarandache¼ê†–Smarandache¼ê(cid:27)ïÄ(J! †Smarandache¼ê9–Smarandache¼êƒ'¯KïÄ(JÚSmarandacheS(cid:15)ïÄ (J(cid:31), (cid:143)êØOÐöJøë(cid:127)](cid:14), (cid:143)(cid:143)ïÄSmarandache¯K(cid:27)ÆöJø(cid:6)(cid:29)©z (cid:27)(cid:144)B. 1 Smarandache ¼ê9Ùƒ'¯KïÄ 2 1(cid:19)Ù Smarandache¼ê†–Smarandache¼ê 1(cid:19)Ù Smarandache¼ê†–Smarandache¼ê 2.1 'uSmarandache¼ê(cid:27)˜‡ßŽ é?¿(cid:20)(cid:18)ên, Ͷ(cid:27)F. Smarandache¼êS(n)½Â(cid:143)(cid:129)(cid:2)(cid:27)(cid:20)(cid:18)êm¦(cid:26)n m!. | ~XS(n)(cid:27)cA‡ŠS(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 10, S(11) = 11, S(12) = 4, . 'uS(n)(cid:27){ ··· üŽâ5Ÿ, žë(cid:29)©z[1,7], ùpØ2 E. 'uS(n)(cid:27)(cid:141)(cid:29)(cid:143)5Ÿ, NõÆö?1(cid:10)ïÄ, ¼(cid:26)(cid:10)Ø(cid:8)k(cid:21)(cid:27)(J, ~XF. Luca(cid:19)Ç3©z[2]¥?Ø(cid:10)¼ê 1 A(x) = S(n) x n6x X (cid:27)þe.(cid:15)O¯K, ‰Ñ(cid:10)A(x)(cid:27)˜‡(cid:22)r(cid:27)þ.(cid:15)O. Óž¦„3©z[3]¥y²(cid:10)? ê nα S(1) S(2) S(n) n>1 · ··· X ´ýéÂñ(cid:27), ¿JÑ(cid:10)e¡(cid:27)ßÿ: ßßߎŽŽ: é?¿¢êx > 1, kìCúª LS(x) lnS(n) = lnx lnlnx+O(1). ≡ − n6x X 'uù˜ßŽ, –8q(cid:2)vk<ïÄ, –(cid:8)3yk(cid:27)©z¥„vw(cid:20)k'(Ø. F. Luca (cid:19)Ç@(cid:143)kŒUy²lnx lnlnx´LS(x)(cid:27)þ., (cid:2)´éJy²LS(x)(cid:27)e.. ù − ˜¯K´k¿Â(cid:27), –(cid:8)Œ±‡NÑS(n)¼ê(cid:27)éêþŠ©Ù5Ÿ. (cid:143)d, (cid:2)éù˜¯ K, |^Ð(cid:31)9)Û(cid:144){?1ïÄ, Œ±(cid:26)Ñ(cid:31),ØÓ(cid:27)(Ø, =Xe½n: ½½½nnn 2.1 éu?¿¢êx > 1, kìCúª LS(x) lnS(n) = lnx+O(1). ≡ n6x X w,d½nØ=`²ßŽ(cid:27)1(cid:19)‡Ì‘lnlnx´Ø(cid:127)3(cid:27), (cid:143)Ò´`,©z[3]¥(cid:27)ß ÿ´†Ø(cid:27), Óž(cid:143)‰Ñ(cid:10)LS(x)(cid:27)(cid:20)(L«/ª. (cid:8),XJ|^ƒê©Ù¥(cid:27)(cid:29)(cid:143)( J, „Œ±(cid:26)(cid:20)(cid:141)°((cid:27)ìCúª, =Ò´ 3 Smarandache ¼ê9Ùƒ'¯KïÄ é?¿(cid:20)(cid:18)êk > 1, k 1 1 LS(s) lnS(n) = lnx+C +O , ≡ x lnkx n6x (cid:18) (cid:19) X Ù¥C(cid:143)ŒOŽ(cid:27)~ê. (cid:143)(cid:10)y²½n2.1, I‡e¡(cid:27)A‡Ún. ÚÚÚnnn 2.1 é?¿ƒêp, kìCúª lnp = lnx+O(1), p p6x X x lnp = x+O . lnx Xp6x (cid:16) (cid:17) y²:ë(cid:29)©z[4 6]. − e¡|^dÚn†(cid:26)‰Ñ½n(cid:27)y². Äk‰ÑLS(x)(cid:27)þ.(cid:15)O. ¯¢þ, dS(n)(cid:27)Ð(cid:31)5Ÿ(cid:127), é?¿(cid:20)(cid:18)ênkS(n) 6 n, ¤±dEuler¦Úú ª(ë(cid:29)©z[6]¥½n3. 1), k 1 1 LS(x)= lnS(n) 6 lnn x x n6x n6x X X 1 x 1 x ln(x+1) = lnndy 6 lnydy + x x x n6xZ1 Z1 X 1 ln(x+1) =lnx 1+ + . − x x = 1 LS(x) = lnS(n) 6 lnx+O(1). (2-1) x n6x X Ùg, Ó(cid:24)|^þ¡(cid:27)Ún5(cid:15)OS(x) 1 LnS(n) (cid:27)e.. é?¿(cid:20)(cid:18) ≡ x n6x ên > 1, w,n–(cid:8)k˜‡ƒÏfp, Ø”(cid:23)n = p n P, u´dS(n)(cid:27)5Ÿ 1 · S(n) > p (cid:127) lnS(n) = lnS(p n ) > lnp. 1 · l(cid:13)dÙ(cid:127)(cid:27)©(cid:13)ð(cid:31)ª(ë(cid:29)©z[6]½n3.17), k LS(x) 1 = lnS(n) x n6x X 4